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Low-frequency optical conductivity in graphene and in other scale-invariant two-band systems
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We investigate optical transitions of noninteracting electron systems consisting of two symmetric energy bands
touching each other at the Fermi energy (e.g., graphene at half-filling). Optical conductivity is obtained using
Kubo formula at zero temperature. We show that for particles whose pseudospin direction is determined solely
by the direction of their momentum, the optical conductivity has power-law frequency dependence with the
exponent (d − 2)/z where d is the dimension of the system and z is the dynamical exponent. According to our
result two-dimensional systems with the above pseudospin characteristics always exhibit frequency-independent
optical conductivity.
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I. INTRODUCTION

Graphene is a two-dimensional material consisting of
carbon atoms arranged in a honeycomb lattice. Since its
discovery,1 it has attracted lots of attention due to its peculiar
electronic and optical properties.2,3 Graphene is a promising
material in industrial applications and is also very important
from a theoretical point of view because its quasiparticles
can be described as massless Dirac fermions. These particles
possess pseudospin degree of freedom originating from the two
atoms of the unit cell. One of the most fascinating properties of
monolayer graphene is that the optical conductivity is universal
and independent of the frequency.4–8 This feature was argued
to be a consequence of the linear spectrum and the structure
of the Dirac cones.4

Electronic and optical properties of multilayer
graphene have also been investigated experimentally
and theoretically.9–11 The band structure of multilayer
graphene is very sensitive to its stacking sequence.12 In the
case of periodic ABC stacking, the low-energy behavior of
quasiparticles shows chiral nature and can be characterized
by the pseudospin winding number which is equal to the
number of layers. The chiral nature of quasiparticles has been
proven to play an important role in various phenomena, such
as quantum Hall effect,13 THz radiation measurements,14 and
angle-resolved photoemission spectroscopy measurements.15

In periodic ABC stacked (sometimes called chiral or
orthorhombic) multilayer graphene the Hamiltonian can be
written as

Ĥν(k) ∼ νkM

[
0 e−iMνγ

eiMνγ 0

]
, (1)

where k and γ are the magnitude and the angle of the vector
k which is the wave number measured from the corners of
the Brillouin zone. In the formula, M is the number of layers
and ν = ±1 is the valley index describing the two inequivalent
corners of the Brillouin zone. The optical conductivity of ABC
stacked multilayer graphene is also found to be universal and
independent of frequency.16

In the present paper the optical conductivity of two-band
systems is studied within the Kubo formalism. We review

earlier calculations17 and obtain the real part of the optical
conductivity expressed in terms of the pseudospin of the
particles. Analytical results are obtained for two-band systems
in which the pseudospin of the quasiparticles is determined
only by the direction of their momentum (as well as in the
case of chiral multilayer graphene). The optical conductivity of
general chiral systems defined in this way exhibits power-law
frequency dependence. This behavior is a consequence of the
fact that there is no energy scale in these systems, therefore,
scaling arguments can be applied.

We show that the universal behavior of the optical
conductivity in chiral multilayer graphene can be ex-
plained by the two-dimensionality and the invariance under
dilatations.

II. OPTICAL CONDUCTIVITY IN SOLIDS

Physical quantities measured in optical experiments can
usually be expressed by means of the optical conductivity.
Using the Kubo formula the optical conductivity can be written
as

σαβ(r,r′,ω) = −e2n(r)

iωm
δ(r − r′)δαβ

+ 1

iω
lim

δ→0+

∫ ∞

0
dt eiωt−δt i

h̄
〈[jα(r,t),jβ(r′,0)]〉0

(2)

where n(r) is the density of electrons, jα(r,t) is the current
density operator, and the expectation value shall be evaluated
in the equilibrium state. The first term in (2) is the diamagnetic
term. Henceforth, we neglect the notation limδ→0+ .

The one-particle eigenstates of a solid are the Bloch states
which obey the H (r)	lk(r) = El(k)	lk(r) Schrödinger equa-
tion where H (r) = −h̄2
/(2m) + U (r) with lattice periodic
potential. Because of Bloch’s theorem the eigenfunctions can
be rewritten as 	lk(r) = eikrulk(r)/

√
�, where ulk(r) is a

periodic function of space variables and � is the volume of
the sample. If the Coulomb interaction between electrons is
neglected then one-particle eigenstates are filled following the
Fermi distribution function f (E).
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The q = 0 Fourier component of the frequency dependent
conductivity is

σαβ(ω) = σ dia
αβ (ω) − 1

iω

2e2

�

∑
ll′kk′

Vα,ll′kk′Vβ,l′lk′k

× f (El(k)) − f (El′(k′))
h̄ω + iδ + El(k) − El′(k′)

(3)

where k and k′ run over the whole Brillouin zone. The matrix
elements Vll′kk′ = 〈	lk|v|	l′k′ 〉 of the velocity operator may
be rewritten as

Vll′kk′ = δkk′ [iωll′(k)All′ (k) + vl(k)δll′] (4)

with h̄ωll′ (k) = El(k) − El′(k). In the formula, h̄vl(k) =
∂El/∂k is the quasiparticle velocity in the lth band and

All′(k) = i

�

∫
ddr u∗

lk(r)∇kul′k(r) (5)

is the self-adjoint Berry connection matrix. Note that the
first term in (4) describes transitions between two different
bands and equals zero if l = l′. The second term is nonzero
only if l = l′ and is the quasiparticle velocity as expected.
However, in Eq. (3) only terms corresponding to two different
bands survive for nonzero frequencies because of the Fermi
functions. Therefore,

σαβ(ω) = σ dia
αβ (ω) − 2e2

ih̄ω

1

�

∑
ll′k

ωll′(k)2Aα,ll′ (k)

×Aβ,l′l(k)
f (El(k)) − f (El′ (k))

ω + iδ + ωll′(k)
. (6)

In the following, we focus on the real part of the optical
conductivity. The imaginary part may be calculated using
Kramers-Kronig relations. The diamagnetic conductivity is
purely imaginary so it does not appear in the real part at
nonzero frequencies. The δ → 0+ limit of the second term
in Eq. (6) can be divided into a principal-value part and a
Dirac-delta part. Since the Hamiltonian does not depend on
the spin, the system is time-reversal invariant. This leads to
El(k) = El(−k) and All′ (k) = Al′l(−k) and, hence, the real
part of the conductivity equals the Dirac-delta part. We note
that this statement is true even if the Hamiltonian is spin
dependent, for example in the presence of a magnetic field. In
this case the statement is a consequence of Es

l (k) = E−s
l (−k)

and As
ll′ (k) = A−s

l′l (−k) with s denoting the different spin
directions, but magnetic effects are out of the scope of the
present paper. Therefore,

Re σαβ(ω) = 2e2

h̄

πω

�

∑
ll′k

Aα,ll′ (k)Aβ,l′l(k)

× [f (El(k)) − f (El′(k))]δ(ω − ωl′l(k)) (7)

can be obtained for nonzero frequencies. Note that intraband
processes do not contribute for nonzero frequencies.18 The
optical conductivity is now expressed in terms of the Berry
connection matrix. It is well known that the Berry connection
is essential in determining the dc Hall conductivity.19 However,
Eq. (7) shows that this topological quantity plays an important
role in the optical conductivity as well.

Using Eq. (7) one can calculate the optical conductivity
of solids generally. To do so, first the energy spectrum and
the Berry connection matrix have to be computed in band
structure calculations. In the tight-binding approximation the
Hilbert space is restricted to several atomic orbits per unit
cell and the eigenfunctions are given as eikr|k,l〉/√� where
|k,l〉 is a finite-dimensional vector representing the eigenstate
on this subspace. In order to calculate the Berry connection
matrix elements one may use All′ (k) = i〈k,l|∇k|k,l′〉 instead
of Eq. (5). This expression depends on the choice of the basis
in the tight-binding subspace but we claim that in most cases
i〈k,l|∇k|k,l′〉 deviates from Eq. (5) negligibly in the “natural”
tight-binding basis. For details, see the Appendix.

III. TWO-BAND SYSTEM

For frequencies lower than the bandwidth, only optical
transitions between the two bands closest to the Fermi level
are allowed. We focus on systems with two bands where the
lower band is fully occupied and the upper band is empty, and
we consider zero temperature.

The Hamiltonian of two-band models can be represented
on this subspace with a self-adjoint 2 × 2 matrix. Assuming
that it is independent of the spin, the Hamilton operator can
generally be written as

Ĥ (k) = ε0(k)Î + ε(k)�n(k) �̂σ,

where ε0(k) and ε(k) � 0 are real functions. The three-
dimensional vector �̂σ is the pseudospin operator built up from
the Pauli matrices and Î is the 2 × 2 identity matrix. The
components of the three-dimensional unit vector �n(k) are real
functions of the wave number.

Due to time reversal invariance of the Hamiltonian,
ε(−k) = ε(k), ε0(−k) = ε0(k), and {nx(−k), ny(−k),
nz(−k)} = {nx(k),−ny(k),nz(k)}. The energy spectrum of the
two bands is E±(k) = ε0(k) ± ε(k), where the + and − signs
correspond to the conductance and valance bands, respectively.
Since �n is a three-dimensional unit vector, it may be described
by its azimuthal and polar angles which are also real functions
of the wave number,

nx(k) = sin ϑ(k) cos ϕ(k),

ny(k) = sin ϑ(k) sin ϕ(k),

nz(k) = cos ϑ(k).

Because of the time-reversal properties of the Hamitonian,
ϑ(k) is an even function while ϕ(k) is an odd function of the
wave number. The eigenvectors can be written as

|k,+〉 =
[

cos ϑ(k)
2

sin ϑ(k)
2 eiϕ(k)

]
,

|k,−〉 =
[

sin ϑ(k)
2 e−iϕ(k)

− cos ϑ(k)
2

]
,

and are evidently determined by �n(k). It is worth mentioning
that 〈k,±|�̂σ |k,±〉 = ±�n(k), i.e., the vector �n(k) determines
the pseudospin of the electrons and holes.
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At half-filling photons excite electrons from the valance
band to the conduction band. These transitions determine the
optical conductivity, which can be obtained as

Re σαβ(ω)

= 2e2

h̄

πω

�

∑
k

Aα,−+(k)Aβ,+−(k)δ

(
ω − 2ε(k)

h̄

)
(8)

for positive frequencies. For negative frequencies Re σαβ

(ω < 0) = Re σαβ(|ω|). Equation (8) is valid only at zero
temperature. For finite temperature one can give an analytical
result only if ε0(k) = 0. In this case (8) has to be multiplied
by tanh(h̄ω/4kBT ). Note that ε0(k) does not appear in
zerotemperature conductivity.

In the tight-binding approximation the Berry connection
matrix element can be obtained as

A−+(k) = eiϕ(k)

[∇kϑ(k)

2i
+ sin ϑ(k)

∇kϕ(k)

2

]
. (9)

Substituting (9) into Eq. (8) and taking advantage of the
time-reversal properties of ε(k), ϑ(k), and ϕ(k) we found the
following short expression for the optical conductivity (for
comparison, see Ref. 17):

Re σαβ(ω) = e2

h̄

πω

2�

∑
k

∂ �n
∂kα

∂ �n
∂kβ

δ

(
ω − 2ε(k)

h̄

)
. (10)

This result shows that the optical conductivity of two-band
systems can be calculated by identifying the vector �n(k) and
the dispersion ε(k) in the Hamiltonian and then evaluating the
sum over the Brillouin zone given in Eq. (10). The off-diagonal
elements of the optical canductivity do not necessarily vanish,
and describe Faraday rotation if the symmetry group of the
system is low enough.

Applying (10) to chirally stacked multilayer graphene (1)
and taking into account both valleys, we obtain the well known
universal result

σ multiLG
αβ (ω) = M

4

e2

h̄
δαβ, (11)

which is independent of the frequency.16 We note that the
low-energy model of multilayer graphene (1) is time-reversal
invariant only if both valleys are taken into account.

In the case of monolayer graphene the result (11) was
argued to be a consequence of the structure of the Dirac cones
and the linear spectrum.4 In the next section we show that the
universal frequency dependence of the optical conductivity
can be found in a wide class of two-band systems.

IV. SCALE-INVARIANT SYSTEMS

The optical conductivity (10) cannot be calculated gen-
erally. However, in this section we define a wide class of
two-band systems for which the frequency dependence of the
optical conductivity can be evaluated analytically.

We use spherical coordinates in momentum space, i.e., k

as the magnitude and {γ } as the set of angle variables of the

wave numbers. If the dimension of the system is d the set
{γ } consists of d − 1 angle variables {γ1,γ2, . . . ,γd−1}. The
gradient in momentum space can be written as

∇k = ek

∂

∂k
+ 1

k

d−1∑
j=1

cj ({γ })ej

∂

∂γj

,

where ek and ej are unit vectors corresponding to the spherical
coordinates k and γj , respectively. Here cj are coefficients of
the Jacobian. Note that if the gradient acts on a function which
depends on angle variables only, the derivative is propotional
to k−1.

In this section we focus on two-band systems which can
be described by the Hamilton operator with the following
properties. We do not consider ε0(k) because, as we have
seen in the previous section, it does not influence the zero-
temperature optical conductivity. Additionally, we assume that
the Hamiltonian depends on the magnitude of the momentum
only through the dispersion, and this dependence has power-
law behavior, i.e., ε(k) = C({γ })kz where z is the dynamic
exponent and C({γ }) > 0. In this case �n(k) = �n({γ }) is a
function of angle variables only.

This assumption has lots of consequences. First, it follows
that the conductance and valance bands touch each other at the
Fermi level, i.e., there is no energy gap between them. Second,
the system is invariant under dilatations which act on spacetime
as r → br and t → bzt , where b > 0 is the scaling parameter.
This also means that there is no characteristic energy or length
scale in these systems. Third, the eigenvectors depend on
angle variables only, so the direction of the pseudospin is
determined by the direction of the momentum only. Since this
feature is a kind of generalization of the chirality of neutrinos
and electrons in graphene, from now on we may also refer
to systems with the above characteristics as general chiral
systems. Note that monolayer graphene and chiral stacked
multilayer graphene are general chiral systems.

The density of states in general chiral systems is a power-
law function of the energy:

g(ε) = κ

zπ
|ε| d

z
−1, κ =

∫
d {γ }

(2π )d−1
C({γ })− d

z , (12)

where the notation d {γ } stands for integration with respect to
all angle variables, and the Jacobian determinant is also incor-
porated. In mean-field theory systems with power-law density
of states exhibit interesting critical behavior in quantum phase
transitions accompanied by gap opening.20

In order to calculate the optical conductivity, one has to
determine the derivatives ∂ �n/∂kα . Since �n({γ }) is a function
of angle variables only, this derivative is proportional to k−1. In
the thermodynamic limit the summation in Eq. (10) becomes
an integral over the momentum space. This integral can be
factorized into an integral with respect to angle variables and
an integral with respect to k. Similarly to calculations presented
in Ref. 16, the latter integral can be carried out analytically in
the case of general chiral systems and also determines the
frequency dependence of the optical conductivity:

Re σαβ(ω) = e2

h̄

Kαβ

4z
κ

d−2
d

(
h̄ω

2

) d−2
z

, (13)
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where κ is the coefficient of the density of states (12) and Kαβ

is a dimensionless coefficient defined as

Kαβ = κ
2−d
d

∫
d {γ }

(2π )d−1
C({γ }) 2−d

z

×
d−1∑

jj ′=1

cj ({γ })ej,α

∂ �n
∂γj

cj ′ ({γ })ej ′,β
∂ �n
∂γj ′

.

We note that in certain cases (for example in graphene)
Eq. (13) has to be multiplied by valley degeneracy. Since
neither κ nor Kαβ depend on the frequency, the optical
conductivity has universal ω(d−2)/z frequency dependence.
Using Kramers-Kronig relations the imaginary part of the
conductivity can be obtained as Im σ (ω) ∼ ω(d−2)/z at low
frequencies. In a two-dimensional system (13) provides a
frequency-independent result.

In one dimension there are no angle variables so the unit
vector �n does not depend on the wave number, which means
that its derivative vanishes. It follows that in one-dimensional
general chiral systems the optical conductivity is identically
zero for finite frequency.

The result (13) is universal in the sense that the microscopic
details do not influence the frequency dependence but are
incorporated in prefactors only. The universal behavior can be
understood on the basis of dilatation invariance. The optical
conductivity scales as σ (b,ω) = b2−dσ (1,bzω) under dilata-
tions defined above and the dilatation invariance demands
dσ/db = 0. This equation results in σ (ω) ∼ ω(d−2)/z but says
nothing about the prefactors.

Dynamic scaling analysis is a very powerful tool to explore
the frequency dependence of the optical conductivity in the
vicinity of the critical point of phase transitions.21–23 Exactly
at Tc, power-law dependence with the exponent (d − z − 2)/z
has been found.21 In quantum phase transitions one may use
the effective dimension deff = d + z instead of d which leads
to the same frequency dependence as in Eq. (13). It follows
that in two-dimensional quantum critical systems the optical
conductivity is also frequency independent.22

The scaling argument can be applied to other physical
quantities. For example, the static polarization function of
general chiral systems depends on the wave number as χ (q) ∼
qd−z in agreement with Ref. 24. Note that the scale invariance
is closely related to the fact that there is no characteristic energy
in the system. If an energy scale appears, for example due to
gap opening, Eq. (13) is not valid any more and the frequency
dependence will be influenced by microscopic details, for
example the way the gap was formed.

V. CONCLUSION

We presented a calculation of low-frequency optical con-
ductivity based on the Kubo formalism. As a result, we
obtained universal frequency dependence in systems which
are invariant under dilatations and, hence, do not have a
characteristic energy scale. Scale invariance is closely related
to the fact that the pseudospin is determined by the direction of
the momentum only. One may think of this property as some
kind of chirality in a very general sense. The exponent of the
frequency dependence is determined solely by the dynamic
exponent and the dimension of the system. In two dimensions

the optical conductivity is independent of the frequency for
any dynamic exponent in any scale-invariant system.
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APPENDIX: BERRY CONNECTION IN
TIGHT-BINDING APPROXIMATION

The elements of the Berry connection matrix are defined
in Eq. (5). However, there is no analytical method to calculate
ulk; one has to apply some kind of approximation.

In this Appendix we investigate how the Berry connection
matrix can be expressed within the tight-binding (TB) approx-
imation. The localization properties of Wannier functions have
been studied extensively.25

We restrict the Hilbert space to L atomic orbitals ϕb(r)
(b = 1, . . . ,L) per unit cell. Then one can define the Bloch
functions

ϕbk(r) = 1√
N

∑
R

eikRϕb(r − R), (A1)

where R runs over all lattice vectors. We call this set of
functions the “natural” TB basis. Note that the TB basis is not
necessarily orthonormal but can be Löwdin orthonormalized.25

We now assume that∫
dr ϕbk(r)∗ϕb′k′(r) = δkk′δbb′ .

The Hamiltonian H (r) = −h̄2
/(2m) + U (r) acts on (A1) as

H (r)ϕbk(r) =
L∑

b′=1

Hb′b(k)ϕb′k(r) + (H − PHP )ϕbk(r),

where Hb′b(k) = ∫
dr ϕb′k(r)∗H (r)ϕbk(r) and P =∑

b |ϕbk〉〈ϕbk| is a projector onto the subspace spanned
by the TB basis. In the tight-binding approximation
(H − PHP )ϕbk(r) is neglected.

In practice, the starting point in TB calculations is to
determine Hb′b(k). Then, the solutions of the Schrödinger
equation can be given as ϕlk(r) = ∑

b clb(k)ϕbk(r), where
the coefficients clb(k) are determined by the eigenvectors of
Hb′b(k): ∑

b′
Hb′b(k)clb′ (k) = Elkclb(k)

The periodic part of ϕlk(r) can be written as

ulk(r) =
√

�e−ikrϕlk(r) .

Substituting in Eq. (5) we obtain

All′ (k) = i
∑

b

clb(k)∇kcl′b(k) +
∑
bb′

clb(k)∗cl′b′ (k)

×
∑

R

e−ikR
∫

dr ϕb(r − R)∗rϕb′ (r). (A2)

By introducing the notation |k,l〉 for the L-dimensional vector
built up from the coefficients clb(k), the first term in Eq. (A2)
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can be rewritten as i〈k,l|∇k|k,l〉. In the second term the
matrix elements of the dipole operator appear, which are taken
between Wannier functions. Here we argue that these matrix
elements are usually negligible due to symmetry of atomic
orbits or their well localized behavior, but there are a few
cases when this is not true. For instance, if both s and p

orbits of an atom are taken into account in the tight-binding

approximation, the matrix element of the dipole operator is
not negligible between them. Nevertheless, in most cases (for
example in graphene) the second term in Eq. (A2) can be
neglected and, hence,

All′ (k) = i

�

∫
dr ulk(r)∗∇kul′k(r) ≈ i〈k,l|∇k|k,l〉 .
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