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Anisotropic Debye model for the thermal boundary conductance
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Most standard models for the thermal boundary conductance (TBC) assume isotropic properties and thus
are inappropriate for layered and chainlike materials such as graphite, Bi2Te3, and high-density polyethylene
(HDPE). To model such anisotropic materials, here a framework is introduced whereby the first Brillouin zone
and the isoenergy surfaces of the Debye dispersion relation are both generalized from spherical to ellipsoidal.
This model is checked by comparison with the experimental specific heat capacity of graphite and HDPE, as well
as the phonon irradiation of graphite calculated from lattice dynamics. The anisotropic TBC model performs
at least six times better than the standard isotropic diffuse mismatch model at explaining the measured TBC
between graphite and various metals reported by Schmidt et al. [J. Appl. Phys. 107, 104907 (2010)]. The model
further reveals an unexpected guideline to engineer the TBC: due to phonon focusing effects, in many cases the
TBC across an interface can be increased by reducing a phonon velocity component parallel to the plane of the
interface.
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I. INTRODUCTION

Understanding and engineering the thermal boundary
conductance (TBC, also discussed as a thermal
boundary resistance or thermal contact resistance) across
atomically intimate interfaces is becoming increasingly impor-
tant as the characteristic lengths of modern devices continue
shrinking to micro- and nanoscales.1 Nearly all models for the
TBC, such as the widely used diffuse mismatch model (DMM)
and acoustic mismatch model (AMM),2 require that the mate-
rials have isotropic properties and are most commonly based
on an isotropic Debye dispersion relation. However, many
important materials are highly anisotropic, including layered
materials such as graphite, boron nitride, and Bi2Te3, and
chainlike materials such as high-density polyethylene (HDPE).
In such highly anisotropic materials, the conventional isotropic
Debye model is no longer a good approximation. For example,
in graphite at intermediate temperatures the predictions of the
isotropic Debye model deviate from the experimental data for
the specific heat capacity by more than a factor of 2,3,4 and, as
will be shown below, compared to the measured TBC between
graphite and metals,5 DMM calculations using an isotropic
Debye model are typically in error by more than a factor
of 10.

For the special case of interfaces involving graphite,
recently two anisotropic TBC models were reported. Prasher6

used the DMM to model the TBC between graphite and plat-
inum below 100 K using the anisotropic graphite dispersion
from Komatsu.7 Also using the DMM, Duda et al.8 modeled
the TBC between graphite and aluminum by approximating
graphite’s density of states (DOS) as two dimensional (2D).
In both cases the modeled TBC was found to be lower for
interfaces oriented parallel to graphite’s ab planes (also called
basal planes), which was attributed to the fact that the sound
velocity is much lower in the c-axis direction than along the ab

planes. Because these models6,8 were developed specifically
for graphite, they are difficult to generalize to other anisotropic
materials.

Here we develop a general framework for the TBC using
an anisotropic Debye phonon dispersion, whereby the first
Brillouin zone and the isoenergy surfaces are both generalized
from spherical to ellipsoidal. We restrict the analysis to
materials where only one of the three principle directions
is anisotropic; that is, materials with tetragonal, trigonal, or
hexagonal symmetries. This restriction is appropriate for a
large number of layered and chainlike materials, including
graphite, boron nitride, Bi2Te3, HDPE, and tellurium. This pa-
per is organized as follows. In Sec. II we present the two basic
assumptions of the framework and derive an expression for
the TBC, including simple analytical expressions for several
limiting cases. The specific heat capacity is also discussed.
Then in Sec. III we compare the model to experimental results
from the literature for the specific heat of a typical layered
(graphite) and chainlike (HDPE) material, and for the TBC
between graphite and various metals.

II. DESCRIPTION OF THE MODEL

A. Basic assumptions and justifications

The first key assumption of this model is that a material’s
anisotropic phonon dispersion can be well approximated by
the anisotropic Debye dispersion, ω2 = v2

ak
2
a + v2

bk
2
b + v2

c k
2
c ,

where va , vb, and vc are the sound velocities along the a-, b-,
and c-axis directions, respectively, and (ka,kb,kc) is the wave
vector. This dispersion has ellipsoidal isoenergy surfaces in k

space [Fig. 1(a)]. Because in this work we focus on materials
with va = vb = vab, this simplifies to

ω2 = v2
abk

2
ab + v2

c k
2
c , (1)

where k2
ab = k2

a + k2
b .

The other key assumption is that an anisotropic material’s
first Brillouin zone (FBZ) can be adequately approximated
by an ellipsoid [Fig. 1(b)], an obvious generalization of the
spherical FBZ used in the classic isotropic Debye model.
Here the FBZ ellipsoid is defined as the surface satisfying
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FIG. 1. (Color online) (a) Isoenergy surface (here for vab > vc;
the opposite case is straightforward). The ellipsoidal surface has an
equatorial radius ω/vab and polar radius ω/vc. Its kb-kc projection
is an ellipse. (b) FBZ (here for kab,m > kc,m; the opposite case is
straightforward) with equatorial radius kab,m and polar radius kc,m. Its
kb-kc projection is also an ellipse.

k2
a

k2
a,m

+ k2
b

k2
b,m

+ k2
c

k2
c,m

= 1, where ka,m, kb,m, and kc,m are wave-

vector cutoffs. Because we focus on materials with restricted
symmetries such that ka,m = kb,m = kab,m, this can be written

k2
ab

k2
ab,m

+ k2
c

k2
c,m

= 1. (2)

To ensure the correct total number of acoustic modes, these
wave-vector cutoffs are constrained by the number density of
primitive unit cells ηpuc through

ηpuc = 1

6π2
k2
ab,mkc,m. (3)

The number of optical modes is given by ηopt = 3(m −
1)ηpuc, where m is the number of atoms in the crystal basis. For
simplicity we approximate them as Einstein modes, making
their contributions to heat transfer vanish.

We now comment briefly on the validity of this anisotropic
Debye approximation. The form of Eq. (1) is motivated by
an exact result from continuum elasticity,9–11 in which the
dispersion relation for the pure transverse acoustic (pure-
TA) branch of materials with hexagonal symmetry can be
written as

ρω2 = C66k
2
ab + C44k

2
c , (4)

where ρ is the mass density and Cij is the stiffness con-
stant. Although the dispersion relations for both the quasi-
longitudinal acoustic (quasi-LA) and the quasi-transverse
acoustic (quasi-TA) branches have more complicated angular
dependencies,11 under certain conditions they also are well
approximated by the form of Eq. (4) using different Cij (details
in Sec. III A3). Graphite is a typical example satisfying these
conditions. However, this anisotropic Debye approximation
cannot capture the variation of the phase velocity with the

magnitude of the wave vector in real materials, which arises
purely from atomistic effects.12 For example, the present
model cannot capture the curvature of the well-known flexural
[ZA, also called TA⊥ (Ref. 13) or oTA Ref. 14] branch in
graphite, which has been given by Lifshitz as12,15

ρω2 = C44k
2
ab + C33k

2
c + B

d
k4
ab, (5)

where B is related to the bond-bending stiffness of an isolated
graphene layer and d is the interlayer distance. The last
term in Eq. (5) is a subcontinuum effect, which can be
formally neglected if k2

ab � C44d/B. Similar considerations
apply to chainlike materials and the bond-bending stiffness of
individual atomic chains.12

Comparing the anisotropic Debye model of Eq. (1) to the
real dispersion of a typical layered material, graphite,16 we
estimate that for all three acoustic branches (LA, TA, ZA)
the present model is in error by typically tens of percent
for variations in ω with the magnitude of k in any fixed
direction. This shortcoming is offset, however, by the merit
of the model in capturing the large variations of ω with the
direction of k, which is the emphasis of the present work.
These directional variations can be substantial: for example,
vg in graphite changes by a factor of approximately 5–10, as
estimated by comparing the sound velocity in the ab plane to
that along the c axis. Section III will show that this anisotropic
Debye approximation compares favorably with experimental
values of the specific heat and a more detailed lattice dynamics
calculation of phonon irradiation, typically to within ±10%
over the temperature range 200–2000 K.

B. Characteristic frequencies and temperatures

Based on the ellipsoidal dispersion relation and FBZ, we
define the characteristic Debye frequencies of the ab plane and
c-axis directions,

ωD,ab = vabkab,m, ωD,c = vckc,m, (6)

with corresponding Debye temperatures

θD,ab = h̄ωD,ab/kB, θD,c = h̄ωD,c/kB, (7)

where h̄ is the reduced Planck’s constant and kB is the
Boltzmann constant. It will also prove convenient to define
the anisotropy ratio

r = ωD,ab

ωD,c

= θD,ab

θD,c

. (8)

We refer to materials with r > 1 as “layered” and r < 1 as
“chainlike.” Thus graphite (r � 1) is strongly layered, while
HDPE is strongly chainlike (r � 1).

The definitions of Eqs. (6)–(8) facilitate the upcoming
analysis by distinguishing between two different frequency
regimes, as shown in Fig. 2. First, for those modes with
ω < min(ωD,c,ωD,ab), the isoenergy surface has not reached
the FBZ boundary, so all of those states are allowed as
indicated by orange shading in Fig. 2(a). Second, for those
modes with min(ωD,c,ωD,ab) < ω < max(ωD,c,ωD,ab), part of
the isoenergy surface lies outside of the FBZ, so only the part
inside the FBZ is allowed [orange shading in Fig. 2(b)].
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FIG. 2. (Color online) Two frequency regimes (here for vab >

vc, and kab,m > kc,m; the other combinations are straightforward).
(a) When ω < min(ωD,c,ωD,ab), all of the states on the isoen-
ergy surface are allowed. (b) When min(ωD,c,ωD,ab) < ω <

max(ωD,c,ωD,ab), only the states inside the FBZ are allowed. In both
cases the orange shading indicates the allowed states.

C. Specific heat

The phonon specific heat is given by

C =
∑
pol

∫
h̄ω

∂fBE

∂T
D(ω)dω, (9)

where the sum runs over all polarizations, fBE is the Bose-
Einstein distribution function, and D(ω) is the DOS which for
an arbitrary dispersion relation is given by17

D(ω) = 1

8π3

∫∫
dSω

‖vg‖ , (10)

where dSω is an elemental area on an isoenergy surface
in k space [Fig. 1(a)]. For the anisotropic Debye model
defined by Eqs. (1) and (2), the analytical expression of DOS
is conveniently evaluated in two regimes depending on the
anisotropy ratio r (details in Appendix A).

In Fig. 3, we plot the dimensionless density of states D̂ =
D(ω2

D,abωD,c)
1
3 /(3ηpuc) as a function of the dimensionless

frequency ω̂ = ω/(ω2
D,abωD,c)

1
3 for a single polarization. The

key feature is the range of power laws describing D̂ versus ω̂.
The isotropic “control” case (r = 1) follows the well-known
quadratic power law over the entire frequency range. Layered
materials (r � 1) show a transition from a quadratic to a
linear power law with increasing ω, which can be interpreted
by the scenario depicted in Fig. 2(b). This transition indicates
a dimensionality crossover from 3D to 2D as the c-axis
modes become fully saturated at large ω. Chainlike materials
(r � 1), on the other hand, show a transition from a quadratic
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FIG. 3. (Color online) Dimensionless DOS, D̂ =
D(ω2

D,abωD,c)
1
3 /(3ηpuc), as a function of dimensionless frequency

ω̂ = ω/(ω2
D,abωD,c)

1
3 . While layered materials (r � 1) show a

transition from a quadratic to a linear power law with increasing
ω, chainlike materials (r � 1) show a transition from a quadratic
power law to a constant value. These transitions indicate different
dimensionality crossovers.

power law to a constant value with increasing ω, indicating a
dimensionality crossover from 3D to 1D.

Substituting Eqs. (A4) and (A5) into Eq. (9), we obtain
two integral expressions for the specific heat in terms of x =
h̄ω/kBT . For r > 1,

C =
∑
pol

k4
B

2π2v2
abvch̄

3

[ ∫ xD,c

0

T 3x4ex

(ex − 1)2
dx

+
∫ xD,ab

xD,c

T 2x3ex

(ex − 1)2

√
θ2
D,c

θ2
D,ab − (T x)2

θ2
D,ab − θ2

D,c

dx

]
, (11a)

while for r < 1,

C =
∑
pol

k4
B

2π2v2
abvch̄

3

{ ∫ xD,ab

0

T 3x4ex

(ex − 1)2
dx

+
∫ xD,c

xD,ab

[
T 3x4ex

(ex − 1)2
− T 2x3ex

(ex − 1)2

×
√

θ2
D,c

(T x)2 − θ2
D,ab

θ2
D,c − θ2

D,ab

]
dx

}
. (11b)

In both Eqs. (11a) and (11b), the first integral is the exact
result for a traditional isotropic Debye solid, while the second
integral captures the effects of anisotropy. Figure 4 shows
the dimensionless specific heat Ĉ = C/(3ηpuckB) versus the
dimensionless temperature T̂ = T /(θ2

D,abθD,c)
1
3 , calculated

by numerical integration of Eqs. (11a) and (11b). Layered
materials (r � 1) exhibit a transition from T 3 → T 2 → T 0

behavior with increasing T , while chainlike materials with
r � 1 exhibit a transition from T 3 → T 1 → T 0. We will
come back to these transitions in Sec. III B when comparing
this model to the experimental specific heat of graphite and
prior models.

To gain further physical insight, in Table I we simplify
Eqs. (11a) and (11b) in several limiting cases. First, in the low-
temperature limit [T � min(θD,c,θD,ab)], only low-energy
phonons are activated, in which case the FBZ boundaries are
far away from the isoenergy surfaces [Fig. 1(a)]. Therefore the
analytical expression recovers the classic Debye T 3 law and

125426-3



Z. CHEN, Z. WEI, Y. CHEN, AND C. DAMES PHYSICAL REVIEW B 87, 125426 (2013)

100

10-4
10

0.1
r = 0.01

0.001

1

3T̂on
le

ss
 S

p.
 H

t.,
 C

10-2

10-3 10-2 10-1 100 101 102

10-6

100

r = 1000

2T̂

1T̂

Dimensionless Temp., 

D
im

en
si

o

T̂

FIG. 4. (Color online) Dimensionless specific heat, Ĉ =
C/(3ηpuckB ), as a function of dimensionless temperature, T̂ =
T /(θ2

D,abθD,c)
1
3 , obtained by numerical integration of Eqs. (11a)

and (11b). All materials recover the Debye T 3 law at low T , and
Dulong and Petit limit at high T . But at intermediate temperatures the
layered materials (r � 1) show a T 2 dependence, while the chainlike
materials (r � 1) show a T 1 dependence.

depends on the two sound velocities, but not the two wave-
vector cutoffs because the phonon wavelengths are insensitive
to the granularity of the lattice in this limit. On the other hand,
in the high-temperature limit [T � max(θD,c,θD,ab)], all of the
phonons are fully activated and obey equipartition of energy.
Thus the analytical expression recovers the Dulong and Petit
result and depends on the two wave-vector cutoffs (related to
the total number of phonon modes) but not the sound velocities.

At intermediate temperatures [min(θD,c,θD,ab) � T �
max(θD,c,θD,ab)], Table I shows that strongly anisotropic
materials exhibit a mixture of the high-T and low-T behaviors
just described. At intermediate T , the populated isoenergy
surfaces reach the FBZ boundary along the crystal direction
of low sound velocity, while remaining far from the FBZ
boundary along the direction of fast sound velocity [Fig. 1(b)].
Therefore the slow-velocity direction is saturated in its high-T
regime while the fast-velocity direction is still in its low-T
regime. Thus the limiting analytical expression for a layered
material at intermediate temperature follows a T 2 power law,
and depends on vab and kc,m but not vc or kab,m. Conversely,
a chainlike material follows a T 1 law, and depends on vc

and kab,m but not vab or kc,m. These intermediate T behaviors

are further justified in Appendix B through an alternative
derivation using simplified two- and one-dimensional (2D and
1D) phonon gas models.

D. Phonon irradiation

We calculate the irradiation and TBC using the close
analogy between phonon transport and photon radiation. We
restrict the analysis to interfaces oriented normal to the
material’s c axis, the configuration of highest symmetry,
because this simplifies the analysis and it is also a common
configuration in applications and experiments.5 For materials
with isotropic properties, the “incident radiation” [Eq. (6)
of Ref. 18] is a convenient quantity for evaluating the
TBC. However, to accommodate materials with anisotropic
properties, the phonon “irradiation” is a better choice. A
general expression for the irradiation along the c axis is

Hc =
∑
pol

∫∫∫
k·ĉ<0

I ŝ · ĉ d3k, (12)

where ĉ = (0,0,1) is the unit vector along the c axis, ŝ is a
unit vector parallel to the group velocity, k · ĉ < 0 denotes
integration over the incident half space, and the intensity I =

1
8π3 h̄ω‖vg‖fBE at wave vector k travels in the ŝ direction.

It is helpful to convert Eq. (12) to an integral over frequency,

Hc =
∑
pol

∫
ω

h̄ωhcfBEdω, (13)

where we introduce a new quantity hc, which can be under-
stood as the density of states [Eq. (10)] weighted by the c-axis
projected velocity:

hc(ω) = 1

8π3

∫∫
ŝ·ĉ<0

(vg · ĉ)

‖vg‖ dSω. (14)

Thus hc represents the product of the phonon velocity
component along the direction of heat transfer (here, ĉ) and
the number of phonon modes per unit frequency between ω

and ω + dω, integrated over the incident half-FBZ. We refer
to hc as the vDOS (v indicating velocity-weighted), and its
role in the irradiation [Eq. (13)] is analogous to the role of the
DOS in the specific heat [Eq. (9)]. Analytical expressions for
the vDOS are given in Appendix A.

TABLE I. Analytical expressions for the specific heat in several limiting cases. The model recovers the Debye T 3 law in the low-temperature
limit, and the Dulong and Petit law in the high-temperature limit. For strongly anisotropic materials at intermediate temperatures, the model
predicts a T 2 dependence and T 1 dependence for layered (r � 1) and chainlike (r � 1) materials, respectively. ζ3 = 1.202... is Apery’s
constant.

Low T

CLowT = 2π2k4
B

15h̄3

∑
pol

T 3

v2
ab

vc

T � min(θD,c,θD,ab)

Intermediate T Layered (r � 1) Chainlike (r � 1)

min(θD,c,θD,ab) � T � max(θD,c,θD,ab) CLayer−MidT = 3ζ3k3
B

kc,m

π2h̄2

∑
pol

T 2

v2
ab

CChain−MidT = k2
ab,m

k2
B

12h̄

∑
pol

T

vc

High T
CHighT = 3ηpuckB

T � max(θD,c,θD,ab)
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Figure 5 shows the dimensionless vDOS, ĥc =
hcωD,c/(3ηpucvc/4), versus the dimensionless frequency, ω̂ =
ω/ωD,c, for a single polarization. Both layered and chain-
like materials show a transition from a ω̂2 dependence at
low frequency to a constant value at high frequency. The
low-frequency behavior is straightforward from Eqs. (A6)
and (A7) of Appendix A, and the high-frequency behavior
can be understood from the definition of hc [Eq. (14)]:
an averaged product of DOS [Eq. (10)] and the c-axis

component of the group velocity. For layered materials,
the high-frequency DOS is 2D and is thus proportional to
ω (Fig. 3), and as shown in Appendix B, the frequency-
dependent c-axis component of the group velocity scales as
vg,c,2D ∝ ω−1. However, for chainlike materials, the high-
frequency DOS is 1D and thus constant while vg,c,1D ∝ ω0

(Appendix B).
Substituting Eqs. (A6) and (A7) into Eq. (13), we obtain

expressions for the irradiation. For r > 1,

Hc =
∑
pol

k4
B

8π2v2
abh̄

3

{∫ xD,c

0

T 4x3

ex − 1
dx +

∫ xD,ab

xD,c

[
θ2
D,abθ

2
D,c

θ2
D,ab − θ2

D,c

T 2x

ex − 1
− θ2

D,c

θ2
D,ab − θ2

D,c

T 4x3

ex − 1

]
dx

}
, (15a)

while for r < 1,

Hc =
∑
pol

k4
B

8π2v2
abh̄

3

{∫ xD,ab

0

T 4x3

ex − 1
dx +

∫ xD,c

xD,ab

[
θ2
D,cθ

2
D,ab

θ2
D,c − θ2

D,ab

T 2x

ex − 1
− θ2

D,ab

θ2
D,c − θ2

D,ab

T 4x3

ex − 1

]
dx

}
. (15b)

The first integral of Eqs. (15a) and (15b) is the exact
result for a traditional isotropic Debye solid, while the second
integral captures the effects of anisotropy. In Fig. 6 we plot the
dimensionless irradiation Ĥc = Hc/(3ηpuckBvcθD,c/4) versus
the dimensionless temperature T̂ = T /θD,c. Both layered
(r � 1) and chainlike (r � 1) materials show a T 4 → T 2

→ T 1 transition with increasing T .
For further physical insight, Table II presents simplifi-

cations of Eqs. (15a) and (15b) for several limiting cases.
In the low-temperature limit, regardless of r , Eqs. (15a)
and (15b) reduce to the well-known blackbody emissive power
law with a phonon Stephen-Boltzmann constant σphonon =
π2k4

B(
∑

pol v
−2
ab )/(120h̄3).19 In the limit of strongly anisotropic

materials at intermediate temperatures, Table II shows that
both layered and chainlike materials follow a T 2 power law,
which arises from the power law ĥc ∝ ω̂ (Fig. 5). These
intermediate-temperature behaviors are further justified in
Appendix B using simplified 2D and 1D phonon gas models.
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FIG. 5. (Color online) Dimensionless vDOS defined in Eq. (14),
ĥc = hcωD,c/(3ηpucvc/4), as a function of dimensionless frequency,
ω̂ = ω/ωD,c. Both layered (r � 1) and chainlike (r � 1) materials
transition from a quadratic power law at low frequency to a constant
value at high frequency.

Table II reveals the unexpected result that the c-axis
irradiation Hc is generally increased by reducing the ab-
plane sound velocity vab (the only exception being chainlike
materials at intermediate T , for which Hc has no velocity
dependence at all). This vab dependence of Hc can be
understood as a consequence of phonon focusing.20–22 As can
be seen from Fig. 1(a), reducing vab elongates the isoenergy
surfaces (“slowness surfaces” in Ref. 20) along the ab plane,
thus increasing the component of the group velocity along
the c-axis direction and correspondingly increasing Hc. This
suggests a surprising guideline for materials engineering to
increase TBC: the heat transfer along the c-axis direction
can be increased by reducing a phonon velocity, as long
as it is a velocity component perpendicular to the c axis.
The analogous effect on the thermal conductivity of highly
anisotropic materials has also been reported.23–25 For example,
a hybrid model22 (lattice dynamics + molecular dynamics)
confirmed that the thermal conductivity in the c-axis direction
of a graphitelike material is also increased by reducing the
ab-plane phonon velocity, caused in part by the same phonon
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FIG. 6. (Color online) Dimensionless c-axis irradiation, Ĥc =
Hc/(3ηpuckBvcθD,c/4), as a function of dimensionless tempera-
ture, T̂ = T /θD,c, obtained by numerical integration of Eqs. (15a)
and (15b). Both layered (r � 1) and chainlike (r � 1) materials
show T 4 → T 2 → T 1 power-law transitions.
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TABLE II. Analytical expressions for the c-axis irradiation Hc in several limiting cases. In the low-temperature limit the model reduces
to the blackbody emissive power law. For intermediate temperatures and strongly anisotropic materials, the model predicts a T 2 dependence
for both layered and chainlike materials. These expressions also highlight the phonon focusing effect of the ab-plane velocity vab: except for
chainlike materials at intermediate T , in all other cases Hc is actually increased by reducing vab.

Low T

Hc−LowT = σphononT
4 =

[
π2k4

B

120h̄3

∑
pol

1
v2
ab

]
T 4

T � min(θD,c,θD,ab)

Intermediate T Layered (r � 1) Chainlike (r � 1)

min(θD,c,θD,ab) � T � max(θD,c,θD,ab) Hc−Layer−MidT = k2
c,mk2

B
T 2

48h̄

∑
pol

v2
c

v2
ab

Hc−Chain−MidT = k2
ab,m

k2
B

T 2

16h̄

High T
Hc−HighT = 1

2 ηpuckBT
∑
pol

vckc,m

vabkab,m+vckc,m
vc

T � max(θD,c,θD,ab)

focusing effects of interest here. In Sec. III, we will examine
this anticipated Hc dependence of the TBC further for two
particular models of transmission coefficient.

E. Thermal boundary conductance

From traditional radiative heat transfer,26 the net heat
flux across an interface between materials A and B can be
expressed as

q = τ [HA(T1)tAB(T1) − HB(T2)tBA(T2)], (16)

where tAB is an average (with respect to direction, position,
energy, and polarization) transmission coefficient from A to
B, T1 and T2 are the local equilibrium temperatures on either
side of the interface, and the prefactor

τ = 1

1 − 1
2 [tAB(T1) + tBA(T2)]

(17)

arises because we work in terms of equilibrium rather than
emitted temperatures (Appendix C).18,27

When the system is at equilibrium at temperature T , the
second law of thermodynamics requires q = 0 and thus2,18,28

from Eq. (16),

HA(T )tAB(T ) = HB(T )tBA(T ). (18)

Substituting Eq. (18) into Eq. (16) and expanding q as
a Taylor series in �T = T1 − T2, we obtain an expres-
sion for the thermal boundary conductance defined as G =
lim�T →0(q/�T ):

G = τ

[
∂Hi

∂T
tij + ∂tij

∂T
Hi

]
, (19)

where i, j = A, B or equivalently B, A.
We note in passing that the TBC obtained from the limit

�T → 0 must be always symmetric upon exchanging the
labels A and B. Thus there cannot be any rectification in this
low-bias regime, regardless of the model of the transmission
coefficient. Although some analyses may neglect the second
term of Eq. (19), such an approximation can have the side
effect of incorrectly implying thermal rectification.29

III. COMPARISON WITH EXPERIMENTS

A. Specifying input parameters

1. Wave-vector cutoffs: kab,m and kc,m

Given ηpuc for a real material, Eq. (3) sets the first constraint
for the two wave-vector cutoffs, and as the second constraint
we choose to fix the anisotropy ratio:

kab,m

kc,m

= kab,m,expt

kc,m,expt
, (20)

where kab,m,expt and kc,m,expt are wave-vector cutoffs consistent
with the experimentally determined crystallographic structure.
For example, one simple way to fix the km,expt values is from
the reported extents of the FBZ in the [100], [010], and/or
[001] directions.

2. Sound velocities

We have used two different approaches to obtain the six
sound velocities (three polarizations each of vab and vc). The
first and easiest approach is to use experimentally measured
values along suitable high-symmetry directions in the ab plane
and along the c axis. For materials for which the full phonon
dispersion relation is available, a second approach is a “secant”
method, in which case the sound velocity for a specified branch
and direction is set to be equal to the slope of the secant that
connects the � point and the end point of that branch at the
FBZ boundary.

Although we could easily calculate the specific heat by
summing over each branch (LA, TA1, TA2), for simplicity and
physical insight it is also helpful to lump these six velocities
into two effective ones, vab,eff and vc,eff , requiring two more
equations. For the first constraint we insist on the correct low-T
behavior of the specific heat from Table I, leading to

3

v2
ab,effvc,eff

=
∑
pol

1

v2
abvc

. (21)

Similarly, for the second constraint we require the correct
intermediate-T behavior from Table I. For layered materials
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Improved
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(a)
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LA

TL2

(b) (c)

FIG. 7. (Color online) Debye ellipsoid approximations for the
isoenergy surfaces of materials with hexagonal symmetry. The
schematics represent projections in the A-�-M plane (an A-�-K
plane looks very similar). (a) Schematic isoenergy surfaces for a
graphitelike material with a lobed quasi-TA branch and an almost
cylindrical quasi-LA branch. The third branch (pure TA) is not
shown because it is already well approximated by an ellipsoid
[Eq. (4)]. (b) A naive approach approximates the quasi-TA with a
circumscribed ellipsoid and the quasi-LA with an inscribed ellipsoid.
(c) An improved approach, used in this work, decomposes the
quasi-TA and quasi-LA branches and then recomposes them as the
two ellipsoids TL1 (black) and TL2 (green); see Eq. (25). The original
and recomposed isoenergy surfaces in (c) have been offset slightly
for clarity.

this gives

3

v2
ab,eff

=
∑
pol

1

v2
ab

, (22a)

while for chainlike materials we find

3

vc,eff
=

∑
pol

1

vc

. (22b)

Note that Eq. (21) is exact for all materials, but Eqs. (22a)
and (22b) are exact only for highly anisotropic materials.

3. Decomposition of isoenergy surfaces for materials with
hexagonal symmetry

As discussed in Sec. II A, the exact dispersion relations of
the quasi-TA and quasi-LA branches are more complicated
than Eq. (1), whether evaluated by lattice dynamics22 or
continuum elasticity [Eqs. (3.11) and (3.12) in the appendix
of Ref. 11]. For a strongly layered material like graphite, the
typical shapes of the exact isoenergy surfaces are depicted in
Fig. 7(a). In the A-�-M plane, the quasi-LA surface is nearly
rectangular while the quasi-TA surface has four prominent
lobes (an A-�-K slice looks very similar).

The task here is to determine the best approximation of these
isoenergy surfaces with Debye ellipsoids such as Fig. 1(a),
given the principal sound velocities. The obvious but naive
approach is to approximate each branch with its own ellipsoid.
As indicated in Fig. 7(b), this is equivalent to approximating

the lobed quasi-TA branch with a circumscribed ellipsoid.
Similarly, the quasi-LA would be replaced with an equivalent
inscribed ellipsoid. As suggested by the graphical comparison
of Fig. 7(b), these approximations appear quite crude and will
introduce large errors in the phonon transport calculations. For
example, for graphite at room temperature, HC calculated in
this way is 8 times too small as compared to that calculated
using an all-direction lattice dynamics method as described in
Appendix D.

A much improved approach is motivated by the exact
dispersion relations of the quasi-TA and quasi-LA branches.
From Eqs. (3.11) and (3.12) of the appendix of Auld,11 when
(C13
C44

+ 1)2 � (C11
C44

− 1)(C33
C44

− 1) it can be shown that

ω2
quasi−TA =

⎧⎨
⎩

C11
ρ

k2
ab + C44

ρ
k2
c ,

∣∣ kab

kc

∣∣ �
√

C33−C44
C11−C44

C44
ρ

k2
ab + C33

ρ
k2
c ,

∣∣ kab

kc

∣∣ �
√

C33−C44
C11−C44

(23)

and

ω2
quasi−LA =

⎧⎨
⎩

C11
ρ

k2
ab + C44

ρ
k2
c ,

∣∣ kab

kc

∣∣ �
√

C33−C44
C11−C44

C44
ρ

k2
ab + C33

ρ
k2
c ,

∣∣ kab

kc

∣∣ �
√

C33−C44
C11−C44

. (24)

Graphite satisfies this very well, [(C13
C44

+ 1)2/

(C11
C44

− 1)(C33
C44

− 1) < 0.01]. Noticing the complementary
relation between Eqs. (23) and (24), we rewrite them as two
new branches,

ω2
T L1 = C11

ρ
k2
ab + C44

ρ
k2
c ,

(25)

ω2
T L2 = C44

ρ
k2
ab + C33

ρ
k2
c ,

with the graphical interpretation given in Fig. 7(c): decompose
the lobed quasi-TA branch and the curved quadrilateral quasi-
LA branch, and recompose them as two ellipsoids. Now
all three branches of materials with hexagonal symmetry
have dispersions in the form Eq. (1), and thus ellipsoidal
isoenergy surfaces. To help validate this ellipsoidal Debye
approximation, in Appendix D we compare its Hc with that
from a full lattice-dynamics calculation of a graphitelike
material. As shown in Fig. 12, the two calculations agree very
well, to within ±10% over a wide temperature range from 200
to 10 000 K.

4. Contributions from optical phonons

For materials with a polyatomic basis we use an Einstein
model to account for the contributions of optical phonons,
with Einstein frequencies taken from the average of the
experimentally reported optical phonon frequencies at the �

point and the edge of FBZ. Note that this treatment may be
oversimplified for materials with complicated optical branches
and/or optical phonons with large group velocities.

B. Specific heat of graphite

The specific heat of graphite has been well understood
for decades both theoretically and experimentally,3,4,7,9,12,13,30

making this a useful check of the accuracy of the anisotropic
Debye approximation used in the present work. Graphite is
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TABLE III. Input parameters for graphite, which are extracted
from the phonon dispersion in Ref. 16 using the isoenergy-
decomposition process described in Sec. III A3.

Parameter Unit ab plane c axis

vT A m/s 10 200 1000
vT L1 m/s 16 200 1000
vT L2 m/s 6400 2500
kmax 1010 m−1 1.73 1.1
fE,LO/TO THz 42
fE,ZO THz 23

highly anisotropic (r ranging from 10 to 16, depending on
the polarization) and also has relevance for its close cousins
graphene and carbon nanotubes.

Following the recipes outlined above, the input parameters
are extracted from the published phonon dispersion16 and
summarized in Table III. We assign the secant velocity to all
branches. In addition, to facilitate the analysis we unfold the
dispersion relation along the c-axis direction:6 in real space
we cut the four-atom-basis primitive unit cell in half along
the c axis to form a unit cell with a two-atom basis, and
correspondingly, in reciprocal space the wave-vector cutoff
kc,m is doubled. Only the c-axis direction was unfolded because
the real dispersion relation13,16 in that direction is continuous
at the FBZ boundary (e.g., TA→TO′ and LA→LO′ in Fig. 2
of Ref. 16), whereas along the ab plane the real dispersion
relation shows some gaps at the FBZ boundary and has optical
modes that are relatively slower compared to their acoustic
counterparts.

The modeled specific heat of graphite is shown by the
solid red line in Fig. 8(a), showing a transition from T 2 to T 0

behavior with increasing T , as expected from Table I as well as
from standard models such as Lifshitz.12 The model accounts
for contributions from both optical and acoustic phonons, and
we confirmed that the contribution from electrons is negligible
at the temperatures considered here. The optical contributions
are shown by the dashed red line and use fE,LO/TO = 42 THz
and fE,ZO = 23 THz. The acoustic contribution was calculated
using both approaches described above: summing over all three
polarizations and using the two effective velocities calculated
from Eqs. (21) and (22a). The two calculations are nearly
indistinguishable, so only the former is shown in Fig. 8(a).

The experimental specific heat of graphite3,4,31 is shown
by the points in Fig. 8(a). With no free parameters the model
agrees with the experimental data to within ±10% throughout
the temperature range 50–2000 K. However, below 20 K the
model transitions to a T 3 power law, which is too steep as com-
pared to the experimental data. This discrepancy is due to the
oversimplification of linearizing the phonon dispersion of the
ZA branch. The literature dispersion13,16 shows a monotonic
decrease of the group velocity from 8500 m/s at the edge of
the FBZ to approximately 1000 m/s at the � point. Therefore
the secant method used here (6400 m/s) overestimates the
velocity of small-wave-vector ZA phonons, which are the
major contribution to the DOS at low temperatures, thereby
underestimating their specific heat. A more detailed model
dispersion such as Eq. (5) for the ZA branch7,12,13,15,16 would
help resolve this discrepancy, and also suggests an ideal T 1
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FIG. 8. (Color online) Comparison with experimental data for
specific heat of (a) graphite and (b) HDPE, showing that the
anisotropic Debye model successfully reproduces the specific heat
of these strongly anisotropic materials. The model parameters for
graphite are fully determined from the published dispersion relation
without any fitting, while the HDPE model has two adjustable pa-
rameters because no published dispersion information was available.

regime between T 2 and T 0 for the ZA contribution to the
specific heat.12 However, such an approach is not pursued
further here because it requires another material-dependent
parameter which is less widely available, loses some of the
simplicity and physical insight of the present model, and is not
necessary for good accuracy at typical temperatures (∼50 K
and above).

For comparison Fig. 8(a) also includes a traditional 3D
isotropic Debye model (blue line). The isotropic sound velocity
for each polarization is obtained using viso = (v2

abvc)
1
3 , as

required by the low-temperature limit in Table I. Similarly, the
isotropic cutoff wave vector kD is calculated by conserving
the number of acoustic modes, kD = (k2

ab,mkc,m)
1
3 . Thus, as

shown in Fig. 8(a), this isotropic model exactly captures
the same high-temperature Dulong and Petit limit and the
low-temperature Debye T 3 law as the anisotropic model, but
at intermediate temperatures the isotropic model misses the
T 2 regime and overpredicts the heat capacity by more than a
factor of 2.

C. Specific heat of high-density polyethylene

High-density polyethylene (HDPE) is chosen as a repre-
sentative chainlike material because of its high anisotropy
(r ≈ 0.09) and the interest in its strongly direction-dependent
and drawing-dependent thermal conductivity.32,33

The number density of HDPE primitive unit cells
(ηpuc = 3.64 × 1028 m−3) is estimated from the reported mass
density32 by approximating the primitive unit cell as containing
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a single [CH2] basis. However, the acoustic parameters needed
to calculate the specific heat of HDPE are not well documented
in the literature. Therefore the strategy here is to fit our
model to the experimental data. We treat the two Debye
temperatures θD,ab and θD,c as adjustable parameters and use a
nonlinear least-squares algorithm34 to minimize the rms error
of [(Cexpt–Cmodel)/ Cexpt].

Figure 8(b) shows the experimental data and best-fit model
for the specific heat of HDPE of crystallinity 0.77.32 The
experiment and model both show the expected transition from
T 3 to T 1 behavior with increasing T , as expected from Table I.
We note that a more detailed dispersion relation accounting
for subcontinuum chain bending modes12 suggests the T 1

regime of those modes may ideally be separated into T 5/2

and T 1/2 regimes, although those do not appear separately
evident in the experimental data of Fig. 8(b). Returning to the
present model, the T 0 Dulong and Petit regime is not expected
until above 1000 K, which exceeds the melting temperature of
HDPE (∼400 K) and thus is not accessible in the experiments.
Also, because the vibrational temperature of the C-H bond
can be estimated as above 1800 K,35 the heat capacity of
the optical phonons is negligible over the entire experimental
temperature range, and thus the calculation in Fig. 8(b) only
accounts for the acoustic phonons. The fitting results show
that the characteristic temperatures are θD,ab = 100 K for the
interchain modes and θD,c = 1099 K for the intrachain modes,
corresponding to a high anisotropy r = 0.09. For comparison,
Fig. 8(b) also shows the best fit using a traditional 3D isotropic
Debye model with one adjustable Debye temperature θD

(289 K). The rms residual of the anisotropic model (7%) is
much better than that of the isotropic model (48%).

D. Models for TBC and transmission coefficient

To calculate the TBC using Eq. (19), we need the ir-
radiation and the transmission coefficients. The former has
been discussed in detail in Sec. II D, and for the latter we
now consider two common models: a maximum transmission
model (MTM)18 and a diffuse mismatch model (DMM).2

The MTM (or radiation limit) supplies for the TBC an
extreme upper bound compatible with the second law of
thermodynamics.18 It assumes a 100% phonon transmission,
leaving the material with the lesser Hc, and the opposite
transmission coefficient can be obtained directly from Eq. (18),
leading to a TBC,

GMTM = 2Hj

Hj − Hi

∂Hi

∂T
, if Hi < Hj , (26)

where i, j = A, B or equivalently B, A.
The DMM is often used as an estimate for atomically

disordered interfaces. The key assumption is that phonons
lose their memory after bombarding the interface, leading to a
transmission coefficient of the form2

tij,DMM(T ) = Hj (T )

Hi(T ) + Hj (T )
, (27)

where i, j = A, B or equivalently B, A. Substituting Eq. (27)
into Eq. (19), we obtain

GDMM = 2
∂HA

∂T
H 2

B + ∂HB

∂T
H 2

A

(HA + HB)2 . (28)

TABLE IV. Input parameters for metals. The number density
of primitive unit cells npuc is obtained from Ref. 17 and the
velocities from Ref. 2, with the exception of the slightly anisotropic
titanium for which the effective isotropic velocities are obtained from
viso = (v2

abvc)
1
3 , where vab and vc are calculated from the stiffness

constants.11

npuc vLA vT A

Material (1028 m−3) (m/s) (m/s)

Al 6.02 6240 3040
Au 5.90 3390 1290
Cr 8.33 6980 4100
Ti 2.83 6105 2923

As noted previously, Eqs. (26) and (28) underline the
symmetry of the heat transfer across the interface, i.e., there
cannot be any thermal rectification upon exchanging the labels
A and B.

We can now evaluate the suggestion from Sec. II that there
may be a monotonic relationship between the irradiation and
TBC. Without loss of generality, we fix HA and increase HB .
For the DMM this does indeed always act to increase the
TBC [Eqs. (19) and (27)]. However, for the MTM increasing
HB increases the TBC only while HB is smaller than HA,
but for HB > HA we see that increasing HB reduces the
TBC [Eq. (26)]. Thus the anticipated monotonic relationship
between irradiation and TBC is always true for the DMM,
although it is only sometimes true for the MTM.

E. TBC between graphite and metals

We now compare the TBC model to recent measurements
by Schmidt et al.5 for boundaries between highly ordered
pyrolytic graphite (HOPG) and various metals. In all exper-
iments the interfaces are aligned normal to the graphite’s
c axis, consistent with the model assumption. Using the
input parameters for metals (Table IV) and those for graphite
(Table III), the flux bombarding on the interfaces (Hc) from
the graphite side is at most 16% of the flux from the metal
sides throughout the experimental temperature range. This
makes the overall TBC calculation dominated by graphite
(particularly by the TL2 branch), as both Eqs. (26) and (28)
simplify to G ≈ 2(∂Hc,gr/∂T ) for Hc,gr � Hc,metal.

Figure 9 compares the experimental results5 to four dif-
ferent models, including the traditional isotropic DMM,2 the
2D-DOS DMM,8 and the anisotropic DMM and MTM from
this work. To facilitate meaningful comparisons, we underline
two details held constant for all models. First, we include the
prefactor τ [Eq. (17)], which we believe represents the real
physics for the equilibrium temperature drop,5,18,27 although
it was not incorporated in the original 2D-DOS DMM.8

This prefactor increases the modeled TBC by a factor of
2–3 [Eq. (19)]. Second, we assume inelastic transmission27

across the interfaces. Although restricting the transmission to
be purely elastic would reduce the modeled TBCs closer to
the experimental results, it also introduces an ambiguity in
matching the phonon branches of the metals to the hybrid
branches of graphite (Sec. III A3).
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FIG. 9. (Color online) Comparison with experimental data5 for TBC between graphite and (a) Al, (b) Au, (c) Cr, and (d) Ti. In each
case, four different models are considered: the traditional isotropic DMM (Ref. 2), the 2D-DOS DMM (Ref. 8), and the anisotropic DMM
and MTM from the present work. All models include the same prefactor [Eq. (17)] and assume inelastic transmission across interfaces. The
corresponding rms errors are summarized in Table V. Key qualitative differences among the models are indicated by the isoenergy surfaces
and group velocity vectors sketched in (e): as compared to the aniso-DMM, the 2D-DOS-DMM neglects the continuous transition from vab

to vc, while the iso-DMM is equivalent to decreasing vab and increasing vc. In both cases, the additional approximations to vab and vc tend to
overestimate the c-axis heat transfer (Table II).

The rms errors of the four models as compared to the
experimental data are summarized in Table V. None of
the models had any parameters adjusted to improve their
fits. The comparison shows that the experiments (points in
Fig. 9) are best explained by the anisotropic DMM of the
present work (red line), with an average error of 491%. The
2D-DOS DMM8 (blue line) is the next-best model, with an
average error of 1010%, while the traditional isotropic DMM
(purple line)2 is the worst, with an average error of 3464%.
Although the average error of 491% for the anisotropic DMM
certainly leaves something to be desired, disagreements of this
magnitude and larger are common in TBC modeling, even
of isotropic materials, and are most likely due to the failure
of the DMM’s fundamental assumptions about the interface
transmissivity.1

Comparing the models in more detail, we note that the
isotropic DMM predictions greatly exceed those of the
anisotropic DMM, and the experimental data. This is because
the averaging rule used to obtain an effective isotropic velocity,
viso = (v2

abvc)
1
3 , is equivalent to increasing the incident veloc-

ity vc and decreasing the in-plane velocity vab. As shown in
Table II, both of these changes tend to increase the irradiation in
the c-axis direction, and as noted in Sec. III D, this will always
correspond to an increase in the DMM TBC. The 2D-DOS
DMM predictions exceed those of the anisotropic DMM for
a similar reason, because the 2D-DOS DMM neglects the
curvature of the isoenergy surface at the edge of the FBZ,
which also has the effect of overestimating the group velocity
component along the c-axis direction and thus increasing the
TBC.

TABLE V. Comparison of rms errors (
√

1
N

∑
[(Gexpt − Gmodel)/Gexpt]2) for the different TBC models shown in Fig. 8, indicating the

improvement of the anisotropic models. For example, on average the anisotropic DMM is 7 times better than the standard isotropic DMM as
compared to the experimental data.

rms rms rms rms
Model Al Au Cr Ti Avg

Aniso-DMM 462% 745% 599% 156% 491%
Aniso-MTM 569% 973% 715% 245% 626%
2D-DMM 1023% 1021% 1493% 324% 1010%
Iso-DMM 3512% 4408% 4807% 1129% 3464%

ratio: 2D-DMM/Aniso-DMM 2.2 1.6 2.5 2.1 2.1
ratio: Iso-DMM/Aniso-DMM 7.6 5.9 8.0 7.2 7.2
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The other major feature of Fig. 9 is the implications of the
anisotropic MTM (green line), which based on the second law
of thermodynamics is expected to serve as an extreme upper
bound for the TBC. The comparison with experiments shows
that this anisotropic MTM indeed acts as an upper bound for
these materials. However, Fig. 9 also shows that the isotropic
DMM greatly exceeds the anisotropic MTM limit, indicating
that approximating a strongly anisotropic material as isotropic
can lead to TBC predictions that violate the second law of
thermodynamics.

IV. SUMMARY AND CONCLUSIONS

We have developed a general framework to calculate the
TBC for anisotropic materials based on an anisotropic Debye
dispersion relation and ellipsoidal first Brillouin zone, which
also yields compact analytical expressions in various limiting
cases. When compared to the experimental TBC between
graphite and various metals from the literature,5 the new
anisotropic DMM has errors at least a factor of 6 smaller than
those of the traditional isotropic DMM and errors typically
2 times smaller than those of a recent 2D-DOS DMM.8 The
anisotropic model also predicts an interesting and unexpected
guideline for materials engineering to increase the TBC:
due to phonon focusing the TBC actually can be increased
by reducing a phonon velocity, as long as it is a velocity
component parallel to the plane of the interface. Recently an
analogous effect on the thermal conductivity has also been
reported.22–25
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APPENDIX A: EVALUATING THE DOS AND
vDOS INTEGRALS

The general form of the DOS [Eq. (10)] is a surface
integral36 which can be evaluated by projecting the 3D
isoenergy surface to a 2D plane. Here we project it to the
ka-kb plane:

∫∫
dSω

‖vg‖ =
∫∫ √

1 +
(

∂kc

∂ka

)2

+
(

∂kc

∂kb

)2
dkadkb

‖vg‖ , (A1)

where kc can be expressed in terms of ka and kb:

kc =
√

ω2 − v2
ab

(
k2
a + k2

b

)
/vc. (A2)

Equation (A1) can be evaluated by implementing the polar-
coordinate substitution:

ka = ρ cos ϕ, kb = ρ sin ϕ, (A3)

where the domain of the polar angle is 0 � ϕ � 2π . The
main complication is in determining the domain of the polar
radius ρ.
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FIG. 10. (Color online) Mathematical framework to evaluate
Eq. (10) for min(ωD,c,ωD,ab) < ω < max(ωD,c,ωD,ab). For materials
with anisotropy ratio r > 1, the ka-kb projection of the isoenergy
surface within the FBZ is an annulus. For materials with r < 1, the
projection of the isoenergy surface becomes instead a disk.

When ω < min(ωD,c,ωD,ab), no part of the isoenergy sur-
face has reached the boundary of the FBZ, so 0 � ρ� ω/vab.
However, when min(ωD,c,ωD,ab) < ω < max(ωD,c,ωD,ab),
part of the isoenergy surface lies outside of the FBZ, and
it is helpful to consider the domain of ρ in two categories.
First, for materials with anisotropy ratio r > 1, the ka-kb

projection of the isoenergy surface within the FBZ is an
annulus (Fig. 10), with an outer radius ρmax = ω/vab and

an inner radius ρmin = kab,m

√
(ω2

D,ab − ω2)/(ω2
D,ab − ω2

D,c),
which can be obtained by solving the intersection of the two
ellipsoids in Fig. 10. Second, for materials with r < 1, the
projection of the isoenergy surface becomes instead a disk
(Fig. 10), with ρmax = kab,m

√
(ω2

D,c − ω2)/(ω2
D,c − ω2

D,ab),
again obtained from the intersection of the two ellipsoids in
Fig. 10.

Having identified the appropriate domain of ρ, it is
straightforward to evaluate the polar-coordinate version of
Eq. (A1), and thus the DOS. For layered materials (r > 1)
we find

D(ω) =

⎧⎪⎨
⎪⎩

ω2

2π2v2
abvc

, 0 � ω � ωD,c

ω

2π2v2
abvc

√
ω2

D,c(ω2
D,ab−ω2)

ω2
D,ab−ω2

D,c

, ωD,c � ω � ωD,ab

.

(A4)

For chainlike materials (r < 1),

D(ω)

=

⎧⎪⎨
⎪⎩

ω2

2π2v2
abvc

, 0 � ω � ωD,ab

ω2

2π2v2
abvc

− ω

2π2v2
abvc

√
ω2

D,c(ω2−ω2
D,ab)

ω2
D,c−ω2

D,ab

, ωD,ab � ω � ωD,c

.

(A5)
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FIG. 11. (Color online) 2D and 1D phonon gas models to verify
the specific heat and c-axis irradiation of strongly anisotropic
materials at intermediate temperatures [min(θD,c,θD,ab) � T �
max(θD,c,θD,ab)]. The two key features are the DOS and the c-axis
component of the group velocity.

Following a similar procedure, we evaluate the vDOS also
in two categories. For r > 1,

hc(ω) =
⎧⎨
⎩

ω2

8π2v2
ab

, 0 � ω � ωD,c

ω2
D,c

8π2v2
ab

ω2
D,ab−ω2

ω2
D,ab−ω2

D,c

, ωD,c � ω � ωD,ab

, (A6)

and for r < 1,

hc(ω) =
⎧⎨
⎩

ω2

8π2v2
ab

, 0 � ω � ωD,ab

ω2
D,ab

8π2v2
ab

ω2
D,c−ω2

ω2
D,c−ω2

D,ab

, ωD,ab � ω � ωD,c

. (A7)

APPENDIX B: 2D AND 1D PHONON GAS MODELS

Here we develop simplified 2D and 1D phonon gas
models to verify the various intermediate-T limiting behaviors
presented above for the specific heat (Table I) and c-axis
irradiation (Table II). The 2D and 1D DOS (Fig. 11) for a
single polarization are easily shown to be

D(kab) = 1

2π2
kabkc,m (2D), D(kc) = 1

4π2
k2
ab,m (1D).

(B1)

Conservation of the number of modes requires

D(kab)dkab = D(ω)dω (2D), D(kc)dkc = D(ω)dω (1D),

(B2)

and the group velocity components along the ab plane and c

axis are

vg,ab = v2
abkab/ω (2D), vg,c = v2

c kc/ω (1D). (B3)

Combining these we obtain the frequency-dependent DOS,

D2D(ω) = kc,mω

2π2v2
ab

, D1D(ω) = k2
ab,m

4π2vc

. (B4)

Substituting Eq. (B4) into Eq. (11), we obtain the 2D and
1D specific heat:

C2D = 3ζ3k
3
Bkc,m

π2h̄2

∑
pol

T 2

v2
ab

, C1D = k2
ab,mk2

B

12vch̄

∑
pol

T

vc

, (B5)

which agrees with the limiting behaviors in Table I. The 2D
and 1D irradiation along the c axis can be calculated from

Hc =
∑
pol

∫
ω

h̄ωfBE

1

2
Dvg,cdω. (B6)

The prefactor 1
2 arises because only the states with a wave-

vector component kc < 0 are involved in this transport process.
In the following discussion, we focus on the simplification
of vg,c.

For the 2D phonon gas [Fig. 11(a)], we have

ω � vabkab. (B7)

Combining Eqs. (B3) and (B7) and averaging vg,c over the
range [−kc,m,0], we find

vg,c,2D ≈ v2
c kc,m

2ω
. (B8)

Substituting Eq. (B8) into Eq. (B6), we obtain the 2D
irradiation along the c axis,

Hc,2D = k2
c,mk2

BT 2

48h̄

∑
pol

v2
c

v2
ab

, (B9)

which agrees with the limiting behavior in Table II.
Likewise, for a 1D phonon gas [Fig. 11(b)], we have

ω ≈ vckc. (B10)

Combining Eqs. (B3) and (B10), we find

vg,c,1D ≈ vc. (B11)

Substituting Eq. (B11) into Eq. (B6), we obtain the 1D
irradiation along the c axis,

Hc,1D = k2
ab,mk2

BT 2

16h̄
, (B12)

which again agrees with the limiting behavior in Table II.

APPENDIX C: DEFINING AN EQUILIBRIUM
TEMPERATURE

As mentioned in Ref. 18, there are several ways to define an
equilibrium temperature Teq. in terms of the opposing emitted
temperatures T+ and T− used in a two-flux model. The typical
strategy is to require conservation of some related quantity
such as phonon number density, energy density, or irradiation
along the c axis. Here we show that the difference between
any of these definitions and a naive definition

Teq,naive = 1
2 (T+ + T−) (C1)
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is of the order of �2/T−, where � = T+ − T−, and thus for
low-to-moderate thermal bias all definitions are practically
equivalent.

Here we take the conservation of irradiation along the c

axis as an example:

Hc(Teq) = 1
2Hc(T+) + 1

2Hc(T−). (C2)

In the analytical limiting cases in Table II, we have

Hc (T ) = AT n, (C3)

where A is a function of the velocities and wave-vector cutoffs,
but not temperature. For intermediate cases not covered by
Table II, the numerical results of Fig. 6 confirm that Hc is a
smoothly varying function of T , which for small � around any
T is still well approximated by the power-law form of Eq. (C3).
Therefore n is in the range [1, 4], though not necessarily an
integer.

Substituting Eq. (C3) into Eq. (C2), the equilibrium
temperature can be generalized as

T n
eq = 1

2T n
+ + 1

2T n
−. (C4)

Using a Taylor series Eq. (C4) can be expanded as

Teq = T−

[
1 + �

2T−
+ n − 1

8

(
�

T−

)2

+ O

(
�

T−

)3]
, (C5)

where O represents higher-order terms. The naive arithmetic
average equilibrium temperature can be expressed as

Teq,naive = T−

(
1 + �

2T−

)
. (C6)

Subtracting Eq. (C6) from Eq. (C5) and neglecting higher-
order terms, we obtain

Teq − Teq,naive

Teq
≈

n−1
8

(
�
T−

)2

1 + �
2T−

+ n−1
8

(
�
T−

)2 . (C7)

Considering that �/T− � 1, Eqs. (C5) and (C7) indicate
that (Teq − Teq,naive)/Teq � �/Teq, and thus the naive defini-
tion is adequate to represent the real equilibrium temperature.

Following a similar procedure, we have confirmed that the
conclusion above also applies to approaches using conserva-
tion of phonon number density and energy density.

APPENDIX D: COMPARISON TO THE PHONON
IRRADIATION CALCULATED USING FULL

DIRECTION DISPERSION

As discussed in Sec. III E, we believe the discrepancies
between the anisotropic DMM model and the experimental
TBC seen in Fig. 9 are largely due to the crude approximations
for the transmission coefficients, not the anisotropic Debye
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FIG. 12. (Color online) Comparison with lattice dynamics calcu-
lation (all-direction-dispersion) for phonon irradiation of a graphite-
like material, showing errors less than 10% from 200 K to 10 000 K.
The disagreement at lower temperature is due to the failure to capture
the reduced group velocity of ZA phonons at long wavelengths.12

The Debye model parameters for this graphitelike material are fully
determined from the dispersion calculated from the lattice dynamics
method22 without any fitting.

approximation used for the phonon irradiation. To inde-
pendently check the Hc calculation, here we validate the
anisotropic Debye model by comparison with the phonon
irradiation of a graphitelike material calculated using the
lattice dynamics method.22,37 We followed Ref. 22 in detail,
including using the optimized Tersoff potential38 for intraplane
interactions and the Lennard-Jones (LJ) potential39 for inter-
plane interactions. With the resulting all-direction dispersion
relation, we calculated the phonon irradiation by modifying
Eq. (2) in Ref. 22 from classical to Bose-Einstein statistics.

Figure 12 shows the comparison between the phonon irradi-
ation calculated using the lattice dynamics dispersion and that
calculated using our model with velocities (vab,T A = 10 100,
vab,T L1 = 25 000, vab,T L2 = 5700; vc,T A = 300, vc,T L1 =
300, vc,T L2 = 2500 [m/s]) extracted from the lattice dynamics
dispersion along [100] and [001]. The simple Debye ellipsoid
results agree with the full lattice dynamics calculation to within
±10% over a wide temperature range from 200 to 10 000 K.
Below 100 K, the Debye ellipsoid approximation deviates from
the lattice dynamics results due to the shortcoming described
in Sec. II A: for the ZA branch, the Debye model cannot
capture the dependence of phase velocity on the magnitude of
the wave vector.
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