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The specific topology of the line-centered square lattice (known also as the Lieb lattice) induces remarkable
spectral properties such as the macroscopically degenerated zero-energy flat band, the Dirac cone in the low-
energy spectrum, and the peculiar Hofstadter-type spectrum in a magnetic field. We study here the properties of
the finite Lieb lattice with periodic and vanishing boundary conditions. We investigate the behavior of the flat
band induced by disorder and external magnetic and electric fields. We show that in the confined Lieb plaquette
threaded by a perpendicular magnetic flux there are edge states with nontrivial behavior. The specific class of
twisted edge states, which have alternating chirality, are sensitive to disorder and do not support integer quantum
Hall effect (IQHE), but contribute to the longitudinal resistance. The symmetry of the transmittance matrix in the
energy range where these states are located is revealed. The diamagnetic moments of the bulk and edge states in
the Dirac-Landau domain, and also of the flat states in crossed magnetic and electric fields are shown.
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I. INTRODUCTION

The interest in the line centered square lattice, known as the
2D Lieb lattice, comes from the specific properties induced
by its topology. The lattice is characterized by a unit cell
containing three atoms and a one-particle energy spectrum
showing a three-band structure with electron-hole symmetry,
one of the branches being flat and macroscopically degenerate.
For the infinite lattice, the three energy bands touch each other
at the middle of the spectrum (taken as the zero energy), and
the low-energy spectrum exhibits a Dirac cone located at the
point � = (π,π ) in the Brillouin zone. Except for the presence
of the flat band, the Lieb lattice shows similarities with the
honeycomb lattice in what concerns both spectral and transport
properties. For instance, besides the presence of the Dirac
cone, the energy spectrum in the presence of the magnetic field
shows also a double Hofstadter picture, with the typical

√
B

dependence of the relativistic bands on the magnetic field B.1

The Hall resistance of the two systems in the quantum regime
behaves alike, but the step between consecutive plateaus equals
h/e2 in the Lieb case (instead of h/2e2 for graphene) because
of the presence of a single Dirac cone per BZ. An all-angle
Klein transmission is proved by the relativistic electrons in the
Lieb lattice.2–4

There are more lattices that support flat bands, however, it
is specific to the Lieb lattice that the band is robust against the
magnetic field, while other lattices develop dispersion at any
B �= 0. The intrinsic spin-orbit coupling does not affect the flat
band either, but opens a gap at the touching point �, the Lieb
system becoming in this way a quantum spin Hall phase.3,5

Topological phase transitions driven by different parameters
are studied in Refs. 6 and 7. The zero-energy flat bands became
a topic of intense study also for other reasons: they may allow
for the non-Abelian fractional quantum Hall effect8–10 or for
ferromagnetic order and surface superconductivity.11–13

In this paper, we address the properties of the finite
(mesoscopic) Lieb lattice with emphasis on some features of
the flat band and of the edge states, which are specific to
this lattice. We adopt the spinless tight-binding approach, and

the spectral properties are examined under both periodic and
vanishing boundary conditions applied to the system described
in Fig. 1. In Sec. II, we find that the zero energy flat band
exists independently of the boundary conditions. It turns out,
however, that in the periodic case the band is built up only
from B- and C-type orbitals, while in the other case the
A-type orbitals are also involved (see Fig. 1). We prove this
analytically by calculating the eigenfunction in both situations.
In this way, we also find out that for confined systems (i.e.,
with vanishing boundary conditions), the degeneracy of the
flat band equals Ncell + 1 (Ncell is the number of cells of the
mesoscopic plaquette). While the flat band of the periodic
Lieb system is robust against the magnetic field,2 we find
in Sec. III A that for a confined plaquette, two levels separate
from the bunch when a perpendicular magnetic field is applied,
such that the degeneracy is reduced by 2. This is proved in a
perturbative manner for the general case, however, it can be
observed more easily by the use of a toy model consisting of
two cells only.

Next, we study how the flat band degeneracy is lifted by
disorder and by an external electric field applied in plane. An
exotic result is that the extended states of the disordered flat
band in the presence of a magnetic field behave according to
the orthogonal Wigner-Dyson distribution although a unitary
distribution is expected. When an electric field is applied, the
flat band splits in a Stark-Wannier ladder whose structure is
analyzed by calculating the diamagnetic moments of the states
in crossed electric and magnetic fields.

In Sec. III B, we study the edge states that fill the gaps of the
double Hofstadter butterfly when the magnetic field is applied
on the confined Lieb plaquette. We identify three types of
such states. The conventional edge states located between the
Bloch-Landau bands and also between Dirac-Landau bands
(i.e., the relativistic range of the spectrum) differ, as expected,
in their chirality. Additionally, we detect twisted edge states
situated in the magnetic gap, which protect the zero-energy
band, coming in bunches and characterized by an oscillating
chirality as function of the magnetic field. The twisted edge
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FIG. 1. (Color online) The Lieb lattice: the unit cell contains three atoms A,B, and C; indices (n,m) identify the cell; tx,ty are the hopping
integrals along the directions Ox and Oy, respectively; a is the lattice constant (left). The energy spectrum of the infinite Lieb lattice in the
case Ea = Eb = Ec = 0 when the three bands (two dispersive and one flat) get into contact at �k = (π,π ). At low energy, the dispersion is
linear giving rise to Dirac cones (right).

states show remarkable properties: surprisingly, they are not
robust to disorder, as the other types of edge states are, and
does not carry transverse current (i.e., the quantum Hall effect
vanishes in the energy range covered by these states). The last
property comes from a specific symmetry of the transmittance
matrix which is discussed in Sec. IV. Finally, one has to
note that the line centered square lattices are found in nature
as Cu-O2 planes14 in cuprate superconductors and can be
engineered as an optical lattice.3,15

II. THE TIGHT-BINDING MODEL FOR THE LIEB
LATTICE: PERIODIC VERSUS VANISHING

BOUNDARY CONDITIONS

Our aim is to point out specific aspects of the confined
Lieb plaquette from the point of view of spectral and transport
properties. In order to allow for a comparison, we shortly
describe also the case of the infinite system, with and without
magnetic field, although the eigenvalue problem is already
known from the literature. We remind that the continuous
model for the infinite Lieb system in a perpendicular magnetic
field3 shows the

√
B dependence on the magnetic field of

the eigenenergies in the relativistic range. The information
obtained in the long-wave approximation of the Schrödinger
equation, concerning the dependence on B of the Bloch-
Landau or Dirac-Landau bands, is recaptured in the spectrum
of the discrete tight-binding model [see Fig. 4(a)] together with
effects coming from the periodic lattice and finite edges.

In this section, starting from the tight-binding Hamiltonian,
we built up the eigenfunction of the periodic and finite Lieb
plaquette and prove the degeneracy and structure of the zero-
energy flat band. The crossover from the simple Hofstadter
spectrum of the simple square lattice to the Lieb spectrum
characterized by a double butterfly, magnetic gap and a flat
band, is shown in Fig. 2.

The Lieb lattice is a 2D square lattice with centered lines,
characterized by three atoms (A,B,C) per unit cell, as shown
in Fig. 1. Compared, for instance, to the bricklayer lattice

(which is topologically equivalent to graphene16), it is obvious
that the spectral differences come from the different atomic
connectivity in the two lattices: while the connectivity of all
atoms in the brick lattice equals three, in the case of the Lieb
lattice, the connectivity of atoms A equals four and that of
atoms B and C equals two.

Introducing creation {a†
nm,b

†
nm,c

†
nm} and annihilation

{anm,bnm,cnm} operators of the localized states |Anm〉,|Bnm〉,
|Cnm〉 [where (nm) stands for the cell index and the letters
A,B,C identify the type of atom], the spinless tight-binding
Hamiltonian of the Lieb lattice in perpendicular magnetic field
reads

H =
∑
nm

Eaa
†
nmanm + Ebb

†
nmbnm + Ecc

†
nmcnm

+ txe
−iπmφa†

nmbnm + txe
iπmφa†

nmbn−1,m + tya
†
nmcnm

+ tya
†
nmcn,m−1 + txe

−iπmφb†nman+1,m + txe
iπmφb†nmanm

+ tyc
†
nmanm + tyc

†
nmanm+1, (1)

where φ is the flux through the unit cell of the Lieb lattice
measured in quantum flux units; we mention that the vector
potential has been chosen as �A = (−By,0,0).

The presence of a spectral flat band can be noticed already
in the simplest case of the periodic boundary conditions and
vanishing magnetic flux. Assuming that the lattice is composed
of Nx

cell = N cells along Ox and N
y

cell = M cells along Oy,
the Fourier transform c�k = ckx,ky

= 1√
NM

∑
n,m cnmei(kxn+kym)

(and similarly for all the other operators) yields the k

representation of the Hamiltonian described by a 3 × 3 matrix
H (�k):

H =
∑

�k

(
a
†
�k b

†
�k c

†
�k
)⎛⎜⎝

Ea �∗(kx) �∗(ky)

�(kx) Eb 0

�(ky) 0 Ec

⎞
⎟⎠
⎛
⎜⎝

a�k
b�k
c�k

⎞
⎟⎠,

(2)

where kx = 2πp/N (p = 1, . . . ,N), ky = 2πq/M(q =
1, . . . ,M), and the notations �(kx) = tx(1 + eikx )
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FIG. 2. (Color online) The energy spectrum as a function of the magnetic flux for three values of the hopping integral t ′ (see text): (left)
t ′ = 1, corresponding to the simple square lattice, (middle) t ′ = 0.5, (right) t ′ = 0, corresponding to the square lattice with centered lines (Lieb
lattice). φ is the magnetic flux through the unit cell of the simple lattice measured in quantum flux units. The Hofstadter butterfly is obvious for
t ′ = 1, while a doubled butterfly results for t ′ = 0 in each of the intervals φ ∈ [0,0.25], φ ∈ [0.25,0.5], etc. (one has to keep in mind that the
flux through the Lieb unit cell is four times larger than φ). The energy is measured in units of hopping integral t .

and �(ky) = ty(1 + eiky ) were used. With the choice
Ea = Eb = Ec = 0, one obtains the following eigenvalues:

�±(�k) = ±
√

|�|2 + |�|2
= ±2

√
t2
x cos2(kx/2) + t2

y cos2(ky/2), (3)

�0(�k) = 0,

where �± are the energies of the upper and lower bands,
respectively, and �0 is the nondispersive (flat) band of the Lieb
lattice. The most interesting point in the Brillouin zone (BZ)
is the point � = (π,π ), where in the case of the infinite lattice
the three branches are touching each other. By expanding
the functions �(kx) and �(ky) about this point, the 3 × 3
Hamiltonian H (�k) can be written in terms of the spin S = 1
matrices as

H (�k) = txkxSx + tykySy, (4)

similar to the pseudo-spin representation in Ref. 3, and the
energy of Eq. (3) gives rise to a Dirac cone (massless)
spectrum:

�± = ±
√

t2
x k2

x + t2
y k2

y, (5)

where kx and ky are measured from the point �. On the other
hand, the expansion of the same functions about R = (0,0)
shows a parabolic dependence:

�± = ±
(

k2
x

2mx

+ k2
y

2my

)
, (6)

where mx and my are effective masses along the two direc-
tions. Other relevant points in the BZ are M = (π,0) and
(0,π ), which prove to be saddle points in the spectrum as
it can be noticed also in Fig. 1(right). Above and below the
corresponding energy E = ±2t (where we considered tx =
ty = t), the effective mass exhibits opposite signs inducing the
change of sign of the Hall effect, which is visible in Fig. 14.

In what follows, we shall calculate the eigenfunctions
of the finite Lieb lattice, imposing first periodic conditions,
and then the vanishing boundary conditions proper to the
confined plaquette. Let ��k be the eigenfunctions of the Lieb
lattice with periodic boundary conditions built up as the linear

combination:

��k = α�ka
†
�k|0〉 + β�kb

†
�k|0〉 + γ�kc

†
�k|0〉, (7)

where the coefficients α�k,β�k,γ�k satisfy the following equa-
tions:

Eaα�k + �∗(kx)β�k + �∗(ky)γ�k = Eα�k,
�(kx)α�k + Ebβ�k = Eβ�k, (8)

�(kx)α�k + Ecγ�k = Eγ�k.

Then, the functions corresponding to the eigenvalues �0 and
�± in Eq. (3) read

�0(�k) = 1√
|�|2 + |�|2

(
�∗(ky)b†�k − �∗(kx)c†�k

)|0〉, (9)

�±(�k) = 1

2

(
± a

†
�k + �(kx)√

|�|2| + |�|2
b
†
�k

+ �(ky)√
|�|2 + |�|2

c
†
�k

)
|0〉. (10)

In the case of periodic conditions applied to the finite
plaquette, there are some subtleties concerning the band
degeneracy, which become unimportant in the limit of infinite
system. It is obvious from Eqs. (9) and (10) that the three
bands come into contact at �k = (π,π ), however, this value of
�k is allowed only if both N and M are even. In this case, the
flat band at E = 0 is (Ncell + 2)-fold degenerate, otherwise all
the three bands are Ncell-fold degenerate (where the number of
cells Ncell = NM).

The expression of �0(�k) in Eq. (9) indicates that the flat
band of the periodic lattice is composed only from orbitals of
the type B and C. On the other hand, we shall see below that
in the case of vanishing boundary conditions the zero-energy
eigenfunction may sit also on the A-type sites, and that the
degeneracy of the flat band becomes Ncell + 1.

The periodic boundary conditions can be used in the
presence of a uniform perpendicular magnetic field for rational
values of the magnetic flux φ = p/q resulting in a spectrum
composed of two Hofstadter butterflies similar to the case
of the honeycomb lattice. However, in contradistinction to the
honeycomb lattice, one notices the presence of a dispersionless
band at E = 0, which is flat with respect to the variation of the
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magnetic flux, and is protected by a gap opened at B �= 0.2,3

The spectrum exhibits Bloch-Landau bands at the extremities
and also relativistic Dirac-Landau bands towards the middle.
The two types of bands are distinguished by opposite chirality
dE/dφ and by different dependence on the magnetic field.

The periodic boundary conditions discussed above can be
properly used for describing infinite lattices, however, when
interested in mesoscopic plaqettes, they have to be replaced
with vanishing boundary conditions. We intend to identify the
differences introduced by the finite size, which will turn out to
be nontrivial in the case of the Lieb lattice.

For the confined Lieb lattice, the eigenfunctions can be
obtained as combinations of functions (9) or (10) with

coefficients that ensure the vanishing of the eigenfunction
along the edges. As a technical detail, we mention that (along
the Ox direction, for instance) the finite plaquette begins with
the atom A in the first cell, and also ends with an atom A
that belongs to the (N + 1)th cell. This means that the wave
function |�(�k)〉 should vanish at the site B in the zeroth and
(N + 1)th cell, i.e., 〈�(�k)|b†N+1,m|0〉 = 〈�(�k)|b†0,m|0〉 = 0.
Similarly, the vanishing condition along Oy occurs at the site
C in the zeroth and (M + 1)th cell along this direction, i.e.,
〈�(�k)|c†n,M+1|0〉 = 〈�(�k)|c†n,0|0〉 = 0.

In the localized representation, which is the proper one
in the case of confined systems, the eigenfunctions |�0(�k)〉
corresponding to E = �0 = 0 look as follows:

|�0(�k)〉 =
√

2

N + 1

√
2

M + 1

N+1∑
n=1

M+1∑
m=1

(
2ty cos ky

2√
|�|2 + |�|2

sin kxn sin ky

(
m − 1

2

)
b†nm|0〉

− 2tx cos kx

2√
|�|2 + |�|2

sin kx

(
n − 1

2

)
sin kymc†nm|0〉

)
, (11)

where kx,ky are obtained from the condition that the wave function vanishes at the boundary, and equal kx = pπ/(N + 1)
(p = 1, . . . ,N + 1) and ky = qπ

M+1 (q = 1, . . . ,M + 1). Since the situations p = N + 1 (at any q) and q = M + 1 (at any p),
generate |�0〉 = 0, we are left in Eq. (11) with only NM nonvanishing degenerate orthogonal eigenfunctions.

The eigenfunctions |�±(�k)〉 corresponding to the other two energy branches can be written similarly as

|�±(�k)〉 =
√

2

N + 1

√
2

M + 1

N+1∑
n=1

M+1∑
m=1

(
± sin kx

(
n − 1

2

)
sin ky

(
m − 1

2

)
a†

nm|0〉

+ 2tx cos kx

2√
|�|2 + |�|2

sin kxn sin ky

(
m − 1

2

)
b†nm|0〉 + 2ty cos ky

2√
|�|2 + |�|2

sin kx

(
n − 1

2

)
sin kymc†nm|0〉

)
, (12)

where states of the type A are this time also present. One
can readily see that the number of nonvanishing states in
each spectral branch is (N + 1)(M + 1) − 1, since the point
� = (π,π ) has to be treated separately. This is because its
corresponding energy vanishes and the state should be counted
in the flat band. In this case, we are left only with the first term
in Eq. (12), and the wave function becomes∣∣�0

a

〉 =: |�±(π,π )〉

=
√

1

M + 1

√
1

M + 1

N+1∑
n=1

M+1∑
m=1

(−1)n+ma†
nm|0〉. (13)

For the finite Lieb plaquette with vanishing boundary condi-
tions, one may conclude that the flat band degeneracy equals
NM + 1, while each other branch contains NM + N + M

states, so that the total number of states equals indeed the
number of sites 3NM + 2(N + M) + 1.

In the presence of the magnetic field, the vanishing
boundary conditions give rise to edge states, which fill the
gaps of the Hofstadter spectrum corresponding to the periodic
system. Besides the edge states existing in the energy range of
the Bloch-Landau levels (which are the only met for the finite
plaquette with simple square structure), there are edge states in
the relativistic range, which show opposite chirality,17 but also
nonconventional edge states lying in the central gap, which

protects the zero-energy dispersionless band. This last new
class of edge states exhibits oscillating chirality when changing
either the magnetic flux or the Fermi energy. These states will
be studied in the next chapter. The fate of the zero-energy
states in the presence of confinement will be discussed in the
next section.

The Lieb lattice can be generated from the simple square
lattice by extracting each second atom when moving along
both Ox and Oy directions. Formally, this means either to
push to infinity the energy Ed of these atoms or to cut down
the hopping integrals t ′ connecting them to the neighboring
atoms, and it is instructive to follow the change of the spectrum
when Ed/t ′ → ∞. By driving the system in this way from 1 to
3 atoms/unit cell, the lattice periodicity is doubled along both
directions, and the flat band is generated. The middle panel
of Fig. 2 shows how the butterfly wings break off during the
process giving rise to the relativistic range.

III. SPECIFIC ASPECTS OF THE FINITE LIEB
PLAQUETTE IN MAGNETIC FIELD: ZERO-ENERGY

FLAT BAND AND TWISTED EDGE STATES

A. The properties of the flat band

There are several pertinent questions that can be asked
concerning the flat band in the energy spectrum of the Lieb
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FIG. 3. (Color online) The three eigenstates of the flat band for a Lieb lattice composed of two cells. The eigenfunctions are � (0) =∑
nm αnm|nm〉 and the coefficients αnm are indicated. We notice that the condition for the flat band appearance

∑
nm∈Vn0m0

αnm = 0 holds for
any site {n0m0}.

finite system: what is the degeneracy and what is the response
to the magnetic and electric fields and to the disorder?

Let us find first the conditions that should be satisfied by the
zero-energy eigenfunction �E=0. Let H be the tight-binding
Hamiltonian of a finite system and �E its eigenfunctions:

H =
∑

n

En|n〉〈n|+
∑
n,m

tnm|n〉〈m|, �E =
∑

n

αn|n〉, (14)

where {|n〉} is a basis of functions localized at the sites n. {αn}:
Enαn +

∑
m

tnmαm = 0,∀n. (15)

Equation (15) is the necessary and sufficient condition that
must be fulfilled by the wave function �E in order to
correspond to the zero eigenvalue E = 0. With En = 0, and
taking into account only the nearest neighbors (tnm = t), the
above equations become simply

∑
m∈Vn

αm = 0, for any n,
where the sum is taken over all sites in the first vicinity Vn of
the site n. In addition, if �i

E=0 and �
j

E=0 are two degenerate
states, the orthogonality condition reads

∑
n αi

nα
j
n = 0. The

number of configurations {αn} that satisfy simultaneously the
two conditions equals to the dimension of an orthogonal basis
in the space of the degenerate eigenfunctions at E = 0.

An instructive illustration is the Lieb plaquette consisting
of two cells (see Fig. 3). The plaquette contains 13 atoms
(six of type A, four of type B, and three of type C). There
are three configurations of the coefficients αn that satisfy
the conditions discussed above and they are pictured as
Figs. 3(a)–3(c). (The numbers {0,−1,1,−2} mentioned in
Fig. 3 represent the values, up to the normalization factor,
of the coefficients αn.)

With the notations used in the Hamiltonian (1), the three
states can be written as

�
(0)
1 (E = 0,φ = 0)

= [−a
†
11 + a

†
21 − a

†
22 + a

†
12 − a

†
31 + a

†
32]|0〉,

�
(0)
2 (E = 0,φ = 0)

= [b†11 + b
†
21 − c

†
11 + c

†
31 − b

†
12 − b

†
22]|0〉, (16)

�
(0)
3 (E = 0,φ = 0)

= [b†11 + b
†
21 − c

†
11 − 2c

†
21 − c

†
31 + b

†
12 + b

†
22]|0〉.

It is obvious that
∑

n αi
n = 0 for any i = 1,2,3 and that

〈�i |�j 〉 = 0 for any i,j = 1,2,3, i.e., the three states cor-
respond to E = 0 and are mutually orthogonal.

Next, we want to find out how the zero-energy states of
Eq. (16) respond to a perpendicular magnetic field. In order to
answer this question, we write the Hamiltonian (1) as

H (φ) = H (0)(φ = 0) + H (1)(φ),

H (1)(φ) =
∑
nm

(
a†

nmbnm + b†nma
†
n+1,m

)
(eiπmφ − 1) + H.c.,

(17)

and perform degenerate perturbation with respect to H (1).
Applying this approach to the two-cell Lieb system, the
matrix elements involved are 〈�(0)

1 |H 1|�(0)
2 〉 = 8i sin πφ and

〈�(0)
2 |H 1|�(0)

3 〉 = 0 and the secular equation reads

det

⎛
⎜⎝

−E 8i sin πφ 0

−8i sin πφ −E 0

0 0 −E

⎞
⎟⎠ = 0,

giving rise to the eigenvalues: E1,2 = ±8t sin πφ and E3 = 0.
One remarks that the bulk state �3 does not couple to

the magnetic field and its eigenenergy remains E3 = 0. On
the other hand, the surface states �1,2 get a dispersion that
depends on φ. The conclusion of the perturbative calculation
is that the magnetic field reduces by 2 the degeneracy of the
zero-energy band.

Let us generalize now to a finite Lieb lattice containing
N cells along the Ox axis and M cells along Oy axis, so
that the total number of cells is Ncell = NM and the number
of states is 3NM + 2(N + M) + 1. It has been proved in the
previous chapter that, at zero magnetic field, the number of
zero-energy degenerate states is Ncell + 1. Then, the two-cell
model shows that in the presence of the magnetic field, two
states separate from the bunch so that the degeneracy of the
flat band becomes Ncell − 1. Using a similar approach for the
general case, one has to use the eigenfunctions (11) and (13)
and expression (17) as the perturbation. One finds out easily
that 〈�0(�k)|H (1)�0( �k′)〉 = 0, and that the only nonvanishing
matrix elements are X(�k) =: 〈�0(�k)|H (1)�0

a〉. In the general
case, the secular equation becomes

det

⎛
⎜⎜⎜⎝

−E 0 0 . . . . X(�k1)

0 −E 0 . . . . X(�k2)

. . . . . . . . . . . . . . . . . . . .

X(�k1) X(�k2) X3 . . . . −E

⎞
⎟⎟⎟⎠ = 0,

which in the polynomial form reads EN−2(E2 − X2) = 0,
where X2 = X2(�k1) + · · · + X2(�kN−1). This formula (where
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FIG. 4. The Hofstadter-type spectrum of a finite Lieb lattice of dimension Nx
cell = N

y

cell = 10: (a) for the clean plaquette and (b) for the
disordered one (disorder strength W = 1). The flux φ is measured in quantum flux units.

N stands here for the degeneracy of the flat band) says that from
the whole bunch only two levels get a dispersion depending
on φ, meaning that the degeneracy of the zero energy level
is reduced by 2 in the presence of the magnetic field. So, the
general finite Lieb plaquette behaves similarly to the two-cell
model.

The numerically calculated energy spectrum of the finite
plaquette in perpendicular magnetic field is shown in Fig. 4(a),
where one can check again the presence of the two levels that
separate from the flat band while most of the bunch at E = 0
consisting of Ncell − 1 states remain dispersionless.

The strong degeneracy of the flat band can be, however,
lifted by a disordered potential. The broadening of the band
depends on the strength of the disorder, however, it remains
independent of the magnetic field as in the case of the clean
system [see Fig. 4(b)]. We use a diagonal disorder of the
Anderson-type characterized by the width parameter W .18 The
calculation of both the inverse participation number (IPN) and
of the interlevel distribution indicate that in the middle of the
disordered band the states are still delocalized, and described

by the orthogonal Wigner-Dyson distribution (β = 1), which
is the typical result in the absence of the magnetic field. This
proves once more the absence of response of the flat band to the
perpendicularly applied magnetic field, even in the presence
of disorder.

The inverse participation number (IPN) is defined as

IPNE =
∑

n

|〈n|�E〉|4, (18)

and indicates the degree of localization of the states. The
small values of the IPN for energies in the middle of the
density of states denotes the presence of extended states,
and, as expected, the localization increases towards the band
edges. The numerically calculated density of states and the
dependence on energy of the inverse participation number are
shown in Fig. 5(a). Further information about the localization
and the response to the magnetic field is provided by the
distribution function of the level spacing between consecutive
eigenvalues sn = En − En−1 of the disordered system. Let us
define the dimensionless quantity tn = sn/〈sn〉a, where 〈sn〉
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FIG. 5. (Color online) (a) The density of states and IPN in the flat band range as a function of the energy for a disordered Lieb plaquette of
dimension 20 × 20 cells averaged over 1000 configurations (disorder strength W = 0.3). (b) The variance of the level spacing distribution as
function of energy for the same disordered system; the horizontal lines correspond to 0.4220 (as for the unitary ensemble) and 0.5227 (as for
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FIG. 6. The low-energy spectrum of a finite Lieb plaquette as a function of the electric potential applied on the plaquette in the Oy direction
at (a) φ = 0, and (b) φ = 0.12.

is the mean level spacing. In the disordered system, in the
range of delocalized states, the level spacings are distributed
according to the Wigner-Dyson surmise:19

P(t) = bβtβe−aβ t2
, (19)

where β = 2 in the presence of the magnetic field, and β = 1
if B = 0. As a signature of the distribution, the variance
of the level spacing δt = 〈δs〉/〈s〉 is 〈δt〉 = 0.4220 in the
first case, and 〈δt〉 = 0.5227 in the second one. Figure 5(b)
shows the numerically calculated variance of the level spacing
distribution, and one can notice that in the middle of the flat
band, where the states are delocalized, the variance is 〈δt〉 =
0.5227. This means that, despite the presence of the magnetic
field, the flat band behaves according to the orthogonal (β = 1)
Wigner-Dyson distribution instead of the unitary one (β = 2),
as it is expected at B �= 0.

Another way to lift the degeneracy of the zero-energy band
is to apply an in-plane static electric field. We expect specific
aspects coming from the existence of the edges and of the
lattice structure. In the numerical calculation, the electric field
applied along Oy axis is simulated by replacing the atomic

energies Enm with Enm + Eyn, where yn is the site coordinate
along Oy. Figure 6(a) shows how the eigenvalues stemming
from the flat band are split in several degenerate minibands
which develop a Stark fan with increasing electric field. It can
be checked that the number of minibands equals the number
of lattice cells along the direction of the electric field. A
perpendicular magnetic field gives rise to supplementary fine
splitting and to the presence of states between minibands. This
can be seen in Fig. 6(b) and also in Fig. 7. We have noticed
that the flat band states are much more sensitive to the electric
field than the edge states, and they give rise to a Wannier-Stark
ladder at values of the electric field E for which the edge states
are still not affected. We have also numerically observed that
the wave function in the lth miniband is mainly localized in
the lth row of cells in the direction of the electric field.

We already have seen that the flat band states do not show
any diamagnetic response, and it is somehow surprising that
the Wannier-Stark states coming from the former flat band
exhibit a diamagnetic moment when the magnetic field is
applied. It is interesting that each miniband shows both positive
and negative magnetic moments, and Fig. 7(a) suggests that
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FIG. 7. The behavior of the flat band in crossed magnetic and electric fields. (a) The orbital magnetization Mα and (b) the edge localization
P edge

α (b) vs energy Eα for a finite Lieb lattice of dimension Nx
cell = N

y

cell = 15. The flat band turns into a set of 15 minibands, every miniband
being composed of two parts with opposite magnetization. The states in the lowest and highest minibands have significantly increased edge
localization (φ = 0.12 and eELy = 0.2).
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FIG. 8. (Color online) The eigenenergy in the range of the twisted edge states vs the magnetic flux φ for a pure Lieb (a) and for a disorder
Lieb (b) lattices. The twisted edge states have an oscillatory behavior when the magnetic flux is varied, and they form bunches with four states
in each bunch. The oscillatory behavior is destroyed by disorder in the right figure, but the conventional edge states (shown in the lower part
of the spectrum) remain robust against disorder. The dimension of the Lieb lattice is Nx

cell = N
y

cell = 10 and the amplitude of the Anderson
disorder is W = 1.

the chirality dE/dφ changes the sign at the center of the
miniband.

We have studied also the localization properties of the
eigenstates, particularly the localization along the edges P

edge
α ,

defined as

P edge
α =

∑
i∈edge

|�α(i)|2, (20)

where the index α indicates the state, and the sum is taken
over all the sites that belong to the plaquette boundary. It turns
out that the states, which belong to the minibands from the
extremities of the fan spectrum, are strongly localized along
the edges [see Fig. 7(b)]. The localization is of electric origin
since the picture is similar no matter whether the magnetic
field is present or not.

We conclude, saying that the disorder lifts the degeneracy
of the flat band keeping the states independent of the
magnetic field, while the electric field produces states that
respond to the magnetic field and show specific diamagnetic
moments.

B. The twisted and type-II edge states and their properties

The confinement of the Lieb lattice induces several types of
edge states. Besides the conventional edge states found in the
Bloch-Landau and Dirac-Landau regions, there are still two
other classes of edge states. We discuss first the twisted edge
states lying in the magnetic gap opened around the degenerated
energy level E = 0. Although the new states are localized
along the perimeter of the plaquette, they do not follow the
known behavior of the conventional edge states. The new class
of edge states manifest specific properties: (i) their energy
depends on the flux in a periodic way. This means that the
chirality defined by the sign of dE/dφ is not conserved but
alternate when changing the flux, in contradistinction to the
usual edges states either in the Bloch-Landau or Dirac-Landau
domain. Obviously, the alternate chirality should be reflected
also in oscillations of the orbital magnetization at the variation

of the magnetic flux. (ii) Their energies as a function of the flux
appear as twisted into bunches; for the clean square plaquette
shown in Fig. 8(a), each bunch consists of four states. (iii) The
states prove the lack of robustness against disorder and (iv)
prove specific transport properties, namely, the twisted edge
states carry a finite longitudinal resistance accompanied by
vanishing Hall resistance. A piece of the spectrum of the clean
plaquette in the energy range of twisted edge states is shown in
Fig. 8(a), where bunches consisting of four twisted edge states
can be observed. One also has to notice that, at a given flux, the
states in the bunch may show opposite chirality meaning that
they carry diamagnetic currents moving in opposite directions.
In the presence of disorder [see Fig. 8(b)], one notices that
the twisted eigenenergies get stretched but the rest of the
spectrum (the band and the edge states in the Dirac region)
is not affected. This indicates that the twisted states are very
sensitive to disorder. The understanding of this effect is simple
in the sense that the degeneracy at crossing points20 is lifted
by the perturbation introduced by the impurity potential, and
this occurs even at weak disorder. While the conventional
edge states are protected against localization by the broken
time-reversal symmetry, which prevents the backscattering,
the new class of edge states in the Lieb lattice are sensitive
to disorder and can be localized easily. Our scenario is the
following: the twisted states are no more protected since they
are organized in doublets, which carry current in opposite
directions; then, the presence of an impurity may shortcut
the two trajectories and produce backscattering as suggested
in Fig. 9. Indeed, Fig. 10 shows that a twisted egde state of
the ordered system becomes localized along one side of the
plaquette even in the presence of a weak disorder, while the
normal edge state in the Dirac region remains unaffected.

The Lieb lattice exhibits still another specific edge states
(which we call type-II edge states), which in Fig. 11 are placed
immediately above the Dirac-Landau bands at the transition
from Dirac bulk to conventional edge states. They cannot be
identified according to the sign of the magnetic moment21

since their chirality dEn/dφ is the same as for the bulk (band)
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(a) (b)

FIG. 9. The behavior of the edge states with disorder. (a) The
absence of the backscattering for a conventional edge states. A pair
of twisted states, which are sufficiently close in energy, may suffer
the backscattering suggested in (b), which induces the localization
shown in Fig. 10.

states.17 Nevertheless, the diamagnetic currents of these states
are located along the edges of the plaquette. These edge
states show a double-ridge profile and carry current in both
directions, but nonetheless the total magnetization remains of
bulk type.

In Fig. 12, the diamagnetic currents of bulk states, type-II
edge states and of conventional edge states are sketched.
The twisted edge states may show currents similar to both
conventional and type-II edge states. Compared to the twisted
states, the type-II edge states behave substantially different
in the electronic transport. These states will be studied in
detail elsewhere. The contribution to the magnetization of each
eigenstates |α〉 is calculated following the approach from,22

namely,

Mα = −〈α|dH

dφ
|α〉

= itx
∑
mn

(me−imπφ〈α|Anm〉〈Bnm|α〉

−meimπφ〈α|Anm〉〈Bn−1,m|α〉
+me−imπφ〈α|Bnm〉〈An+1,m|α〉
−meimπφ〈α|Bnm〉〈Anm|α〉). (21)

All the matrix elements in the above equation are known once
the eigenstates |α〉 are calculated numerically in the presence
of the magnetic flux. Figure 13 depicts the diamagnetic
moments and the localization at the edges of different type of
states. The bulk (band) states show positive magnetization and
vanishing localization at the edge, the conventional edge states
show negative magnetization, and 97% localization at the edge.
The twisted edge states show alternating magnetization, as
expected, but also an unanticipated differences in the degree of
edge localization. This is because they exhibit either a single-
or double-ridge wave function. Obviously, the double-ridge
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FIG. 11. (Color online) The eigenenergies vs the magnetic flux φ

for a pure Lieb lattice in the range that emphasizes the type-II edge
states. In the spectrum, they are located between the bulk states in the
Dirac-Landau range and the conventional edge states of the first gap.
Their energy decreases with the magnetic field similar to the bulk
states, however, they have edge localization of the wave function.
The dimension of the Lieb lattice is Nx

cell = N
y

cell = 10.

wave function is not strictly stuck to the edge so that Pedge ≈
0.7–0.8, while for the single-ridge states the same parameter
goes up to 0.9. Figure 13 points out that the single-ridge
states, which are localized close to the edge exhibits negative
magnetization (as the conventional edge states), while the
double-ridge states exhibits positive magnetization.

IV. THE INTEGER QUANTUM HALL EFFECT

The quantum transport of the 2D Lieb plaquette shows
some similarities with the case of graphene, however, it also
reveals particular properties. The Hall resistance as a function
of the Fermi energy at a given quantizing magnetic field was
obtained in Ref. 3 by calculating the Chern numbers, and has
the general aspect which can be observed in Fig. 14, which we
obtain in the Landauer-Büttiker formalism: starting from the
bottom of the spectrum, RH shows h/e2 steps in the Bloch-
Landau region, then change the sign, and shows again h/e2

steps in the Dirac-Landau region. The steps of the quantum
Hall plateaus differs from those of the honeycomb lattice since
in the Lieb case there is only one Dirac cone per the unit cell.
The change of sign is associated with the opposite chirality
of the edge states in the two regions and occurs at E = ±2t ,

FIG. 10. (Color online) |�|2 calculated for a twisted edge state of the clean plaquette (left). For the disordered plaquette with W = 0.2 the
twisted state becomes localizes (middle), while a a conventional edge state in the Dirac range is not affected (right).
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(a) (b) (c)

FIG. 12. (Color online) The sketch of the diamagnetic currents
in the Dirac-Landau range of the spectrum: (a) the counterclockwise
loop of a bulk state, (b) the double ridge current of a type-II edge
states, and (c) the clockwise loop of a conventional edge states.

while in graphene the same change takes place at E = ±t .23

The density of states (shown in blue in Fig. 14) is calculated as
DOS = − 1

π

∑
n ImG+

nn(E), where G+ is the retarded Green
function for the mesoscopic plaquette connected to the leads.
In order to calculate the transport properties, the mesoscopic
plaquette must be connected to leads, the whole system being
described in the tight-binding approach by the Hamiltonian

H = HS + HL + τHLS, (22)

where the first term is just the Hamiltonian (1), the second
term describes all the leads, and HLS couples the leads to the
plaquette with the strength τ . With G+

α,β (E) ≡ 〈α|(E − H +

-20

-10

 0

 10

 20

M
α

Twisted
edge states

Type-II
edge states

Conventional

(a)

edge states

 0

 0.2

 0.4

 0.6

 0.8

-1.5 -1.4 -1.3 -1.2 -1.1 -1 -0.9 -0.8 -0.7

P
ed

ge

Eα

(b)

FIG. 13. (Color online) Magnetization Mα and localization at the
edges Pedge corresponding to the eigenenergies Eα: the bulk (band)
states (green) show positive magnetization and vanishing localization
at the edges; the conventional edge states (blue) show negative
magnetization and 97% localization at the edges; the type-II and
the twisted states show 60–80% localization at the edges. The data
are for a clean Lieb plaquette of dimension Nx
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FIG. 14. (Color online) The transport properties of the Lieb lattice
under the magnetic field: Hall resistance RH , longitudinal resistance
RL, and density of states DOS for a finite Lieb lattice connected to
four transport leads. The quantum Hall effect can be observed for
E ∈ [−2.75,−0.8] (RH integer and RL = 0). In the Bloch-Landau
part of the spectrum (E < −2), one has RH < 0, while in the Dirac-
Landau part (E > −2), one has RH > 0. In the energy range E ∈
[−0.8,−0.6], the transport properties are due to the twisted edge
states, and we get zero Hall resistance RH = 0 and oscillations of the
longitudinal resistance with the characteristic minima at RL = 1/4.
The density of states exhibits maxima at the transition between the
Hall plateaus and for the energy values where the twisted edge states
appear. The dimension of the plaquette is 10 × 30 unit cells, the
magnetic flux is φ = 0.12. The resistance is in units h/e2, DOS in
arbitrary units, and the energy in units t .

i0)−1|β〉, the electron transmittance between the leads α and
β, in the Landauer-Büttiker formalism, is given by

Tα,β = 4τ 4|G+
α,β (EF )|2ImgL

α (EF )ImgL
β (EF ), (23)

where gL is the Green function of the isolated leads. In
what follows, we shall discuss the interesting question of the
contribution to transport of the twisted edge states introduced
in the previous section. The answer can be found in Fig. 14
in the energy range E ∈ [−0.8, − 0.6], where one observes
that the twisted edge states found in that range do not support
the Hall resistance (RH = 0), however, they contribute to the
longitudinal resistance, which exhibits an oscillating behavior.
It is also to notice that all the oscillations minima equals
RL = 1/4, a fact that should find its explanation.

In exploring these unexpected effects, the first step should
be to identify the transmittance matrix. The numerical inves-
tigation presented in Fig. 16(a) shows that in the range of
the twisted edge states, the properties of transmittances Tα,β

are very specific: they are not quantized, show an oscillating
dependence on the energy and, mainly, satisfy the symmetry
relation:

Tα,α+1 = Tα+1,α, (24)

while in the range of the conventional edge states, where
the quantized plateaus occur, the usual properties of quantum
Hall effect hold: Tα,α+1 = integer and Tα+1,α = 0 (for a given
sign of the magnetic flux). Combining Eq. (24) with the
general property

∑
α Tα,β = 0, which expresses the current
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4

2

31

FIG. 15. (Color online) The four-lead Hall device: illustration of
the edge currents carried by the twisted edge states for which the
symmetry relation Tα,α+1 = Tα+1,α holds.

conservation, it turns out that the transmittance matrix for the
edge transport in the domain of twisted edge states can be
written as

T =

⎛
⎜⎜⎜⎝

−2T T 0 T

T −2T T 0

0 T −2T T

T 0 T −2T

⎞
⎟⎟⎟⎠ .

The transmittance Tα,β relates the current through the lead α

to potentials at the contact sites β as

Iα = e2

h

∑
β

TαβVβ, (25)

and, for the four-lead device considered in Fig. 15, in
the Landauer-Büttiker formalism, the Hall and longitudinal
resistance are given (in units h/e2) by

RL = R14,23 = (T24T31 − T21T34)/D,

RH = (R13,24 − R24,13)/2

= (T23T41 − T21T43 − T32T14 + T12T34)/2D, (26)

where D = −4T 3 is a subdeterminant of the matrix T .
By the use of the above equations and of transmittance
matrix T , valid in the range of twisted edge states, one
obtains immediately, a vanishing Hall resistance (RH = 0)
and the longitudinal resistance RL = 1/4T (in units h/e2).
The minima of RL observed in Fig. 16(b) correspond to
the maxima of the transmittance, and, obviously, the value
RL = 0.25h/e2 expresses a perfect conducting one channel
transport with T = 1. It turns out that, although carried by
edge states, the current shows a dissipative character. The
oscillations of T12 and T21 in the domain of the twisted edge
states (E ∈ [−0.95,−0.75]) follow the similar oscillations
of the density of states, while in the quantum Hall regime
(E ∈ [−1.5,−0.95]) the DOS is flat. In order to check these
properties, we performed also calculations as a function of the
magnetic flux at fixed Fermi energy, with similar results, as it
can be noticed in Fig. 16(c).

Another interesting problem is the transition between the
first and second plateau of the Dirac-Landau region (E ∈
[−1.55,−1.5]), which is much wider than similar transitions
in the Bloch-Landau region. The transition gets a width which
is due to the presence of the type-II edge states (observed in the
spectrum Fig. 11 above the Dirac band), and is accompanied by
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FIG. 16. (Color online) (a) The transmittances T12 and T21

showing the quantized values T12 = 1 and T21 = 0 in the range of
the IQHE, nonquantized oscillating values T12 = T21 in the range of
twisted edge states E > −0.95, and T12 = T21 + 1 in the range of
type-II edge states E ∈ [−1.55,−1.5]. (b) The Hall and longitudinal
resistance: RH (blue line) vanishes in the range of twisted edge states,
while RL (red line) exhibits oscillations with minima RL = 0.25.
The minima of the longitudinal resistance occur at the energies
where the transmittance (black dashed line) get the maximum value
T12 = T21 = 1. The dimension of the plaquette is 10 × 30 unit cells,
φ = 0.16. (c) The transmittances T12 and T21 as function of the
magnetic flux at E = −0.9; one can observe the first IQHE plateau
in the Dirac range followed by oscillations of the transmittances in
the range of twisted edge states similar to those in (a).

oscillations of the transmittance [see T12 and T21 in Fig. 16(a)].
We have to stress that in this energy range T12 and T21

are no more equal, and the numerical calculation suggests
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FIG. 17. (Color online) The Hall resistance RH (red) and trans-
mittances T12 (green) and T21 (blue) for a disordered Lieb lattice
in the transition region from the first Hall plateau to the domain
of twisted edge states. The figure shows that the symmetry relation
T12 = T21 for twisted edge state transport holds also in the presence of
disorder. The Hall resistance is RH = 1 for the energies corresponding
to the first gap with conventional edge states, and RH = 0 for the
energies corresponding to the twisted edge states. The dimension of
the plaquette and the magnetic flux are the same as in Fig. 16, the
disorder amplitude is W = 0.5.

that T12 = T21 + 1. It means that the symmetry relation (24)
remains specific to the twisted edge states.

In order to figure out a scenario for the vanishing Hall
effect, we remind first that in the range of the quantum Hall
(QH) effect, all the (conventional) edge states responsible for
the plateaus of the transverse magnetoresistance get a unique
chirality determined by the direction of the magnetic flux.
This results in a definite sense (say clockwise) of the current
such that Tα,α+1 = integer and Tα+1,α = 0. The symmetry
Tα,α+1 = Tα+1,α , which occurs in the range of the twisted
edge states, is characteristic to the absence of the magnetic
field. So, this symmetry indicates a “loss of influence” of
the magnetic field followed by a vanishing Hall effect. As a
support of this idea, we note that the twisted edge states show
alternating (clock and anticlock) chiralities, which allow for
the transmittance in both directions, as sketched in Fig. 15.
This might be an heuristic explanation for the vanishing of the
transverse resistance despite the presence of edge states.

Let us discuss now the effect of the disorder. It is known that
the conventional edge states are robust to disorder, whereas
the bulk states (which form the Landau bands) are more
sensitive, so that the IQHE of a disordered plaquette shows
robust plateaus, and a broadened transition region between two
consecutive plateaus. On the other hand, as we have shown,
the disorder localizes easily the twisted edge states, changing
in this way their transmittance properties. Figure 17 depicts
the transmittances T12,T21 for a disordered Lieb plaquette
compared to the same transmittances of the clean system. One
observes the quantized values in the range of the conventional
edge states followed, in the range of twisted states, by reduced
values of the disordered transmittance which replace the peaks
specific to the clean system. It is worth to say that the symmetry
Tα,α+1 = Tα+1,α is preserved for each individual disordered
sample, and, as a consequence, the Hall effect vanishes similar
to the clean case.

V. CONCLUSIONS

We have found that the specific topology of the 2D Lieb
lattice induces remarkable spectral and transport properties.
Up to a point there are similarities with the electronic energy
spectrum of graphene in what concerns the presence of
a Dirac-type cone at low energy, however, in addition, a
macroscopically degenerated flat band occurs at the middle
of the spectrum. The perpendicular magnetic field applied
on a finite (mesoscopic) Lieb plaquette opens a gap around
the flat band, and we show the presence in this gap of a
new class of edge states with alternating chirality (which we
call twisted edge states). The flat band is insensitive to the
magnetic field, however, an in-plane electric field, and also the
disorder, lifts the degeneracy. The electric field applied on a
finite (mesoscopic) system gives rise to a Wannier-Stark fan
composed of degenerate minibands, the number of them being
equal to the number of cells along the direction of the field.

The macroscopic degeneracy of the flat band is lifted
by disorder, and the degree of localization and the level
spacing distribution are studied. It turns out that not only the
ordered flat band, but also the disordered one, does not feel
the magnetic field; indeed, we prove that the level spacing
distribution of the disordered system follows the orthogonal
(β = 1) Wigner-Dyson distribution, which usually describes
disordered systems in the absence of the magnetic field.

We calculate analytically the orthogonal eigenfunctions of
the finite Lieb system corresponding to the three spectral
branches in the low energy range, both for periodic and
vanishing boundary conditions. In this way, we find also the
degeneracy of the zero-energy flat band, which in the periodic
case, equals the total number of unit cells Ncell (except when
both Nx

cell and N
y

cell are even numbers, in which case the
degeneracy increases to Ncell + 2), while in the case of the
closed boundaries the degeneracy is Ncell + 1. A toy model
composed of only two unit cells helps to understand the
behavior in the presence of a perpendicular magnetic field.
The perturbative calculation shows that two states of the flat
band separate from the degenerated bunch, and belong to the
class of twisted edge states.

The eigenenergies of the twisted edge states depend in
an oscillatory manner on the magnetic flux, i.e., show an
alternating chirality, and contrary to the conventional edge
states, the diamagnetic moment change the sign when the
magnetic flux is varied. These type of edge states generated by
the magnetic field are not protected by the broken time-reversal
symmetry and proves to get localized even at low disorder,
when the conventional edge states remain robust.

The transport properties are calculated by attaching leads
to the finite Lieb system and using the Landauer-Büttiker
formalism. The quantum Hall resistance looks similar to that
of the graphene except the steps are equal to h/e2 (instead of
h/2e2), however, in the domain of the twisted edge states
the properties become unconventional: the Hall resistance
vanishes, while the longitudinal one shows oscillations which
can be correlated with the oscillations of the density of states
(calculated in the presence of the leads). This behavior stems
from the symmetry of the transmittance Tα,α+1 = Tα+1,α ,
which occurs despite the presence of the quantizing magnetic
field. The symmetry holds also in the presence of disorder.
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