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Non-Abelian gauge fields and quadratic band touching in molecular graphene
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Dirac fermions in graphene can be subjected to non-Abelian gauge fields by implementing certain modulations
of the carbon site potentials. Artificial graphene, engineered with a lattice of CO molecules on top of the surface
of Cu, offers an ideal arena to study their effects. In this work, we show by symmetry arguments how the
underlying CO lattice must be deformed to obtain these gauge fields, and estimate their strength. We also discuss
the fundamental differences between Abelian and non-Abelian gauge fields from the Dirac electrons point of
view, and show how a constant (non-Abelian) magnetic field gives rise to either a Landau level spectrum or a
quadratic band touching, depending on the gauge field that realizes it (a known feature of non-Abelian gauge
fields known as the Wu-Yang ambiguity). We finally present the characteristic signatures of these effects in the
site-resolved density of states that can be directly measured in the current molecular graphene experiment, and
discuss prospects to realize the interaction induced broken symmetry states of a quadratic touching in this system.
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I. INTRODUCTION

Condensed matter systems that host Dirac fermions as their
electronic excitations have drawn a lot of attention in recent
years as they have become more and more experimentally
accessible and controllable, with graphene1 and topological
insulators2 being the most prominent examples of such
materials.

A remarkable feature of Dirac fermions realized in
graphene’s honeycomb lattice in particular is that one can
further manipulate them externally by inducing controlled
strains in the sample, which couple to them as an effective
gauge potential.3 This idea of strain engineering4 has led
to many interesting predictions,5,6 and is most spectacularly
illustrated by the Landau level spectrum recently observed7 in
scanning tunneling microscopy (STM). This system proved to
be very versatile, and in search for even better tunability several
proposals were conceived to make artificial versions of it.8–10

In a recent experimental breakthrough, a realization of this
type of system, termed molecular graphene,11 was built, which
allows for almost complete control of the electronic degrees
of freedom within it. In this system, a triangular lattice of CO
molecules is assembled in the surface of bulk Cu, confining the
surface electrons to move in an effective hexagonal potential.
In this way, effective Dirac fermions emerge at the K points
of the superlattice potential, which can then be probed directly
with an STM.

This system thus offers wide tunability to modify the
electronic structure of the surface states by distorting the
CO lattice in any desired way, or by adding new atoms to
the existing structure. Indeed, several remarkable phenomena
have already been demonstrated11 beyond the strain-induced
Landau levels, such as the opening of a gap by means of a
Kekulé distortion or the creation of an n-p-n junction. Other
interesting proposals such as the observation of fractional
charge in a vortex12,13 or the synthesis of a quantum spin
Hall phase14 should also be experimentally accessible.

As noted in Ref. 15, artificial graphene should be also ideal
to explore the more recent prediction that a full SU(2) non-
Abelian gauge field is in fact realizable in this system, and the

strain-induced one is just one component of it. Non-Abelian
gauge fields (of singular nature) were known to emerge in
graphene due to disclinations in the lattice,16 but they can
also be generated in a smooth fashion by modulating the on-
site potential of the carbon atoms in a certain way. As we
will discuss, the effects of non-Abelian gauge fields can be
very different from their Abelian counterparts, and it is the
purpose of this work to discuss how to adapt the molecular
graphene experiment to probe these differences. In particular,
we will show that a quadratic band touching can be generated
with these fields, allowing a controlled simulation of this band
structure which is prone to many-body instabilities.17–19

In general, effective external gauge fields acting on a
fermion system may have a non-Abelian structure when the
fermions have internal degrees of freedom, and the gauge
field is a matrix acting on this degree of freedom �Aab whose
components need not commute. A typical condensed matter
example is spin and the spin-orbit interaction, which can be
modeled as an SU(2) gauge field,20,21 but there are many more
examples.22–25 A more recent one is bilayer graphene,26 where
the two components of the SU(2) doublet correspond to the
wave functions in the two layers, and the interlayer interaction
plays the role of the gauge field. In the case of monolayer
graphene, the SU(2) doublet is made with the valley degree of
freedom.15

The non-Abelian field strength is defined in terms of
the covariant derivative Di = ∂i − iAi as Fij = [Di,Dj ] =
∂iAj − ∂jAi − i[Ai,Aj ], which in two dimensions gives rise
to a non-Abelian magnetic field of the form

Bα = �∂ × �Aα + εαβγ �Aβ × �Aγ , (1)

where �Aab = �Aα�α
ab with �α

ab the generators of SU(2), the re-
peated indices are summed, and α = x,y,z (the indices ab will
be implicit from now on). The last term in this expression arises
because of the noncommutativity of the field components and
makes non-Abelian gauge fields fundamentally different from
their Abelian counterparts. In particular, it is responsible for
a tricky feature of these gauge fields known as the Wu-Yang
ambiguity:27 the fact that one may have physically distinct
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gauge fields (i.e., not gauge equivalent) with the same magnetic
field. Indeed, consider these two simple examples.28 The
first (type I) is �A(3) = B/2(−y,x), �A(1) = �A(2) = 0, which we
recognize as the analog of the symmetric gauge for constant
(Abelian) magnetic field B, in this case in the z direction.
The second (type II) is �A(1) = √

B/2(1,0), �A(2) = √
B/2(0,1),

and �A(3) = 0, it also gives constant field B0 due to the second
term in Eq. (1), and it is not gauge related to type I. The
magnetic field alone is therefore not enough to distinguish
these two cases,29 but we will see that the spectrum obtained
for each case is very different, and this is the physics that, as
we will show, can be probed directly in the molecular graphene
experiment.

II. SYMMETRY ANALYSIS AND MICROSCOPIC
CALCULATION

To realize an SU(2) gauge field in graphene what we need
is to externally apply certain on-site potential patterns15 to
the carbon atoms of the honeycomb lattice. It is not a priori
clear, however, how this may be achieved in a molecular
graphene experiment, where the “effective honeycomb lattice”
is engineered with the potential landscape induced by a
triangular array of CO molecules. In terms of an effective
tight-binding model, it is natural to think that small distortions
of this triangular lattice will produce potential changes in
the effective carbon sites, but what distortions will give rise
to the correct potentials? And more importantly, since these
distortions may induce changes in the effective hopping as
well,11 is it possible to modulate only the on-site potential?

To answer these questions, a symmetry approach to the
problem appears better suited. The way that external pertur-
bations couple to the low-energy degrees of freedom around a
high-symmetry point of the Brillouin zone can be determined
just by symmetry arguments. This approach has been fruitfully
employed in graphene to discuss the coupling of phonons,
strains, or electromagnetic fields30–33 and we now show how it
can be used to see the emergence of non-Abelian gauge fields
from small CO displacements the molecular graphene.

In the half-filled honeycomb lattice, electrons close to
the Fermi surface live near the K and K ′ points, and
are described by an effective spinor (ψAK,ψBK,ψAK ′ ,ψBK ′ ),
where A/B denotes the sublattice degree of freedom. The
effective Hamiltonian is conventionally written in the basis
of the Pauli matrices σi ⊗ τj , where σi acts on the sublattice
and τi on the valley degrees of freedom, and i = x,y,z (the
identity in both sets is understood to be included as part of the
basis).

To exploit the fact that the Hamiltonian must be a scalar
under the symmetry group C6v of the honeycomb lattice,
one can relabel these basis matrices in terms of a new
symmetry adapted set �i and �i with the Pauli matrix algebra
and well-defined transformation properties under this group
(technically, the group is C ′′

6v because the unit cell has been
tripled to consider K and K ′ at the same time. We will
refer to the labels under C6v for simplicity, see Ref. 30 for
details). The relation of these matrices to the original ones
and the representations according to which they transform are
reproduced in Table I.

TABLE I. The classification of basis matrices in the low-energy
theory around the K ,K ′ points in graphene according to the repre-
sentations of the symmetry group C6v , and their explicit realization
in the basis (ψAK,ψBK,ψAK ′ ,ψBK ′ ) (see Ref. 30 for details).

Valley diagonal Valley off-diagonal

Rep. Symm. adapted σi ⊗ τj Symm. adapted σi ⊗ τj

A1 I I �x�z σxτx

B1 �z τz �y�z σxτy

A2 �z σzτz �x −σyτy

B2 �z�z σz �y σyτx

E1x �x σxτz �x�y −τy

E1y �y σy −�x�x σzτx

E2x −�z�y −σyτz �y�x −σzτy

E2y �z�x σx �y�y τx

In this basis, the low-energy Hamiltonian is simply written
as (vF = 1)

H = �� · �k, (2)

and in this form it is simple to see that the matrices �i commute
with the Hamiltonian and generate an SU(2) symmetry, which
corresponds to rotations in the valley degree of freedom.

A gauge field is by definition a field that couples minimally
in the form ki → ki + Ai , and in analogy with the usual
electromagnetic field that couples as HU (1) = �� · �A, one may
introduce an SU(2) gauge field that couples as

HSU(2) = �� · (�x
�A(x) + �y

�A(y) + ·�z
�A(z)), (3)

which is a coupling allowed by symmetry if the gauge fields
�Aα have their origin in a microscopic perturbation with the

same symmetry as the matrix that accompanies them.
The power of the symmetry analysis is thus that one can now

say what type of perturbations correspond to each term only
by inspection of Table I. The perturbations in the first column
have the periodicity of the unit cell, while those in the second
column have the periodicity of a tripled unit cell (because of
intervalley mixing). Moreover, within nearest neighbor tight
binding (TB), those perturbations diagonal in the sublattice
(∝ σ0 or σz) correspond to potential modulations, while those
off diagonal correspond to hopping modulations. With this
criterion, the gauge field �A(z) is readily identified as the usual
strain-induced gauge field. The gauge field components �A(x)

and �A(y) correspond, respectively, to the valley mixing E1 and
E2 potential perturbations defined in Ref. 30 (which are labeled
G′ under C ′′

6v). Their corresponding potentials are depicted in
Fig. 1 in the effective carbon sites.

In real graphene this type of potential perturbation is
the one induced by phonons like the LO/LA phonon at the
K point,34 or the ZO/ZA phonon at the K point in the presence
of a perpendicular electric field, and it is known that it can also
be produced by a particular substrate.35

For molecular graphene, this analysis immediately al-
lows to find the CO displacements that will induce
these potential modulations. These should be displace-
ments with a tripled unit cell and the appropriate symme-
try labels, and in fact may be simply interpreted as the
E1 and E2 phonons of the triangular CO lattice at the
K point. These displacements are, for three consecutive
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FIG. 1. (Color online) The four possible CO displacements with
symmetries E1 and E2. The CO molecules are represented in red
and the effective honeycomb lattice is shown in black. The unit cell is
shaded in gray, but more hexagons are shown to make the symmetry of
the modes apparent. The on-site potentials that match the symmetry
labels are also shown in the effective carbon sites. Note that the
prefactors only refer to the potentials, not to the displacements. One
may think of these displacements as the K-point phonons of the
triangular CO lattice.
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and are also shown in Fig 1. Indeed, within a TB model one can
parametrize the change in on-site potential with displacement
as

Vi = V ′ ∑
j

��rj,CO · �δij , (4)

for a carbon site i with j CO neighbors at equilibrium distances
δij from it, and verify that the potentials shown in Fig. 1
are given by Eq. (4). The constant V ′ ≡ ∂V/∂a parametrizes
the change in the on-site potential with distance, and may
be estimated by realizing that this physical mechanism is
responsible for the scalar potential φ in the continuum Dirac
equation. A comparison with the p-n junction experiment
yields V ′ ≈ 22 meV/Å (see the Appendix), which is very
similar to ∂t/∂a = βt/a ≈ 20 meV/Å. This is also consistent
with the fact that in real graphene the analog of V ′ for carbon
displacements34 is of the same order as ∂t/∂a.

FIG. 2. (Color online) With the same conventions as Fig. 1,
combinations of CO displacements that produce a quadratic band
touching. Again, note that the prefactors only refer to the potentials,
not to the displacements.

Finally, the symmetry analysis also reveals that close to the
Dirac point, the desired CO displacements do not introduce any
other change in the effective theory other than the �A(x), �A(y)

gauge fields. In particular, while these displacements may
induce nearest-neighbor hopping changes, these cannot appear
in the low-energy theory because there are no intervalley
matrices in the E1 or E2 representations that are sublattice
off-diagonal. This hopping changes thus have no effect in the
low-energy properties and we will not consider them in what
follows. Changes in the next-nearest-neighbor hopping t ′ due
this displacements are small and need not be considered.

To obtain the gauge field from a microscopic calculation,
one may substitute Eq. (4) in the effective tight binding model

H = −t
∑
〈i,j〉

c
†
i cj − t ′

∑
〈〈i,j〉〉

c
†
i cj +

∑
i

Vic
†
i ci . (5)

The potential modulation (depicted in Fig. 1) that gives rise to
the non-Abelian gauge fields is15

V (�x) = 3

2
V ′

[
uE2y

cos �K �x + uE1x
sin �K �x

+ 2√
3

sin �G�x(
uE1y

cos �K �x + uE2x
sin �K �x)]

, (6)

with �K = (4π/3
√

3,0) a vector joining the two dirac points
and �G = (0, − 4π/3) a reciprocal lattice vector. To project
this perturbations into the Dirac points one performs the sum

H =
∑

i

Vic
†
i ci =

∑
�x

V (�x)cA,†
�x cA

�x + V (�x + �δ1)cB,†
�x cB

�x , (7)

with �x = n�a1 + m�a2 the lattice positions, �δ1 = a(0,1) a
nearest-neighbor vector, and
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cA
x = ei �K �xcA

K + e−i �K �xcA
K ′ , (8)

cB
x = ei �K �xcB

K + e−i �K �xcB
K ′ . (9)

This sum gives exactly the matrices dictated by symmetry

H = 3
4V ′( − τ2uE1x

+ τ1σ3uE1y
− τ2σ3uE2x

+ τ1uE2y

)
, (10)

so that the final formula relating the effective gauge fields to
CO displacements is

�A(1) = 3
4V ′(− uE1y

,uE1x

)
, (11)

�A(2) = 3
4V ′(uE2x

,uE2y

)
. (12)

III. PHYSICAL EFFECTS

As described in the Introduction, we now consider two
gauge field configurations that are not related by a gauge
transformation, but whose magnetic field is the same, and
consider how they should be seen in a local density of states
(LDOS) measurement. Consider the type I gauge field, with
a magnetic field pointing in a general direction bα in SU(2)
space, Aα

i = bαB/2(y, − x). When bα = (0,0,1) we have the
usual strain induced gauge field. The case bα = (0,1,0) was
discussed in Ref. 15. In general, by a constant SU(2) rotation
of the Hamiltonian, it is not difficult to see that for any bα

the spectrum is still given by Landau levels En = √
2Bn. The

only difference appears in the wave functions because the
sublattice polarization turns out to be given by the projection
of bα onto the z axis. For strain-induced fields it is maximum,
but for potential-induced ones the density of states is in fact
constant across the unit cell. One can estimate the magnetic
field induced in the molecular graphene experiment with these
gauge fields as follows. Take uE1x

= umax/L ∗ x, with L the
radius of the (approximately circular) sample and umax the
maximum displacement (at x = L). The magnetic field is
(recovering all units)

B(x) = h̄/e

h̄vF

3V ′

4

umax

L
. (13)

With h̄/e = 6.5 × 104T Å
2

and taking umax = 0.1a and√
3a/L ≈ 1/10 and a Fermi velocity11 h̄vF ≈ 1.5 eVÅ we

obtain B ≈ 3.75T , which is not very large compared to the
strain induced-one that is typically achieved.

The type II gauge field has better prospects to be experi-
mentally accessible. Keeping �A(3) = 0, there are in fact four
possible choices of constant gauge fields that give constant
magnetic field, given by

�A1 =
√

B/2(1,0), �A2 =
√

B/2(0, ± 1), (14)

which, by Eq. (12), is produced with the displacements E1y ±
E2y , and

�A1 =
√

B/2(0,1), �A2 =
√

B/2(±1,0), (15)

which is produced with the displacements E1x ± E2x . These
displacements and their on-site potentials are depicted in
Fig. 2. The magnetic field is given by B = 9/8(V ′u/vF )2 with
u = uE1i

= ±uE2i
representing the modulus of the displace-

ments in Fig. 2. It is interesting to note that the estimate for B

in this case for u = 0.1a is B ≈ 16T .

FIG. 3. (Color online) Total density of states for any type II gauge
field of strength u = 0.5 Å (red line) and u = 1 Å (black line), for
t = 90 meV and t ′ = 0. The unperturbed LDOS is shown as a dashed
blue line for comparison. Inset: Band structure of the system for
u = 1 Å. Note the similarity with bilayer graphene.

The Dirac Hamiltonian in the presence of these gauge
fields is formally analogous to that of bilayer graphene (for
a single valley), with the role of the layer played by the valley
here,36 and an effective interlayer coupling γ = √

2B. The
spectrum of these Hamiltonians is well known to be a quadratic
band touching, with two extra parabolic bands at higher
energies.

Considering first the case t ′ = 0, the density of states (DOS)
of this system is finite at the touching point ED = 0, and
has a jump at ±vF

√
2B = 3/2V ′u, as depicted in Fig. 3.

Considering a displacement u = 0.1a = 1 Å, the kink in the
LDOS should appear at ±30 meV, which should be easily
observable. The precise location of this jump should serve as
an independent estimate of the parameter V ′. The main effect
of a finite t ′ is to shift ED to a higher value, as we will see
below.

FIG. 4. (Color online) LDOS as a function of energy for two
different gauge fields. Top left: E1x − E2x , with strength u = 1 Å, t =
90 meV, and t ′ = 0. Top right: E1y − E2y , same parameters. Bottom
plots are the same but with t ′ = 0.18t and a Lorentzian broadening
of � = 0.2t . The insets show the corresponding on-site potential and
the color code for the different sites within the unit cell. Note that
the missing lines in the plots overlap with the line shown that has the
same on-site potential.
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Moreover, this type of gauge field shows a more compli-
cated local density of states across the enlarged unit cell.
In Fig. 4 we show the LDOS for the cases E1x − E2x and
E1y − E2y . The other two combinations are obtained by mirror
symmetry. For t ′ = 0, we observe different local gaps for
different sites, and finite LDOS at E = 0. For more faithful
comparison with the experiment, we have also plotted the
LDOS for t ′ = 0.18t , and with a Lorentzian broadening of
� = 0.2t . We observe the main effect of a shift in ED , as
well as some electron-hole asymmetry, but the main features
that characterize the non-Abelian gauge field remain. The
identification of these features in an STM measurement would
represent a demonstration of the presence of the type II
constant non-Abelian gauge field.

IV. DISCUSSION

In this work we have shown, by means of a symmetry
analysis, how non-Abelian gauge fields may be implemented
in molecular graphene, and what their experimental signatures
should be in the LDOS. For type I gauge fields of constant
magnetic field, we have shown that because of the different
microscopic origin of gauge fields A(3) (hopping change) and
A(1,2) (potential change), the magnetic field that one gets in
the second case is relatively smaller. While this may make the
Landau level spectrum more difficult to observe, the presence
of this type of field could also be readily detected, for example,
in a quantum interference experiment in the weak field limit.6

We have also shown that type II constant non-Abelian
gauge fields generate a quadratic band touching analogous
to bilayer graphene. Because of the enhanced DOS at the
Fermi level, the electron-electron interaction is known to drive
this system to a broken symmetry state whose precise charac-
teristics are still controversial.17–19 In the current molecular
graphene experiment, the Coulomb interaction is screened
by the metallic bulk, leaving residual Hubbard interactions
estimated to be U ∼ 0.5t ∼ 50 meV (see the Supplementary
Material of Ref. 11). While an ideal quadratic touching is
unstable to infinitesimal short-range interactions, the current
broadening due to bulk tunneling (∼0.2t) is perhaps too large
and may challenge the observation of the interaction-induced
transition. Both bulk tunneling and screening could be reduced
by performing future experiments in bulk insulators with
metallic surfaces (such as the recently discovered topological
insulators2) which may eventually allow to study the fate of
the many-body state with a tunable analog of the interlayer
hopping. Incidentally, it is also interesting to note that this
instability can be interpreted as a non-Abelian magnetic
catalysis, where an infinitesimal field drives chiral symmetry
breaking.37 Furthermore, the controlled simulation of these
non-Abelian gauge fields, when made position dependent, may
be used to study the generation of zero-energy flat bands, as
those observed in the twisted bilayer system,26 or the physics
of topological defects in the gauge field.15

In summary, the molecular graphene experiment has great
potential to observe many interesting phenomena related to
non-Abelian gauge fields with an unprecedent tunability, and
which, as we have shown, should be realizable in the current
experimental samples.
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APPENDIX

1. Estimate of V ′

The parameter V ′ describes the change of on-site potential
due to the displacements of neighboring CO molecules. As
such, it is featured both in the non-Abelian gauge fields
(which come from “optical” displacements) and in the strain-
induced scalar potential φ (which comes from “acoustical”
displacements). The scalar potential φ also has a contribution
from NNN hopping change ∂t ′/∂a but it is much smaller and
will be neglected.

To see this, consider an isotropic expansion of the CO
lattice. For every carbon site i, the induced potential is given
by Eq. (4). Because displacement is smooth we may write

V�x = V ′ ∑
m

δi
mri

x+δm,CO ≈ V ′ ∑
m

δi
m

δ
j
m∂j ri

x,CO

a

= 3a

2
V ′(uxx + uyy), (A1)

and plugging directly into the TB Hamiltonian Eq. (5), we
obtain that φ = 3V ′a/2(uxx + uyy). Now consider the p-n-p
juntion experiment in Ref. 11. The middle region is strained
from d = 17.8 to d = 20.4 so uxx = uyy = 0.14. The change
in scalar potential �φ is 95 meV, so we obtain (d = √

3a)

V ′ = 95 meV

0.14
√

3 17.8 Å
= 22 meV/Å. (A2)

A different estimate can be obtained from the nearly free elec-
tron model considered in Ref. 11 (Supplementary Material),
where the scalar potential is

H = 8π2

9d2m
(uxx + uyy) = 3a

2
V ′(uxx + uyy), (A3)

which gives V ′ = 24 meV/Å.

FIG. 5. (Color online) The nine independent hopping patterns
and their symmetry labels. Blue means positive and red negative, and
black lines represent no change in the hopping. Hopping modulations
of the corresponding symmetry may also be induced by these
displacements (red is negative hopping and blue is positive). However,
these particular patterns have no effect in the low-energy theory: They
do not affect the quadratic touching and the LDOS predictions around
E = ED .
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2. Symmetry of hopping perturbations

There are nine independent hoppings in the tripled unit cell,
which can be decomposed into combinations that have well
defined transformation properties under the symmetries of the
lattice. The nine combinations and their symmetry labels are
shown in Fig. 5. In the first row, one may identify the constant
hopping (A1), the E2 pattern that gives rise to the usual gauge
field, and the Kekul distortions (any of the three domains can
be obtained from these).

The four combinations in the second row are E1 and E2

(and form the representation G′ when the enlarged group C ′′
6v

is considered). These hopping patterns are produced by the
same CO displacements that give the non-Abelian gauge fields

through charge modulation. In the main part of the text we
claimed that these hopping distortions cannot couple to the
low-energy theory around the K point. The reason is simply
that there is no valley off-diagonal E1 or E2 matrix in the low-
energy theory whose microscopic origin is a hopping change.
This can be seen directly by an inspection of Table I, where
the valley mixing E1 and E2 matrices are all diagonal in the
sublattice. The hopping modulations will only appear in the
low-energy theory if terms with a higher order in momentum
are considered. If one is interested in the whole band structure
and not just low energies, these distortions in the hopping
should be included by changing the NN hopping in the usual
manner.
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20J. Fröhlich and U. M. Studer, Rev. Mod. Phys. 65, 733 (1993).
21I. V. Tokatly, Phys. Rev. Lett. 101, 106601 (2008).
22F. Wilczek and A. Zee, Phys. Rev. Lett. 52, 2111 (1984).
23K. Osterloh, M. Baig, L. Santos, P. Zoller, and M. Lewenstein, Phys.

Rev. Lett. 95, 010403 (2005).
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