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Scattering approach to frequency-dependent current noise in Fabry-Pérot graphene devices
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We study finite-frequency quantum noise and photon-assisted electron transport through a wide and ballistic
graphene sheet between two metallic leads. The elementary excitations allow us to examine the differences
between effects related to Fabry-Pérot-like interferences and signatures caused by correlations of coherently
scattered particles in electron- and holelike parts of the Dirac spectrum. We identify different features in
the current-current auto- and cross-correlation spectra and trace them back to the interference patterns of the
product of transmission and reflection amplitudes, which define the integrands of the involved correlators. At
positive frequencies, the correlator of the autoterminal noise spectrum with final and initial states associated
to the measurement terminal is dominant. Phase jumps occur within the interference patterns of corresponding
integrands, which also reveal the intrinsic energy scale of the two-terminal graphene setup. The excess noise
spectra, as well as the cross-correlation ones, show large fluctuations between positive and negative values.
Oscillatory signatures of the cross-correlation noise are due to an alternating behavior of the integrands.
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I. INTRODUCTION

Ballistic electron transport1,2 in two-terminal graphene
systems is in the focus of intensive studies ever since the
pioneering experiments on single-layer carbon.3,4 The Dirac
Hamiltonian3,5 describes charge transport close to the charge-
neutrality point and leads to a linear dispersion relation ε =
h̄vF k. This allows to observe several relativistic phenomena
in solid-state systems, such as Klein tunneling6–11 or the
Zitterbewegung.12–14 In the very early works on graphene, the
minimal conductivity12,15,16,18,19 G ≈ e2/h per valley and per
pseudospin at the charge-neutrality point was found and stimu-
lated the research on current and noise properties. The current-
current correlations around the minimal conductivity lead to
a zero frequency sub-Poissonian Fano factor with a maximal
value of F = 1/3,20–24 remarkably similar to diffusive systems
such as disordered metals.25–27 The suppression of the Fano
factor below the Poissonian value originates from noiseless,
open quantum channels that are found at all conductance
minima in graphene-based two-terminal structures21 and can
be explained as an interplay between Klein tunneling, resonant
tunneling, and pseudospin matching. This pseudodiffusive
behavior28 is due to the special band structure of graphene.
Without impurity scattering, coherent transport through such a
graphene sheet29 gives rise to the same shot noise as in classical
diffusive systems. The opening of a gap31 in the quasiparticle
spectrum leads to an enhanced Fano factor.21 Such a gap
can be opened, for example, in a Fabry-Pérot geometry32,33

or by photon-assisted tunneling, as shown recently for the
case of a graphene p-n junction34 with a linear potential drop
across the interface.36,37 There, Landau-Zener-like transitions
stimulated by photon emission or absorption via resonant
interaction of propagating quasiparticles in graphene with an
irradiating electric field lead to hopping between different
trajectories.

The scattering approach as put forward by Landauer and
Büttiker38 has been applied to ac-driven charge transport39–42

through a metal-graphene interface with an abrupt potential
change.43 The metal can be formed by a graphene lead
strongly electrostatically doped by a gate potential, thus

shifting the Dirac point far away from the Fermi energy.
In this work, we adopt the formalism and parametrization
introduced in Refs. 43 and 44 and calculate the finite-frequency
current-current correlations at finite dc- and ac-bias voltages
in the system depicted in Fig. 1. We complement recent
results on ac transport in Fabry-Pérot graphene devices
of Ref. 45, in which the influence of different boundary
conditions, i.e., zigzag or armchair configurations, on the
Fabry-Pérot patterns in a combined Tien-Gordon/tight-binding
approach has been investigated. The influence on transmission
properties of a time-dependent potential barrier in a graphene
monolayer has been investigated.46 In our work, we use
so-called infinite mass boundaries20,47 for the transverse
direction. However, the different boundary conditions lead to
indistinguishable results for short but wide (L � W ) graphene
strips.20

We focus on the interplay between the Dirac-spectrum
with the Fabry-Perot interferences. This interplay results
in a shot-noise spectrum that, despite some common basic
features, strongly differs from the one that we discussed in
a recent work48 on transport through a single resonant level.
Interestingly, the well-known oscillations as a function of the
electrochemical potential in graphene on a scale of the return
frequency h̄vF /L, related to the length L of the graphene
sheet, can be seen as a reminiscence of Zitterbewegung.12

The role of the complex reflection amplitude and the onset of
contributions of scattering states coming from terminal α and
being scattered into terminal β will be the key characteristics
in our discussion of the results for the noise as a function
of bias voltage and frequency. As a consequence of these
onsets, the oscillations add up de- or constructively depending
on the precise values of the voltage and frequency. In our
setup, the separation of oscillations caused by the Fabry-Pérot
reflections and effects caused by the band structure of the Dirac
Hamiltonian is a priori not obvious. In both cases, phase-
coherent transport is essential. However, for charge injection
either into the conduction or the valence band only, effects
like Zitterbewegung should not be present and all oscillating
features of the noise spectra have to be of Fabry-Pérot
nature.
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FIG. 1. Wide graphene strip (W � L) between two heavily
doped, metallic graphene leads. The Fermi level of the sheet can be
tuned by modifying the electrochemical potential Vg in the graphene
sheet, i.e., via a gate voltage. Electron and hole states are injected via
the time-dependent bias-voltages in left and right leads μL/R(t).

II. DIRAC EQUATION AND SCATTERING FORMALISM

The ballistic graphene49–51 sheet considered in the follow-
ing can be described by the two-dimensional Dirac equation
for the two-component spinor �̂ = (�̂1,�̂2)T with indices
referring to the two pseudospins of the carbon sublattices.
Throughout this work, we will neglect intervalley scattering
and Coulomb interactions. We only consider the interaction
of the electrons with the radiation field in the form of
photon-assisted transitions. With Fermi velocity vF the Dirac
equation can be cast into the form[

−ivFh̄

(
0 ∂x − i∂y

∂x + i∂y 0

)
− μ(x,t)

]
�̂(x,t)

= ih̄∂t �̂(x,t) . (1)

The electrochemical potential μ(x,t) includes static and
harmonically driven potentials in the leads plus a static
electrochemical in the graphene sheet,

μ(x,t) =
⎧⎨
⎩

μL + eVac,L cos(ωt), if x < 0,

eVg, if 0 < x < L,

μR + eVac,R cos(ωt), if x > L.

(2)

Making use of the Tien-Gordon ansatz, we write the solution
to the time-dependent Dirac equation as a sum over photon-
assisted tunneling (PAT) modes:

�̂(x,t) = �̂0(x,t)e−i(eVac/h̄ω) sin(ωt) (3)

=
∞∑

m=−∞
Jm

(
eVac

h̄ω

)
�̂0(x,t)e−imωt , (4)

where �̂0(x,t) = �̂0(x)e−iεt . (5)

The advantage of this ansatz is that the scattering problem has
to be solved for the time-independent case only. Therefore, in
terminals γ = L,R, we define stationary solutions �̂0(x,t) =
�̂ε(x)e−iεt by the equation[

−ivFh̄

(
0 ∂x − i∂y

∂x + i∂y 0

)
− μγ

]
�̂0(x). (6)

= ε�̂0(x) . (7)

The basis states in graphene can be constructed as a
superposition of left and right movers,

�̂0(x) =
∑
k,q

[
�

k,q

0,+(x)âk,q + �
k,q

0,−(x)â−k,q

]
. (8)

αq(ε) describes the angle between the momentum of a quasi-
particle and its y-component q in region x = 0 . . . L of the
graphene sheet. Then the pseudospinors can be parametrized
as

�
k,q

0,+(x) = eiqy+ikq (ε)x√
cos αq(ε)

(
e−iαq (ε)/2

eiαq (ε)/2

)
, (9)

�
k,q

0,−(x) = eiqy−ikq (ε)x√
cos αq(ε)

(
eiαq (ε)/2

−e−iαq (ε)/2

)
. (10)

Here, the dispersion is given by ε = h̄vF

√
q2 + k2. The wave

vector kq(ε) and the angle αq(ε) are defined as

αq(ε) = arcsin

(
h̄vF q

ε + eVg

)
, (11)

kq(ε) = ε + eVg

h̄vF

cos[αq(ε)] . (12)

Therewith and neglecting the transverse momentum due to
high doping, we have the basis states

�
k,0
0,+(x) ≈ eikq (ε)x

√
2

(
1

1

)
, (13)

�
k,0
0,−(x) ≈ e−ikq (ε)x

√
2

(
1

−1

)
(14)

in the leads. Additionally, shifting the Fermi surface of
the graphene sheet away from the Dirac point, and thus
changing the concentration of carriers, is incorporated into
the electrochemical potential eVg of the graphene sheet.
For |ε + eVg| < |h̄vF q|, we have evanescent modes,52 with
imaginary αq(ε) and kq(ε). Otherwise, we have propagating
modes and scattering is only at x = 0,L.

Irradiating the two-terminal structure with a laser53 can be
described by a harmonic ac-bias voltage with driving strength
α = eVac/h̄ω as discovered in the pioneering paper by Tien and
Gordon.39 Their theory can be incorporated into the scattering
formalism,54,55 and we are applying it here to the two-terminal
graphene structure. In general, incorporating the Tien-Gordon
formalism into the scattering approach is not restricted in the
driving frequency or amplitude of the ac field if we deal with
scattering amplitudes and do not approximate the results in
terms of probabilities. But one has to ensure that displacement
currents are not dominant and that the quasiparticles have
a charge relaxation time within the scattering region that is
smaller than the timescale set by the ac-driving frequency.65

The importance of displacement currents is determined by the
screening properties of the environment of the conductor. The
charge relaxation time is given by the RC time τRC � C/G. It
depends on the effective capacitance C, which depends on the
detailed geometry of the metallic gates around the sample and
has to be determined separately for a given experiment. Hence
we concentrate below on the particle-current correlation,
which can be used to calculate the full electromagnetic
response for a given experiment. Taking into account that the
exact properties of the nanostructure can vary considerably
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due to imperfections, experimental setups can be in a regime
where the Tien-Gordon model is applicable and the results
for our graphene setup can serve as a useful starting point for
experiment-specific extensions.

We take the two valleys and two pseudospin states of the
carbon lattice into account in the prefactor of the current
operator of reservoir η, which reads

Îη(t) = 2eW

πh̄

∑
γ,δ=L,R

∞∑
l,k=−∞

∫ ∞

−∞
dεdε′

∫ ∞

0
dqJl(αγ )Jk(αδ)

× â†
γ (ε − lh̄ω)Aq;γ δ(η,ε,ε′)âδ(ε′ − kh̄ω)ei(ε−ε′)t/h̄ .

(15)

Indices γ,δ run over reservoirs L,R. The summation over
all modes of y momentum is replaced by an integral since
W � L. Scattering is contained within the current matrix
Aq;γ δ(η,ε,ε′) = δηγ δηδ − s∗

q;ηγ (ε)sq;ηδ(ε′) of a current between
leads γ and δ measured in lead η via the energy-dependent
scattering matrix

sq(ε) =
(

rq(ε) t ′q(ε)

tq(ε) r ′
q(ε)

)
. (16)

The scattering matrix connects in and outgoing scattering
states at the two barriers and is calculated in Appendix B
by matching the wave functions at x = 0,L. Here, we write
the results for reflection and transmission amplitudes in an
alternative version:

tq(ε) = 2eikq (ε)L
(
1 + e2iαq (ε)

)
e2ikq (ε)L

(
1 − eiαq (ε)

)2 + (
1 + eiαq (ε)

)2 , (17)

rq(ε) =
(
e2ikq (ε)L − 1

)(
e2iαq (ε) − 1

)
e2ikq (ε)L

(
1 − eiαq (ε)

)2 + (
1 + eiαq (ε)

)2 . (18)

We assume identical scattering for quasiparticles incident
from left and right, so tq(ε) = t ′q(ε) and rq(ε) = −r ′

q(ε). rq(ε)
vanishes if kq(ε) = πn/L, with integer n. The corresponding
modes in y direction are determined by

q =
[(

ε

h̄vF

)2

−
(

πn

L

)2]1/2

, (19)

giving rise to special features of the current fluctuations, going
along with the phase jumps of πL/h̄vF in rq(ε) we discuss later
on. At the Dirac point, transmitted quasiparticles at perpendic-
ular incidence perform Klein tunneling via evanescent modes,
leading to finite transmission probability Tq(ε) = t

†
q (ε)tq(ε) at

small transverse momentum (see Fig. 2).

III. DIFFERENTIAL CONDUCTANCE

Since the average current has only a zero-frequency
component, PAT events in the conductance17,56 can only be
studied by inducing photon exchange via a time-dependent
voltage as it is, for example, generated by irradiating the setup
with a laser beam. Different polarizations of the coupled light
field lead to different ac driving in left and right leads. Such an
asymmetry can be described by a parameter a ∈ [−1,1], which
varies the driving in the leads via αL/R = a±1

2 α ≡ Vac,L/R

h̄ω
. We

call the driving symmetric (in the amplitudes Vac,L/R) if a = 0

40 20 0 20 40
0

10

20

30

40

L/ vF

qL

FIG. 2. (Color online) Transmission probability Tq (ε) = |tq (ε)|2
as a function of energy and transverse momentum q.

and asymmetric if a = ±1. For clearness, we will only discuss
a = 0,±1 since intermediate values are just a mixture of those
limiting cases. For arbitrary a, the differential conductance
can be derived from Eq. (15) by taking the statistical and
time average and differentiating with respect to voltage. At
kBT = 0, it reads

G(ω,α) = 2e2W

h̄

∞∫
0

dq

∞∑
m=−∞

[
J 2

m(αL)

∣∣∣∣tq
(

mh̄ω + eV

2

)∣∣∣∣
2

+ J 2
m(αR)

∣∣∣∣tq
(

mh̄ω − eV

2

)∣∣∣∣
2]

. (20)

Different orders m of PAT do not mix but have to be summed
up resulting in independent contributions Gm(ω,α) to the
differential conductance. Since G(ω,α) only depends on the
Bessel functions squared, these prefactors will always be
positive. The influence of the driving strength α on the
conductivity σ (ω,α) = (L/W )G(ω,α) as a function of dc
bias is plotted in Fig. 3. PAT events lead to a substantial
enhancement of the conductivity around zero dc bias, because
more channels are available in comparison to the case without
time-dependent voltages. At large dc-bias voltages, this effect
gets negligible since the transmission probability of the
graphene sheet, see Fig. 2, is not vanishing at large energies.
Thus those contributions built a dominant background. The
conductance at arbitrary dc and ac bias is a sum of two
integrated transmission probabilities, where the integrand
exhibits crossings of the two independent interference patterns.
This behavior is similar to the interference patterns that occur
in the discussion of the integrands of the frequency-dependent
shot noise, i.e., region IIIb in the scheme shown in Fig. 4(a),
which is explained in the qualitative discussion of Sec. V. Each
Gm(ω,α) shows a transition from a region with an oscillating,
but in average not increasing contribution to conductance for
dc-bias voltages |eV/2| < |mh̄ω|, to a regime with a linear
increasing background at larger dc-bias voltages. The photon
energy mh̄ω introduces a phase shift in the oscillations of
Gm(ω,α) as a function of dc-bias voltage, so for different
m we can have local minima or maxima at eV = 0. After
summation, the conductivity can also show a local minimum
or maximum at eV = 0, as it can be observed for the various
values of α in Fig. 3(a). If |a| tends to one, this effect is hidden
behind the contribution from the terminal where driving gets
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FIG. 3. (Color online) Conductivity σ (ω,α) = (L/W )G(ω,α) as
a function of dc voltage applied across the two-terminal setup. We
show curves for various ac-driving strengths α applied to (a) both
reservoirs (a = 0) and (b) to the left reservoir only (a = 1) with
ωL/vf = 5.

small, as in Fig. 3(b) with a = 1. From the oscillations with a
period proportional to L, we expect no measurable effect on
the conductivity or the shot noise,22,24 as in the case without ac
driving and for the zero-frequency Fano factor. In the scattering
approach, they are simply because the transmission function
oscillates as a function of energy. But imperfections of real
samples, as impurities57 or lattice mismatch, lead to scattering
events. Due to this randomizing effect on the path lengths
for propagating quasiparticles, the calculated oscillations are
averaged out in experiment.22,24

IV. FREQUENCY-DEPENDENT SHOT NOISE

To get full information on current-current correlations,
we study the nonsymmetrized noise spectrum as it can be
detected by an appropriate measurement device in the quantum
regime.58–74 We allow harmonic ac driving eVac cos(ωt) in the

I

IIa IIb

0
IIIa IIIb IIIc

0

Ω

−− Ω

(a) (b)

1b

1a

2a

3a 3b

2b

q q

FIG. 4. Schematic view of the different regions, which occur in
the integrands of the correlators contributing to the finite-frequency
shot noise spectrum.

leads, so in Fourier space, the current-current correlations are
defined as

Sαβ(�,�′,ω) =
∫ ∞

−∞
dtdt ′Sαβ(t,t ′,ω)ei�t+i�′t ′ . (21)

The nonsymmetrized shot noise correlates currents at two
times:

Sαβ(t,t ′,ω) = 〈�Îα(t)�Îβ(t ′)〉 (22)

with variance �Îα(t) = Îα(t) − 〈Îα(t)〉. Of experimental inter-
est are the fluctuations on time scales large compared to the
one defined by the driving frequency ω. Thus, as in Ref. 54, we
introduce Wigner coordinates t = T + τ/2 and t ′ = T − τ/2
and average over a driving period 2π/ω. Then, the noise
spectrum is defined by the quantum statistical expectation
value of the Fourier-transformed current operator Îα(�)
via Sαβ(�,�′,ω) = 2πSαβ(�,ω)δ(� + �′) = 〈Îα(�)Îβ(�′)〉.
Sαβ(�,ω) is nothing but the Fourier transform of Sαβ(τ,ω).
Similarly, in the case without ac driving, the noise is only
a function of relative times τ = t − t ′. In order to keep the
notation short, in the dc limit, we write Sαβ(�) := Sαβ(�,ω =
0). To get a deeper insight into the underlying processes
of charge transfer, we split the noise into four possible
correlators61 defined by

SLL(�,ω) :=
∑

α,β=L,R

Cα→β(�,ω) . (23)

The correlators themselves can be seen as the building blocks
of noise spectra where different combinations describe noise
detected by corresponding measurement setups.60,61 First, we
discuss SLL(�) := SLL(�,ω = 0), the case when no ac driving
is present. We also skip ω in the arguments of the correlators.
Then an evaluation of Eq. (21) at kBT = 0 leads to the
expressions

CL→L(�)

= e2�(h̄�)

2πh̄

∫ μL

μL−h̄�

dε

∫ ∞

−∞
dq

∣∣r∗
q (ε)rq(ε + h̄�) − 1

∣∣2
,

(24a)

CR→R(�)

= e2�(h̄�)

2πh̄

∫ μR

μR−h̄�

dε

∫ ∞

−∞
dq Tq(ε)Tq(ε + h̄�), (24b)

CL→R(�)

= e2�(h̄� − eV )

2πh̄

∫ μL

μR−h̄�

dε

∫ ∞

−∞
dq Rq(ε)Tq(ε + h̄�),

(24c)

CR→L(�)

= e2�(h̄� + eV )

2πh̄

∫ μR

μL−h̄�

dε

∫ ∞

−∞
dq Tq(ε)Rq(ε + h̄�) .

(24d)

At finite dc-bias voltages, correlations with initial and final
states related to the measurement terminal L are special in the
sense that they can not be written in terms of probabilities at
finite frequency. For symmetrized noise, Büttiker76 discussed
the essential role of the complex reflection amplitudes in elastic
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electron transport and how they determine the equilibrium
current fluctuations. In the quantum regime at kBT = 0, the
equilibrium fluctuations are given by

SLL(�) = e2

2πh̄
�(h̄�)

∫ 0

−h̄�

dε

∫ ∞

−∞
dq[2 − r∗

q (ε)rq(ε + h̄�)

− r∗
q (ε + h̄�)rq(ε)]. (25)

For finite dc bias, the reflection amplitudes entering CL→L(�)
play the same essential role as in equilibrium, in the sense
that finite-frequency current fluctuations are nonzero even
for vanishing transmission. The combination of scattering
matrices of the correlators integrands, which enter in the
current-current cross-correlation spectrum,

SLR(�,ω) :=
∑

α,β=L,R

Cc
α→β(�,ω), (26)

are substantially different than in the ones for the autoterminal
noise. Most of all, at finite frequency, none of the complex
correlators can be written as an integral over transmission or
reflection probabilities:

Cc
L→L(�) = e2�(h̄�)

2πh̄

∫ μL

μL−h̄�

dε

∫ ∞

−∞
dq t∗q (ε + h̄�)tq(ε)

× [1 − r∗
q (ε)rq(ε + h̄�)], (27a)

Cc
R→R(�) = e2�(h̄�)

2πh̄

∫ μR

μR−h̄�

dε

∫ ∞

−∞
dq t∗q (ε)tq(ε + h̄�)

× [1 − r∗
q (ε + h̄�)rq(ε)], (27b)

Cc
L→R(�) = −e2�(h̄� − eV )

2πh̄

∫ μL

μR−h̄�

dε

∫ ∞

−∞
dq r∗

q (ε)

× tq(ε)r∗
q (ε + h̄�)tq(ε + h̄�), (27c)

Cc
R→L(�) = −e2�(h̄� + eV )

2πh̄

∫ μR

μL−h̄�

dε

∫ ∞

−∞
dq t∗q (ε)

× rq(ε)t∗q (ε + h̄�)rq(ε + h̄�). (27d)

Unlike for symmetrized noise, quantum noise65,72 spectra
discriminate between photon absorption (� > 0) and emission
(� < 0) processes between quasiparticles in graphene and a
coupled electric field.60,61,73–75 The energy for photon emission
has to be provided by the voltage source, so at kBT = 0 the
Heaviside � functions ensure that only terms satisfying this
condition contribute at negative frequencies. In the dc limit, our
choice of chemical potentials −μL = μR = eV/2 > 0 and the
fact that the measurement is performed at reservoir L, leaves
only Cc

R→L(�) �= 0 if � � 0. When additional ac voltages
are present none of the correlators of Eq. (A1) is given in
terms of probabilities and integration boundaries are changed
by ±mh̄ω. Then all correlators can contribute at frequencies
� < 0.

V. QUALITATIVE DISCUSSION

A good starting point to interpret the results for the
conductivity and shot-noise spectra is to examine the involved
integrands in Eqs. (24) and (27). Figure 4 provides a schematic
overview of the different regions occurring in the 2D plots
of Figs. 5–10. We show the real parts of integrands either
as a function of (q,ε) as in scheme 4(a) or of (q,�) as in
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FIG. 5. (Color online) Real parts of integrands of the four
correlators [see Eq. (24)] contributing to the shot noise, namely, (a)
0.25|1 − r∗

q (ε)rq (ε + h̄�)|2, (b) Tq (ε)Tq (ε + h̄�), (c) Rq (ε)Tq (ε +
h̄�), and (d) Rq (ε + h̄�)Tq (ε). Here, the energy is fixed at ε = 0
corresponding to vanishing dc bias. The correlator in (a) cannot be
written in terms of probabilities, except in the zero-frequency limit the
integrand results in T 2

q (ε). Correlator (b) contains one transmission
probability at zero energy that is only nonzero at small q. Since for
small transversal momentum Rq (ε) decays as q−2, the correlator (c)
tends to zero in this regime and otherwise mimics the behavior of
Tq (ε). Integrand (d) is also restricted to low transverse momentum
because Tq (ε) = 0 otherwise.

scheme 4(b). The former is divided by the four envelopes
q = |ε| and h̄vF q = |ε + h̄�| into six areas: (1) I, (2) where
the regimes IIa and IIb of evanescent modes are merging, and
(3) the areas IIIa ,IIIa , IIIa of propagating modes. Area IIIb is
defined by the two lines with origins (q = 0,ε = 0), (q =
0,ε = −h̄�) and intersection (h̄vF q = h̄�/2,ε = −h̄�/2).
Areas in scheme 4(b) are separated by h̄vF q = |ε + h̄�|
and the dashed horizontal line h̄vF q = |ε|. The transmission
probability fits into this scheme when the horizontal separation
is absent so we are left with areas 1a and 2a/b. Then area 1a

includes the black region of Fig. 2 where no transmission
is possible, and the regime of evanescent modes with finite
transmission probability for small |ε| < h̄vF |q| around ε = 0
due to Klein tunneling. In regimes 2a/b, a hyperbolic shaped
interference pattern with oscillations along ε is prominent,
where the period of oscillations is on the order of h̄vf /L for
small h̄vF |q| � |ε|. Figure 5 shows the relevant integrands
of the four correlators Cα→β(�) contributing to the finite
frequency quantum noise, plotted as a function of (q,�)
when ε = 0. Then the imaginary part of r∗

q (ε)rq(ε + h̄�) leads
to finite contributions in the region Ia and Ib in Fig. 5(a).
Tq(ε = 0) is only nonzero for small q, so integrands (b) and
(d) vanish for large q. Since Rq(ε) = 1 − Tq(ε), integrand (c)
vanishes when q → 0 and otherwise resembles the shape of
Tq(ε).

A finite ε, as in Fig. 6, introduces another interference
pattern for propagating modes. In region 1a , nonzero values
are possible, and in 2a and 2b, the usual interferences occur.
For q values below h̄vF |q| = |ε|, this additional pattern can be
seen in region 1b. The interplay of both patterns leads to phase

125422-5



JAN HAMMER AND WOLFGANG BELZIG PHYSICAL REVIEW B 87, 125422 (2013)

a b( )( )

( ) ( )c d

0.25

0.75

0.5

0

1

0
10

30
20

40
qL

ΩL/vF

−20−40 40200

0
10

30
20

40
qL

ΩL/vF

−20−40 40200

0
10

30
20

40
qL

ΩL/vF

−20−40 40200

0
10

30
20

40
qL

ΩL/vF

−20−40 40200

FIG. 6. (Color online) Real parts of integrands of correlators [see
Eq. (24), see also Fig. 5] contributing to the shot noise for fixed energy
εL/h̄vF = 20. At finite ε, there is an additional interference pattern
along q if h̄vF |q| < |ε|, leading to phase jumps in the integrand of
correlator (a), the one where initial and final states belong to the
measurement terminal L. When the integrand can be written as a
product of probabilities, see (b)–(d), the phase jumps are absent but
two independent interference patterns are found.

jumps of πL/h̄vF in regions 3a and 3b. These phase jumps
can be determined by requiring |r∗

q (ε)rq(ε + h̄�) − 1|2 = 1 in
Eq. (24a), see Fig. 6(a). This requirement is fulfilled when
r∗
q (ε)rq(ε + h̄�) vanishes, what is fulfilled by the transversal

momenta of Eq. (19). The condition |r∗
q (ε)rq(ε + h̄�) − 1|2 =

4 for a maximum in the integrand leads to modes that expe-
rience Klein tunneling. Actually, this correlator can be writ-
ten as integral over 1 + Rq(ε)Rq(ε + h̄�) − 2[Rq(ε)Rq(ε +
h̄�)]1/2 cos[�(ε,�)] including a scattering phase �(ε,�) =
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FIG. 7. (Color online) Real parts of integrands of the correlators
[see Eq. (24), see also Fig. 5] contributing to the shot noise with fixed
frequency �L/vF = 20. Analogous to Fig. 6 but as a function of
(q,ε). Phase jumps occur in the interval −h̄� < ε < 0 in integrand
(a), region IIIb of Fig. 4(a). The interplay of the two interference
patterns can also be observed at larger energies and transverse
momenta for h̄vF |q| < |ε|, h̄vF |q| < |ε + h̄�| in all integrands
(a)–(d).
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FIG. 8. (Color online) Real parts of integrands that appear in
Eq. (27) contributing to the cross-correlation shot noise for fixed
energy εL/h̄vF = 20 (top) and fixed frequency �L/vF = 20 (bot-
tom), namely, (a) and (c) �{t∗

q (ε + h̄�)tq (ε)[r∗
q (ε + h̄�)rq (ε) − 1]}

and (b) and (d) 4�[r∗
q (ε)tq (ε + h̄�)r∗

q (ε + h̄�)rq (ε)]. Due to sym-
metry reasons, the integrands are identical when interchanging index
labels L,R. As a function of frequency integrand (a) leads to strongly
oscillating contributions to the noise spectrum. These oscillations
are reduced due to the alternating behavior along q in cross-terminal
contributions (b). In (c) and (d), the integrands are plotted as a function
of (q,ε) where they reveal a similar structural difference.

Arg[r∗
q (ε)rq(ε + �)]. Thus it describes events containing the

scattering phase between time-reversed paths of electron-hole
pairs separated by the photon energy h̄� reflected back into
the measurement terminal. The effect of the phase shifts on
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FIG. 9. (Color online) Real parts of integrands appearing in
the correlators of Eq. (A1) contributing to the shot noise for
driving frequency ωL/vF = 7.5 and fixed frequency �L/vF = 20.
The integrands are (a) 0.25[1 − r∗

q (ε)rq (ε + h̄�)][1 − r∗
q (ε + h̄� +

h̄ω)rq (ε + h̄ω)], (b) t∗
q (ε)tq (ε + h̄�)t∗

q (ε + h̄� + h̄ω)tq (ε + h̄ω), (c)
r∗
q (ε)tq (ε + h̄�)t∗

q (ε + h̄� + h̄ω)rq (ε + h̄ω), and (d) t∗
q (ε)rq (ε +

h̄�)r∗
q (ε + h̄� + h̄ω)tq (ε + h̄ω). When two frequencies are present

none of the correlators can be written in terms of probabilities and
additional phase jumps come into play.
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FIG. 10. (Color online) Real parts of integrands of the correlators
contributing to the shot-noise with driving frequency ωL/vF = 7.5
and fixed energy εL/h̄vF = 20. Analogous to Fig. 9, but as a function
of (q,�). As a consequence of PAT, horizontal interference lines occur
for transverse momenta h̄vF |q| < |ε + mh̄ω| as in (a) and (c).

the integrands interference patterns is also obvious in the (q,ε)
plot of Fig. 7(a), region IIIb. Figures 7(b)–7(d) show a similar
interference pattern although the corresponding correlators are
defined in terms of probabilities.

Concerning cross-correlation noise, the integrands occur-
ring in Eq. (27) show alternating patterns of positive and nega-
tive values. The ones that describe autoterminal contributions
to SLR(�) [Eqs. (27a) and (27b)], as in Fig. 8(a), have an
alternating sign along �. In the cross-terminal ones [Eqs. (27c)
and (27d)], as in Fig. 8(b), the additional interference pattern
along q introduces another change of sign. Figures 8(c) and
8(d) show a similar behavior for the dependence on (q,ε).
When ac-bias voltages introduce the driving frequency ω,
the integrands structures become even richer but also less
clear, as in Figs. 9 and 10. Then alternating signs in all
contributions to autocorrelation noise are observed, except for
the correlator with initial and final sates in the measurement
terminal. This results in peculiar oscillatory features in the
interference patterns at combinations of all involved energies
ε,h̄�,mh̄ω. Predicting the effect of such features on the noise
spectra from the plotted integrands is then almost impossible
because one still has to average over all possible energies and
q values by integration.

VI. AUTOCORRELATION NOISE

In contrast to the conductivity, the shot-noise spectrum,
in general, couples different orders of PAT events, expressed
by the product of four Bessel functions of arbitrary order.
But since the driving is fixed, nonvanishing contributions
exist only up to a certain order depending on the precise
value of α. When time-dependent voltages are present, current
fluctuations of Eq. (A1) contain products of four scattering ma-
trices, each with a different energy argument. After performing
the dc-bias limit, only transitions between ε and ε + h̄�

are left.

A. Shot-noise spectrum

In the regime eV,h̄�,h̄ω � h̄vF /L, the scattering matrix
can be treated as energy independent. Then, as for a single level
quantum dot in the broadband limit, the asymmetric quantum
noise as a function of frequency is the sum of four straight
lines, with kinks at h̄� = 0, ± eV .60,61 For vanishing dc bias,
we have CR→L(�) = CL→R(�) and CR→L(�) ≈ CL→R(�),
as long as � � vF /L. The richer regime, when eV,h̄�,h̄ω >

h̄vF /L, additionally exhibits strongly oscillating integrands.
Those oscillations are purely due to propagating modes as
it is also clear from interference patterns of the integrands
in Figs. 5–9, regions IIa,b and IIIa,b,c. In the special case
of perpendicular incidence [q,αq(ε) = 0], we have Klein
tunneling, thus the frequency dependence of the correlators
is linear for this mode. Then Cα→β(�) = 0 if α �= β since
Rq(ε) = 0, otherwise, the Cα→β(�) mirror the interference
patterns of the integrands. So the noise spectrum (see Fig. 11

FIG. 11. (Color online) Real parts of autocorrelation noise
spectrum in units of 2πh̄/e2. We compare a setup where dc-bias
voltages are fixed symmetrically around the Dirac point (top,) with
the case when eV0L/h̄vF = 2eV/h̄vF = 10 (bottom). Thick lines are
shot noise and correlators. Thin lines are derivatives with respect
to frequency. Contributions from CL→L(�) are dominant at positive
frequencies. (Top) Special features in the derivatives are seen for
frequencies h̄� < eV in the R → R contribution, when the lower
bound of the energy-integration interval approaches the Dirac point
(compare to Figs. 6 and 7). (Bottom) The distance to the Dirac
point is increased by the offset voltage. Therefore oscillatory features
appear in a larger frequency interval and in all four correlators, since
integration boundaries in all contributions are crossing the Dirac point
with increasing �.
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solid, thick curve) shows oscillations on the scale of L/h̄vF in
the regime eV,h̄�,h̄ω � h̄vF /L, similar to the shot noise at
zero frequency as a function of the electrochemical potential in
the graphene sheet.20 Although present in all four correlators,
the oscillations show up in the noise spectrum mainly via
CL→L(�) of the terminal where the fluctuating currents are
probed. That is because the correlator itself, as well as the
amplitude of the oscillations, are significantly larger than for
other contributions. Therefore, in comparison to the absorption
branch (positive frequencies), the emission branch of the
spectrum (negative frequencies) shows only small shot noise.
Indeed, all correlators except CR→L(�) vanish when � � 0
since the energy for the emission of a photon has to be provided
by the voltage source. Especially, the contribution dominant at
positive frequencies vanishes: CL→L(�) = 0 if h̄� � 0.

We are considering the limit kBT = 0 where the correlators
integration windows are exactly determined by the chemical
potentials. At finite temperature, this so-defined onsets of the
four contributions as a function of frequency are smeared out
by the broadening of the Fermi functions. Clearly, a shift of the
electrochemical potential in the graphene sheet does not affect
these onsets since it does not enter in the Fermi functions of the
leads, but it still changes the transmission function resulting
in a modified spectrum. Those limits of energy integration, as
well as their position relative to region IIIb, result in features
in the noise spectra besides the discussed oscillations. In order
to clarify the role of the Dirac Hamiltonian in comparison
to the role of pure Fabry-Pérot interferences, we compare
results when the charge injection is only in the conduction
or valence band by shifting the dc-bias voltages above the
Fermi energy of the graphene sheet via the offset voltage V0

in μL/R = ±eV/2 + eV0. CL→R(�) can never see the regime
−h̄� < ε < 0 when eV0 = 0, as in the top of Fig. 11. Thus
the oscillations visible in the derivative have a well defined
period over the whole spectrum on top of a linearly increasing
background. When an offset voltage eV0 = 2eV is applied,
as done when calculating the spectra for the lower plot of
Fig. 11, CR→R(�) shows a complicated frequency dependence
for small �. The contribution CL→L(�) describes correlations
of scattering states emanating from the left reservoir reflected
back into the same reservoir. We will discuss this contribution
now in detail. The special features for small frequency are
due to the interplay of the integration boundaries with the
various regions in Fig. 4(a) occurring in the integrands (q,ε)
dependence of Fig. 7(a). The integration is over all q modes
and from ε = −eV/2 + eV0 − h̄� to ε = eV0 − eV/2. When
eV0 = 0,eV = 0, this corresponds to −h̄� < ε < 0, regions
IIIb and partly IIa,b of Fig. 4(a). Now at finite eV,eV0 as
in Fig. 11, the integration window can include region IIIb
completely, partly, or not at all, resulting in variations of the
spectrum. At small h̄�, features in the integrands interference
patterns have stronger impact. This can be seen from strongly
nonharmonic features of the noise spectrum, e.g., in CL→L(�)
and CR→L(�) for eV0 = 2eV . For large frequencies, averaging
leads to nearly harmonic oscillations on top of the increasing
background. With the chosen parameters, the distance of the
chemical potential μL to the charge-neutrality point is given
by e(−V/2 + V0)L/(h̄vF ) = 7.5. Around the corresponding
frequency, the oscillatory behavior of the spectrum is modified
and flattened due to a reduced fraction of propagating modes.

Raising the frequency further increases this fraction again
and oscillations are roughly harmonic with period πL/h̄vF ,
best visible in the derivatives dCL→L(�)/d� of Fig. 11.
That is also the point where the lower bound of energy
integration starts to include the special interference pattern of
the integrands around the energy interval −� < ε < 0, region
IIIb. CR→R(�) is not influenced by the measurement terminal
itself, but probes transmission probabilities via scattering
events that are related to the right terminal only. An analogous
behavior of the spectrum as before is found, this time with a
distance e(V/2 + V0)L/(h̄vF ) = 12.5 of the lower integration
boundary to the charge neutrality point when h̄� = 0. Now
increasing frequency is going along with a decreasing slope
of the derivative with respect to frequency until the Dirac
point is reached. There, the slope increases again since more
open channels become available. The same interpretation also
explains features in the interval h̄� < eV of the autoterminal
correlators shown in Fig. 11, when V0 = 0. For example, the
spectrum of the correlator (24b), with initial and final states
in the right lead, exhibits a reducing slope until h̄� = eV/2
from where on the oscillations have a well-defined period.
The dCR→R(�)/d� curve has a maximal slope at h̄� = eV

when positive and negative energies with same magnitude
are present. For higher frequencies, oscillations have again
a well-defined phase.

We also study the excess noise at finite frequen-
cies: Sexc(�,ω) := S(�,ω)|eV − S(�,ω)|eV =0. Subtracting
the noise at zero bias voltage removes the divergent contri-
butions from the noise spectrum. Then oscillating features
due to bias-voltages are more obvious since they are now
also prominent in the noise spectra of Fig. 12, not only in
derivatives. When eV0 = 0 the excess noise (thick, black, solid
curve) is purely positive for h̄� � eV , while for h̄� > eV ,
it is oscillating around zero, because then cross-terminal
contributions Cα→β(�) cancel each other up to a constant
offset acquired at small �. This offset is compensated by the
L → L contribution. Oscillations of this contribution have
again a considerable impact on the excess noise spectrum.
In the lower plot of Fig. 12, the offset voltage is fixed
to eV0 = 2eV . For low frequencies h̄� < eV , complicated
oscillations occur in all contributions to excess noise and are
accompanied by a strongly increasing slope up to frequencies
h̄� > eV0 + eV/2. As for the noise itself, the frequency of
the oscillations is determined by h̄�Z = 2eV and equals the
frequency expected from the Zitterbewegung of relativistic
Dirac fermions.12 This frequency corresponds to a period of
π in our plots. It would be interesting to test experimentally
if those much more pronounced oscillations, compared to the
overall shot noise, can be detected in spite of randomization
effects of imperfections on the quasiparticles path lengths.
In summary, (i) the impact of the Dirac Hamiltonian on the
frequency dependence of autoterminal current fluctuations
leads to peculiar oscillation for energies in the vicinity of
the Dirac point as an interplay of Klein tunneling, phase
jumps in the correlators, and their energy-integration limits.
(ii) Oscillations due to the FP setup have a constant phase
for high energies when propagating modes are dominant.
Then dSexc(�)/d� oscillates between positive and nega-
tive values with a period as expected from the effect of
Zitterbewegung.
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FIG. 12. (Color online) Real parts of autocorrelation excess-noise
spectrum in units of 2πh̄/e2 (thick lines, top) and derivatives (thin
lines, bottom) with dc bias symmetrically applied around the Dirac
point (top) and for finite eV0 = 2eV (bottom). By subtracting the
noise at zero dc bias, the divergent background is removed. The
structure and especially the oscillatory behavior are coined by
autoterminal contributions of Eq.(27a) related to the measurement
terminal L. The jump in the derivative of CL→R(�) is present because
this correlator does not contribute for frequencies h̄� < eV . By
applying an offset voltage eV0L/h̄vF = 10 a complicated structure
emerges, best visible in the derivatives.

B. Dc-bias dependence at finite frequency

Analogous to the spectrum, the dc-bias dependence for
fixed frequency is featureless in the regime eV,h̄�,h̄ω �
h̄vF /L, except the pronounced onsets of the four correlators.
This is not surprising when looking at the derivatives with
respect to voltage:

dCL→L

dV
= e2�(�)

4πh̄

∫ ∞

−∞
dq[|1− r∗

q (−eV/2)rq(h̄�− eV/2)|2

− |1 − r∗
q (−eV/2 − h̄�)rq(−eV/2)|2],

(28a)

dCR→R

dV
= e2�(�)

4πh̄

∫ ∞

−∞
dq[Tq(eV/2)Tq(eV/2 + h̄�)

− Tq(eV/2 − h̄�)Tq(eV/2)], (28b)

dCL→R

dV
= e2�(� − eV )

4πh̄

∫ ∞

−∞
dq[Tq(h̄� − eV/2)

×Rq(−eV/2) − Tq(eV/2)Rq(eV/2 − h̄�)], (28c)

dCR→L

dV
= e2�(� + eV )

2πh̄

∫ ∞

−∞
dq[Tq(eV/2)Rq(eV/2 + h̄�)

− Tq(−eV/2 − h̄�)Rq(−eV/2)]. (28d)

Scattering amplitudes are roughly constant for a given q mode
in this regime, so the correlators are straight lines as a function
of dc-bias voltage. For example, a special situation that could
exhibit interesting physics is when some derivatives are zero.
But this is, due to symmetry arguments, only possible at
eV = 0, ± h̄�, proofing a zero slope of the correlators at
their onsets but revealing no additional effect. By this means,
as in the shot-noise spectrum, the dependence on the bias
voltage reveals again the onsets of the four correlators. Since
we have chosen positive h̄�, the autoterminal contributions are
nonzero over the whole bias range. As before, cross-terminal
ones vanish if no energy is provided by the voltage source:
CL→R �= 0 if eV > −h̄� and CR→L �= 0 if eV < h̄�. As
it is clear from the bottom plot of Fig. 13, the oscillations
of the components are not in phase, thus adding up to
complicated oscillations in SLL(�). Yet, as mentioned in the

FIG. 13. (Color online) Real parts of autocorrelation current-
current fluctuations in units of 2πh̄/e2 as a function of dc bias for fixed
frequency h̄� (thick lines, top). We compare the symmetric setup
without dc-bias offset (top) and when eV0L/h̄vF = 10 (bottom). Thin
lines (lower panels) are used for the derivatives with respect to voltage.
(Top) Due to symmetrically applied bias voltage, the noise and the
autoterminal contributions are symmetric in the voltage dependence
and Sα→β (�)

∣∣
V

= Sβ→α(�)
∣∣
−V

if α �= β. (Bottom) By applying an
offset voltage, we are breaking the setup’s symmetry. Autoterminal
terms are then symmetric with respect to eV = ±2eV0, while the
summed-up noise is asymmetric.
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beginning, we doubt this could be a measurable effect. The
shot-noise and the autoterminal correlators are symmetric in
the voltage dependence if V0 = 0, whereas the cross-terminal
ones obey Cα→β(�,V ) = Cβ→α(�, − V ). Here, the charge-
neutrality point and the width of the region IIIb are revealed
as a minima in the slope of the correlator CL→L(�) at
eV = ±2h̄� and in the change of sign in dCR→R(�)/dV

at eV = 0.

VII. CROSS-CORRELATION NOISE

The explicit expressions of Eq. (27) for the cross-correlation
current noise spectrum of Fig. 14 can be extracted from the
general expression (21) in the same way as we did when
deriving Eq. (24). From Figs. 8(a) and 8(b), it is also clear
that the spectra of autoterminal correlators are oscillating as
a function of � with larger amplitude than the cross-terminal
ones, since they show an alternating behavior between positive
and negative integrands. The dependence on q in the relevant
frequency range is weak, as shown in Fig. 8(a). Contrary,
cross-terminal contributions as in Fig. 8(b) show features
with an alternating sign along both variables, � and q. Thus
an integration along y momentum leads to averaging and
therefore significantly smaller oscillation amplitudes occur.
As discussed for the excess noise of the autocorrelation

FIG. 14. (Color online) Real parts of cross-correlation spec-
trum in units of 2πh̄/e2 when eV0 = 0 (top) and eV0L/h̄vF =
3eV L/h̄vF = 18 (bottom). Without an offset voltage (eV0 = 0),
autoterminal contributions are identical as well as cross-terminal ones
at large frequencies h̄� � eV . At finite eV0, the asymmetric bias
voltage is reflected in the frequency dependence of the autoterminal
correlators by their different heights and the shift of the oscillations
maxima.

FIG. 15. (Color online) Real parts of current-current cross-
correlations in units of 2πh̄/e2 as a function of symmetrically applied
dc-bias voltage and for a fixed frequency. Jumps in the derivatives at
±�L/vF are due to the onsets of the cross-terminal contributions.

noise spectral function, we find that the oscillations have a
frequency h̄�Z = 2eV , which is tantamount to a period 2π in
the plots. Complex conjugation corresponds to time-reversed
states. Again, as the product of scattering matrices of the
integrands in Eq. (21) suggests, it is probing transmission
and reflection amplitudes of electron-hole pairs separated by
an energy quanta h̄�. So, for cross-terminal noise, not only
the reflection but also the complex transmission amplitude
is essential even without ac-bias voltages. Again, it would
be interesting to test if the resulting oscillations could be
detected in the challenging task of a finite-frequency cross-
correlations experiment. Analyzing the integrands reveals the
symmetry Cc

α→α(�) = Cc
β→β(�) if μL = −μR as we show

in Fig. 15. This symmetry is distorted by applying an offset
voltage V0. The spectrum of the correlator Cc

L→L(�) shows
a shift of the maxima and minima of the oscillations with
respect to Cc

R→R(�) for finite V0. This shift is due to the
fact that the distance between neighboring maxima of the
integrand is not constant when varying h̄� at given q mode
(see the bending of the maxima towards higher frequencies
for larger q in the integrands, e.g., Fig. 6). Derivatives
of the correlators Cc

α→β(�) with respect to voltage show
a sequence of pairs of different maxima. This observation
is traced down to the same origin as above, and so the
appearance of peculiar oscillations in the summed-up cross-
correlation shot noise SLR(�) is explained. At h̄� = 0, current
conservation and the unitarity of the s matrix require SLR(�) =
−SLL(�). Therefore the correlator described by Eq. (27d) is
negative.

VIII. FINITE-FREQUENCY NOISE AT AC BIAS

By applying an ac-bias voltage at the leads, one can inject
charge carriers at positive and negative energies of the Dirac
cone without applying a dc voltage. Analogous to the minimal
conductivity, in the nondriven case going along with a maximal
Fano factor, the shot noise at zero frequency but finite ac
bias Sαα(� = 0; ω) mirrors the behavior of the conductivity
in Fig. 3. The noise spectrum in Fig. 16 for the driven setup
(a = 1) is similar to the one without driving but with additional
steps in the derivatives. For arbitrary ac bias, these steps can
appear at frequencies h̄� = (μα − μβ) ± nh̄ω due to the onset
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FIG. 16. (Color online) Derivatives of current-current correla-
tions real parts in units of 2πh̄/e2 with respect to frequency as
a function of frequency. We have chosen a symmetrically applied
dc-bias voltage with additional harmonic ac driving (ωL/vF = 3.5,
α = 0.5 and a = 1) in lead L. Dashed vertical lines mark the step
positions, coloring specifies the correlator that shows the step at
corresponding �L/vF .

of higher-order PAT events. Since we set a = 1 in Fig. 16, the
correlator with states R → R shows no ac-induced steps in
the derivative. But when |a| �= 1, all integrands (see Fig. 9)
are not given in terms of probabilities and can take negative
values as mentioned in Sec. V. For the shot-noise spectrum,
there are then two possible sources of contributions that could
reduce noise: either a correlators integrand or the product
of Bessel functions is negative. When the driving voltage
is applied symmetrically (a = 0), more PAT-induced steps in
the derivatives of the noise spectrum are visible and finite
contributions at negative � are possible for all correlators. As
proposed by Trauzettel et al.,43 a time-dependent voltage could
be used to induce interference between states in particle- and
holelike parts of the Dirac spectrum. This should correspond to
Zitterbewegung like in relativistic quantum mechanics, but we
are not aware of any unique feature caused by Zitterbewegung
that can be distinguished from other oscillations, especially of
Fabry-Pérot nature.

IX. CONCLUSIONS

We have analyzed the conductivity and the nonsymmetrized
finite-frequency current-current correlations for a Fabry-Pérot
graphene structure. Oscillations on the intrinsic energy scale
L/h̄vF are still present in the finite frequency noise. Emission
spectra are diverging for large frequencies, whereas the
absorption branch of the spectrum has to vanish at h̄� = −eV .
As expected from the integrands, the current noise also
diverges for voltages |eV | � h̄vF /L. Since the onset of the
different noise contributions is defined by the four possible
combinations of the chemical potentials, the noise built by
all correlators consists of contributions oscillating with the
same period but different phases. Although dominated by
CL→L(�) when correlating the currents in terminal L at large
frequencies, this interplay is revealed in the spectra and voltage
dependence of all correlators. Each contribution can show
peculiar oscillations at low enough frequencies or voltages.
In this regime, features in the integrands (q,ε) dependence can

have a prominent impact whereas they tend to be averaged
out at large frequencies. Another aspect is the appearance of a
special region showing phase jumps in the energy dependence
of the integrands when h̄� � 2eV . This interplay of the
Dirac spectrum and the Fabry-Pérot physics79,80 can be probed
purely by applying an appropriate combination of dc-bias and
offset voltage V0 = V/2, thus connecting electron and hole
parts of the Dirac spectrum symmetrically when eV = 2h̄�.
The way the scattering amplitudes are combined in this
approach destroys the clear picture in terms of transmission
and reflection probabilities. Instead, in the dc limit, it gives
rise to the interpretation of the L → L contribution in terms of
jumps in the scattering phase between time-reversed electron-
hole states separated by the photon energy h̄�. In the same
way, the complex correlators for cross-correlation noise or
for the driven setup exhibit phase jumps and can not be
written in terms of probabilities. Complex contributions of
the scattering matrices lead to large oscillations between
positive and negative values of cross-correlation noise or in
the derivatives with respect to frequency of the autoterminal
noise spectral function. These oscillations have a frequency
of h̄�Z = 2eV , which corresponds to a period of 2π in
our plots. This frequency corresponds to the Zitterbewegung
frequency as it is known for relativistic Dirac fermions. Again,
strongly nonharmonic features can occur when the transition
between different regimes is probed, especially when region
IIIb around the Dirac point comes into play. Additional ac bias
complicates the picture because combinations of q,h̄�,mh̄ω

define additional phase jumps, onsets of the correlators and
therefore steps in the noise when higher-order PAT events
occur. Then the special role of the complex reflection and
transmission amplitudes is essential for all possible correlators.
These complex reflection and transmission amplitudes are a
central and common feature of frequency-dependent shot noise
in double-barrier structures, which we studied recently for a
single resonant level48 using the same approach as in this
work. In this simple system, the onsets of the correlators are
the same as in the graphene setup since they only depend on the
considered voltages and frequencies. Apart from this aspect,
the frequency dependence of the single resonant level and
that for the graphene system differ strongly. Most of all, the
oscillatory behavior of the shot noise spectra in the graphene
setup cannot be found in the case of the resonant level that
rather leads to a steplike structure of the frequency-dependent
shot noise.

Thus it seem worth to investigate a graphene Fabry-Pérot
setup experimentally as the frequency scales are in the
accessible regime and the noise correlators can (partially)
reveal the physics of the Zitterbewegung. Future theoretical
studies might investigate the screening effects on the noise
properties in the very high-frequency regime, which gives
information about the relevance of displacement currents in
the relativistic regime.
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APPENDIX A: NOISE FORMULAS

The nonsymmetrized noise spectrum under harmonic ac
driving without interactions is determined by

Sαβ (�,ω) =
(

e2

2πh̄

) ∫
dε

∑
γ δ,lkm

Jl

(
eVac,γ

h̄ω

)
Jk

(
eVac,δ

h̄ω

)

× Jm+k−l

(
eVac,δ

h̄ω

)
Jm

(
eVac,γ

h̄ω

)

× Tr[Aγδ(α,ε,ε + h̄�)Aq;δγ (β,ε + h̄�

+ (m − l)h̄ω,ε + (m − l)h̄ω)]fγ (ε − lh̄ω)

× [1 − fδ(ε + h̄� − kh̄ω)]. (A1)

For the Fermi distribution function in lead γ , we use the
shorthand fγ (ε) = 1/{exp[(ε − μγ )/kBT ] + 1}. In the limit
of kBT = 0, the distribution functions in the leads are given by
Heaviside � functions �(μγ − ε) that define the integration
intervals. Explicitly writing down the expression above for
chosen α,β then leads to the four possible contributions to the
auto-correlation noise of Eq. (24) and to the cross-correlation
noise of Eq. (27) via summation over reservoir indices γ,δ =
L,R.

APPENDIX B: BOUNDARY CONDITIONS

As in Ref. 20, we confine the charge carriers along
the y directions by infinite mass boundaries that diverge
at the edges y = 0,W . This corresponds to the boundary
conditions47

�̂1|y=0 = �̂2|y=0 �̂1|y=W = −�̂2|y=W . (B1)

Unlike the procedure for the Schrödinger equation, in graphene
one only has to match the wave function itself and no constraint
is given for the derivatives. Now exploiting the boundary
conditions along the x direction, transmission and reflection
amplitudes are fully determined by these constraints of the field
operators at the Fermi levels. Hence it is sufficient to match the
wave functions at x = 0,L without ac driving. A plain wave
ansatz to solve the Dirac equation (1) for an electron incident

from the left (x < 0) with energy ε is given by

�(x) =

⎧⎪⎪⎨
⎪⎪⎩

�
κL

q (ε),q
0,+ + rq(ε) �

κL
q (ε),q

0,− , if x < 0,

aq(ε) �
kq (ε),q
0,+ + bq(ε) �

kq (ε),q
0,− , if 0 < x < L,

tq(ε)�
κR

q (ε),q
0,+ e−iκR

q (ε)L, if x > L,

(B2)

where κ
L/R
q (ε) = ε+μL/R

h̄vF
cos[αq(ε)] are the wave vectors in the

reservoirs and kq(ε) is the one in the graphene strip. Matching
conditions at boundaries (continuity at x = 0,L) combined
with high doping in the reservoirs lead to the following set of
coupled, complex equations:

1 + rq(ε)√
2

= aq(ε)
e−iαq (ε)/2√
cos[αq(ε)]

+ bq(ε)
eiαq (ε)√

cos[αq(ε)]
, (B3)

1 − rq(ε)√
2

= aq(ε)
eiαq (ε)/2√
cos[αq(ε)]

− bq(ε)
e−iαq (ε)√
cos[αq(ε)]

, (B4)

tq(ε)√
2

= aq(ε)
eikq (ε)Le−iαq (ε)/2√

cos[αq(ε)]
+ bq(ε)

e−ikq (ε)Leiαq (ε)√
cos[αq(ε)]

, (B5)

tq(ε)√
2

= aq(ε)
eikq (ε)Leiαq (ε)/2√

cos[αq(ε)]
− bq(ε)

e−ikq (ε)Le−iαq (ε)√
cos[αq(ε)]

. (B6)

The solution is straightforward and determined by the four
complex coefficients aq (ε),bq(ε),tq(ε),rq(ε). The transmission
tq(ε) and reflection rq(ε) amplitudes define the s matrix and
thus the current and noise of the scattering device at all
voltages:

tq(ε) = 1

cos[kq(ε)L)] − i sec[αq(ε)] sin[kq(ε)L]
, (B7)

rq(ε) = 1

− cot[kq(ε)L] cot[αq(ε)] + i csc[αq(ε)]
, (B8)

aq(ε) =
√

2 cos
[ αq (ε)

2

]√
cos[αq(ε)]

1 + e2ikq (ε)L{−1 + cos[αq(ε)]} + cos[αq(ε)]
,

(B9)

bq(ε) = − eikq (ε)L
√

cos[αq(ε)] sin
[ αq (ε)

2

]
√

2\{i cos[kq(ε)L] cos[αq(ε)] + sin[kq(ε)L]} .

(B10)
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