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Pseudomagnetoexcitons in strained graphene bilayers without external magnetic fields
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We propose a strained graphene double-layer (SGDL) system for detecting pseudomagnetoexcitons (PME)
in the absence of external magnetic fields. The carriers in each graphene layer experience different strong
pseudomagnetic fields (PMFs) due to strain engineering, which give rise to Landau quantization. The pseudo-
Landau levels of electron-hole pairs under inhomogeneous PMFs in the SGDL are obtained analytically in the
absence of Coulomb interactions. Based on the derived optical absorption selection rule for PMEs, we interpret the
optical absorption spectra as indicating the formation of Dirac-type PMEs. We also predict that in the presence of
inhomogeneous PMFs, the superfluidity-normal phase-transition temperature of PMEs is greater than that under
homogeneous PMFs.
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I. INTRODUCTION

Graphene provides an ideal setting for studying exotic
phenomena in condensed-matter physics1–3 because the charge
carriers there behave like massless Dirac particles. Much effort
has been devoted to displaying the striking electronic features
of graphene, such as the Klein paradox,4 the anomalous
quantum-Hall effect,5 and others.2,3 However, it was realized
early on that the structural and mechanical properties are
important both for theoretical understanding and for appli-
cations of graphene,6 e.g., for strain engineering.7–14 It was
shown recently that specific forms of strain produce a strong
pseudomagnetic field (PMF) in graphene,15 which effectively
breaks the time-reversal symmetry.9 The strain-induced PMF
is expected to produce pseudo-Landau level (PLLs) and,
consequently, the quantum-Hall effect, even in the absence
of an external magnetic field.10 These intriguing properties
extend to graphene multilayers. Recently, the shear mode in
graphene multilayers was observed by Raman spectroscopy,16

and high-temperature Bose-Einstein condensation and super-
fluidity of indirect excitons or electron-hole pairs in graphene
n-p bilayers17–20 are also predicted. In contrast to other
bilayer n-p systems, such as coupled semiconductor quantum
wells,21–23 n-p-type strained graphene double layers (SGDLs)
separated by a dielectric layer should be an ideal system
for creating pseudomagnetoexcitons (PMEs) due to the PMF
induced by strain, rather than to an applied magnetic field.
Because of the difference of ripples or elastic deformations
in each graphene layer sample on a substrate, it is in fact
more realistic to fabricate different or inhomogeneous PMFs
in electron and hole layers, which is difficult to achieve with
external magnetic fields.

On the basis of these interesting and plausible hypotheses,
we herein theoretically analyze the properties of these PMEs in
a SGDL system in the absence of a magnetic field. Below, we
show that the formation of PMEs in a SGDL can be determined
from the optical absorption selection rule of PMEs, which
is related to the imbalance parameter γ = √

Bh
s /Be

s of the
strain-induced PMFs Bh

s and Be
s experienced by Dirac holes

and electrons in a SGDL. We also find by comparison with the
homogeneous case (γ = 1) that the critical temperature of the

Kosterlitz-Thouless (KT) transition is improved by a factor
of [(2 + γ + γ −1)/4]2 in the inhomogeneous case. We also
suggest some useful technical tips for designing the SGDL
setup for detecting PMEs.

Our system, illustrated in Fig. 1, consists of two parallel
strained graphene layers separated by an insulating slab of
SiO2. By varying the chemical potential by tuning the bias volt-
ages of the two gates located near the corresponding graphene
sheets, spatially separated electrons and holes can be generated
in the different layers. To obtain the analytical PLL expression,
we assume that both graphene sheets are bent into cylindrical
arcs,11 which can give rise to PMFs B

e/h
s = 8βce/h/a0 (in

units of h̄/e ≡ 1), and the corresponding fictitious gauge field
vector potentials can be chosen as Ae/h

s = B
e/h
s (0,xe/h). Here,

a0 ≈ 1.42 Å is the lattice constant, β = −∂ ln t/∂ ln a0 ≈ 2,
t ≈ 3 eV denotes the nearest-neighbor hopping parameter, and
ce/h is the numerical constant representing the strength of
strain in electron/hole layers. In general ce �= ch, and therefore
Be

s �= Bh
s in a SGDL system, which results in the deviation of

γ from 1.

II. PME DISPERSION IN SGDL

This SGDL system is described by the Hamiltonian H =
H0 + U (re − rh), where

H0 = h̄vf

[
πe

xσ1 ⊗ σ0 − πe
yσ2 ⊗ σ0 + πh

x σ0 ⊗ σ1

−πh
y σ0 ⊗ σ2

]
, (1)

with the Fermi velocity vf ≈ 106 ms−1, π e/h = pe/h ∓
e
c

Ae/h
s , and the Pauli matrices σi (i = 0,1,2). U (re − rh) =

−e2/ε
√

|re − rh|2 + d2 is the Coulomb interaction (CI)
within a spatially separated electron and hole pair, where d

is the spacer layer thickness and ε (∼4.5 for SiO2) denotes the
dielectric constant of the spacer layer. In the following analysis,
the relative CI strength is denoted by λ ≡ (e2/ε)/(h̄vf ).

Taking the coordinate transformations

P = 2
le pe + lh ph

le + lh
, p = le pe − lh ph

le + lh
, (2)
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FIG. 1. (Color online) Basic scheme of the proposed SGDL
device. Two strained graphene monolayers are separated by a
dielectric spacer layer. Electron/hole carriers in each layer are created
by n(p)-type doping or by applied external gate voltages. Indirect
PMEs can be generated by PMFs in the SGDL. A uniform PMF is
created perpendicular to the surface cylindrical arc of the strained
graphene ribbon.

R = lhre + lerh

le + lh
, r = 2

lhre − lerh

le + lh
, (3)

where le/h =
√

h̄/eB
e/h
s (∼26 nm/

√
B

e/h
s [T]) represents the

pseudomagnetic lengths in the electron/hole layer (we later
adopt a length unit of

√
lelh), we can rewrite h

e/h

0 in Eq. (1) as

h
e/h

0 =
{
κe/h

(
Px

2
± px

)
+ i

[(
Py

2
± py

)
∓ ξ

(
X ± x

2

)]}
,

(4)

with ξ = 1/(2lelh) and κe/h = (le + lh)/(2le/h). Here, γ =
le/ lh = √

Bh
s /Be

s describes the inhomogeneity of PMFs ex-
perienced by electrons and holes in different layers. In the
limit of γ = 1, the problem of PMEs in SGDL is reduced
to be consistent with that of the magnetoexcitons in a uni-
form external magnetic field.17,24 For further derivations, we
introduce a transformation S = eiXy/lelh , from which S†PxS =
Px + y/lelh, S†pyS = py + X/lelh, and r → r − lelh ẑ × P .
Subsequently, h

e/h

0 can be rewritten as

h
e/h

0 = κe/h{(±px + ξy) ± i(py ∓ ξx)}. (5)

The electron-hole relative coordinate in the x-y plane
re − rh becomes r̃ = 1

2 (γ − γ −1)R + 1
4 (2 + γ + γ −1)(r −

lelhẑ × P). Finally, we define the harmonic lowering operators

a =
√

lelhpx − i
x

2
√

lelh
, b =

√
lelhpy − i

y

2
√

lelh
, (6)

and their combinations

c± = ±(a ± ib)/
√

2. (7)

Substituting them into Eq. (1), the free part of the Hamiltonian
H can be rewritten as

H0 = h̄vf (le + lh)√
2(lelh)3/2

⎛
⎜⎜⎜⎜⎝

0 lhc+ lec
†
− 0

lhc
†
+ 0 0 lec

†
−

lec− 0 0 lhc+
0 lec− lhc

†
+ 0

⎞
⎟⎟⎟⎟⎠ . (8)

Notice that the basis of H0 is (A(e)A(h),B(e)A(h),A(e)B(h),

B(e)B(h)), where A and B are sublattices of graphene and
the superscripts e and h denote the electron and hole layers,
respectively.

The eigenvalue, i.e., the PLLs of H0 without the CI, is given
by

E(0)
n+,n− = 1√

2
[s+

√
|n+|(1 + γ −1) − s−

√
|n−|(1 + γ )] (9)

in units of h̄vf /
√

lelh with s± = sgn(n±), and the correspond-
ing eigenstates of H0 could be expressed as

|n+,n−〉0 = 2η

⎛
⎜⎜⎜⎝

s+s−�|n+|−1,|n−|−1(r)

s−�|n+|,|n−|−1(r)

s+�|n+|−1,|n−|(r)

�|n+|,|n−|(r)

⎞
⎟⎟⎟⎠ , (10)

where η = δn+ ,0+δn− ,0−2
2 , s± = sgn(n±), and �n1,n2 (r) =

2− |lz |
2 n !e−ilzφδ(lz)r |lz |√

2πn1!n2!
L

|lz|
n− ( r2

2 )e− r2

4 , with lz = n1 − n2, n− =
min(n1,n2), δ(lz) = sgn(lz)lz → 1 for lz = 0, and L(x) being
the Laguerre polynomial.

Consider a PME formed by an electron on the Landau
level (LL) n and a hole on the LL m. In the limit of
the relatively large separation d and high PMF B, namely,
when e2/(ε

√
r2 + d2) � h̄vf /

√
lelh, the PME energy can

be approximated by only taking its zeroth-order part E(0)
n,m.

However, at higher PMF, 10–20 T in experiment, the CI
e2/(ε

√
r2 + d2) is only several times less than the zeroth

energy h̄vf /
√

lelh. In this case, the CI can be treated as a
perturbation and divided into an intra-LL part and an inter-LL
part. To obtain the eigenvalues En+,n− of the total Hamiltonian
H , the CI part U is treated as a perturbation by solving the
equation

det
∥∥δn+,n′+δn−,n′−

(
E(0)

n+,n− − E
) + 0〈n′

+,n′
−|U (r̃)|n+,n−〉0

∥∥=0

(11)

to first order in 0〈n′
+,n′

−|U |n+,n−〉0, where the intra-PLL
component of the CI is defined as 0〈n+,n−|U |n+,n−〉0, while
the inter-PLL component is defined as 0〈n′

+,n′
−|U |n+,n−〉0

with |n′
+,n′

−〉0 �= |n+,n−〉0. For the intra-LL part, which
dominates the CI, the magnetoexciton energy can be explicitly
written as

En,m = E(0)
n,m + 〈�n,m|U (r̃)|�n,m〉

= E(0)
n,m + 2δn,0+δm,0−2

×{〈〈|n| − 1,|m| − 1|U ||n| − 1,|m| − 1〉〉
+ 〈〈|n| − 1,|m||U ||n| − 1,|m|〉〉
+ 〈〈|n|,|m| − 1|U ||n|,|m| − 1〉〉
+ 〈〈|n|,|m||U ||n|,|m|〉〉}, (12)
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIG. 2. (Color online) Dispersions of the first few PLLs for (top) the fully occupied case and (bottom) the partially occupied case as
functions of P for different γ values. The dashed horizontal lines denote the noninteracting PLLs. The parameters are chosen as μ = 0,
λ = 0.49, d = 0.2, and R = 0.

where the notation 〈〈nm|U |nm〉〉 denotes the averaging by the
two-dimensional harmonic oscillator eigenfunctions �n,m(r).

The imbalance parameter γ reduces the degeneracy of the
PLLs of H0. For instance, |1,0〉0 and |0,−1〉0 are degenerate
(E(0)

1,0 = E
(0)
0,−1) when γ = 1, while these two states turn out

to be nondegenerate when γ �= 1. The PLLs En+,n− of PMEs
are not only dependent on γ but also related to the effective
momentum P and coordinate R of the PME center of mass
since U is related to P and R after the transformations. The
location of the chemical potential determines the electron and
hole PLL that can be populated. For convenience, we here use
the symbol μ to denote the highest filled PLL and consider two
cases: (i) where the electron PLLs with n+>μ are unoccupied
and the hole PLLs with n− � μ are fully occupied and
(ii) where the electron PLLs with n+ > μ are unoccupied and
the hole PLLs with n− < μ are fully occupied, while the PLL
at μ is partially occupied.

The spectra of the five lowest PLLs are plotted as functions
of P in Fig. 2, where the solid (dotted) curves denote the
PME dispersion in the presence (absence) of the Coulomb
interaction. Figures 2(a)–2(e) correspond to the fully occupied
cases, and Figs. 2(f)–2(j) correspond to the partially occupied
cases. For small P , the solid curves clearly depart from the
dotted lines and display a particle-hole pair form rather than
a density-wave form, whereas with increasing momentum P ,
the PME dispersion relation approaches the noninteracting
dispersion relation. Thus, in the present case, Kohn’s theorem
does not apply, and therefore the energy dispersion and the

optical absorption spectrum (see Fig. 4 and the following text)
of our PME are different from the conventional (nonrelativis-
tic) two-dimensional electron gas. There, the magnetoexciton
energy in the long-wavelength limit is insensitive to electron
interactions by virtue of Kohn’s theorem.

The PME dispersion also depends strongly on the imbal-
ance parameter γ , as shown in Fig. 2. On the one hand, if the
difference in elastic deformation between the electron and hole
layers is large (i.e., γ differs significantly from 1), the PME
dispersion accelerates the transition from the density-wave
form to the particle-hole-pair form with increasing momentum
P . On the other hand, when γ is not much different from 1,
the PME dispersion behaves like that of magnetoexcitons in
perfect double-layer graphene in an external magnetic field.
Taking the partially occupied cases as an example, we found
that, for γ � 1, the lowest PLLs behave like the electron-type
state |n+,0〉 [see, for example, Fig. 2(j)], while for γ � 1 the
lowest PLLs behave like the hole-type state |0,n−〉 [Fig. 2(f)].

In contrast to magnetoexcitons in an external magnetic field,
the PME dispersion is also related to R. By increasing R, the
PME dispersion at smaller P acquires a particle-hole-pair form
rather than a density-wave form, which can be seen in Fig. 3.

III. OPTICAL ABSORPTION PROPERTIES OF PME IN
SGDL

Optical absorption spectroscopy analysis is a useful method
for studying magnetoexciton properties because it allows the
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIG. 3. (Color online) Dispersions of the first few PLLs as functions of P with different R. The imbalance parameter γ = 0.5 for (a)–(e),
while γ = 1.5 for (f)–(j), and the other parameters are the same as used in Fig. 2.

determination of magnetoexciton energies and wave functions
for P = 0. The particle-hole excitation energy is obtained
directly from the resonant peaks in the magneto-optical
absorption spectrum. From Fermi’s golden rule, the optical
absorption for photons of frequency ω yields

Rab(R,ω) = 2π

h̄

∑
α

∣∣∣∣〈α|e
c

A · v|0〉
∣∣∣∣
2

δ
(
ε

(α)
eh (R) − ε0 − h̄ω

)
.

(13)

Here |α〉 is the set of quantum numbers describing a particle-
hole excitation and |0〉 ≡ |μ,μ〉 is the ground state with energy
ε0 in the absence of a particle-hole excitation. v = ∂H0/h̄∂ p is
the velocity operator for the free part of the Hamiltonian, and
A is the vector potential. For linear polarized light A = Ax̂,
choosing a Lorentzian-type broadening, one has

Rab(R,ω)
∑

α

|〈α|vx |0〉|2 �/2[
ε

(α)
eh (R) − ε0 − h̄ω

]2 + �2/4
,

(14)

where � denotes the linewidth and |〈α|vx |0〉|2 =∑
n+>μ

∑
n−�μ

∫
T d r is for full occupation and∑

n+�μ

∑
n−�μ

∫
T d r is for partial occupation. The

parameter T is defined as

T = ∣∣Cα
n+,n−〈n+,n−|vx |μ,μ〉∣∣2

, (15)

where Cα
n+,n− is the projection of PME state |α〉 on the basis

state |n+,n−〉.
In the absence of inter-PLL CI, which is much weaker than

intra-PLL CI, the PME state |α〉 is one special basis state,
and Cα

n+ ,n−
= δα,(n+ ,n− ), the same as that in the noninteracting

case. Subsequently, the PME optical absorption selection rule
for linear polarized light (A = Ax̂) is analytically expressed
as

〈n+,n−|vx |μ,μ〉
= c1δ|n+|,|μ|δ|n−|,|μ|−1 + c2δ|n+|,|μ|−1δ|n−|,|μ|

+ c3δ|n+|,|μ|δ|n−|,|μ|+1 + c4δ|n+|,|μ|+1δ|n−|,|μ|, (16)

where vx = ∂H0/h̄∂px is the velocity operator for the free
part of the Hamiltonian and the coefficients c1 = −(1 +
γ )s−(sμs+ + 1)C, c2 = (1 + γ −1)(sμ + s−)C, c3 = −(1 +
γ )(sμ + s+)C, and c4 = (1 + γ −1)s+(sμs− + 1)C, with C =
vf (

√
2)δn+ ,0+δn− ,0+2δμ,0−6. This optical absorption selection rule

formula (16) allows a better analysis of the PME absorption
resonant peaks in SGDL device spectra. Notice that the optical
absorption formula (16) also depends on R, as the PME
spectrum is related to R. As a result, the experimentally
observed absorption spectrum is usually an average over
different values of R. However, with R deviating from zero, we
find that the absorption frequency shifts very little. Therefore,
we here only consider the R = 0 case.
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(a)

(b)

(c)

(d)

FIG. 4. (Color online) The optical absorption curves for PMEs with μ = 0 for (a) and (b) the fully and (c) and (d) the partially occupied
cases, plotted as functions of the photon energy ω (h̄ = 1). The inter-PLL CIs are not taken into account in (a) and (c), but they are in (b) and
(d). The spacer thickness is set to d = 0.2. λ = 0.49.

In the fully occupied case with μ � 0, the selection rule
can be simplified further as

〈n+,n−|vx |μ,μ〉 = c4δn+,μ+1δn−,μ, (17)

which indicates that there is only one resonance peak in
the optical absorption spectrum and which signals PME
formation. For example, the selection rule in the fully occupied
case of μ = 0 with the ground state |0,0〉 predicts a single
resonance peak, corresponding to the formation of the PME
state |1,0〉 [see Fig. 4(a)]. The red (blue) curve in Fig. 4(a) also
clearly shows the shift of the resonance peak toward higher
(lower) frequencies as the imbalance parameter γ decreases
(increases) from 1.

This effect of inhomogeneity of the PMFs is also apparent
for the partially occupied cases, illustrated in Fig. 4(c).
According to the general selection rule (16), there are nonzero
elements in 〈n+,n−|vx |0,0〉 for only the two PMEs states, |1,0〉
and |0,−1〉, giving rise to two resonance peaks in Fig. 4(c).
Interestingly, the resonance peak for |0,−1〉 moves toward
lower (higher) frequencies as γ decreases (increases) from 1.
In contrast, the resonance peak for |1,0〉 moves toward higher
(lower) frequencies.

We have not yet considered the effect of the inter-PLL CI
on PME optical absorption. With the inter-PLL CI included,
typical results, shown in Figs. 4(b) and 4(d), are plotted for
comparison with Figs. 4(a) and 4(c), respectively. Because the
inter-PLL CI mixes the noninteracting PLLs, the absorption
phenomenon should appear at the energy of every PME
state. This gives rise to new resonance peaks in Figs. 4(b)
and 4(d). The magnitudes of these additional resonant peaks
are very small, increasingly so as the spacer thickness d

increases. Further, the main absorption peaks shift toward
lower frequencies. This “redshift” effect can be exploited to
study the effect of PLL mixing experimentally. Therefore,
based on the optical absorption selection rule analyzed above,
optical techniques should allow the detection of PMEs locally
as well as the CI effects in the present SGDL device.

The results for cases with μ �= 0 are similar to those for μ =
0, and an example for μ = 1 is shown in Fig. 5. The selection
rule for the fully occupied case with μ = 1 promises that there

is only one resonant peak to occur, which corresponds to the
formation of PME state |2,1〉 by absorbing a photon quanta h̄ω

[see Fig. 5(a)]. For the partially occupied case, however, there
are three nonzero elements according to selection rule (17),
which are |1,0〉, |1,−2〉, and |2,1〉. Therefore, there are three
resonant peaks appearing in the optical absorption spectra; see
Fig. 5(c). Similar to those in Fig. 4 in the main text for the
μ = 0 cases, the imbalance of strain-induced PMFs changes
the location of the resonances. After taking into account the
inter-PLL CIs in calculations, additional satellite peaks appear
in the optical absorption spectra, and the main peaks move
toward the low frequency, as illustrated in Figs. 5(b) and 5(d).

IV. SUPERFLUIDITY OF PME IN SGDL

PMEs are also ideal for exploring Bose-Einstein conden-
sation since they behave as neutral bosons at low densities.
Motivated by its importance both from a fundamental per-
spective and for applications of graphene-based electronics,
we now attempt a theoretical evaluation of the effective mass
mBs

(Bs ≡ √
Be

s B
h
s herein) and the superfluid-normal state,

i.e., the KT transition temperature Tc of PMEs in this SGDL
system. In the limit of d → ∞ and Bs → ∞, the PME energy
can be approximated by only considering its zeroth-order part
E(0)

n,m. However, if the PMF is about 10–20 T, the CI can be
treated as a perturbation because its amplitude is just several
times less than h̄vf /

√
lelh. In the absence of inter-PLL CI, by

substituting the approximate relation19

〈〈nmP |U (r̃)|nmP 〉〉 = ε(b)
nm + P 2

2Mmn(Bs,d)
(18)

for R = 0 into Eq. (12), we can get the asymptotic disper-
sion law of the PMEs for small momentum P . Here the
notation 〈〈nmP |U (r̃)|nmP 〉〉 denotes the averaging by the
two-dimensional harmonic oscillator eigenfunctions �n,m(r),
and ε(b)

nm is the binding energy.
As an example, let us consider the case of PMEs on the

(1,1) PLL with the small-P energy given by E1,1(P ) =
ε

(b)
Bs

(d) + P 2

2mBs (d) . In the limit d � √
lelh, one can explicitly

obtain ε
(b)
Bs

= − e2

εd
, the same value as for magnetoexcitons in
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(a)

(b)

(c)

(d)

FIG. 5. (Color online) The optical absorption curves of PMEs with μ = 1. (a) and (b) Fully and (c) and (d) partially occupied cases as
functions of photon energy ω (h̄ = 1). In (a) and (c) the inter-PLL CIs are not taken into account, while in (b) and (d) the inter-PLL CIs are
taken into account. The spacer thickness is set to d = 0.2. β = 0.49. The inset in (b) is the enlarged dispersion curve between ω = 0.8 and
ω = 1.2.

an external magnetic field, since ε
(b)
Bs

(d) is independent of γ .
Whereas the effective mass of a PME should be

mBs
= [4/(2 + γ + γ −1)]2 ε

4c2
d3B2

s , (19)

where the prefactor [4/(2 + γ + γ −1)]2 reduces to unity
for homogeneous PMFs (i.e., γ = 1), the effective mass of
the PME in a SGDL is [4/(2 + γ + γ −1)]2 times that of
magnetoexcitons in perfect double-layer graphene under an
external magnetic field. This difference between the effective
masses is reflected in the KT transition temperature Tc as
follows:

Tc =
[(√

32

27

[(
smBs

kBT 0
c

)
/(πh̄2n)

]3 + 1 + 1

)1/3

−
(√

32

27

[(
smBs

kBT 0
c

)
/(πh̄2n)

]3 + 1 − 1

)1/3]
T 0

c

21/3
,

(20)

where the auxiliary quantity is T 0
c = 1

kB
( πh̄2nμ2

0
6sζ (3)mBs

)1/3, μ0 =
πh̄2n

smBs log[sh̄4ε2/(2πnm2
Bs

e4d4)]
is the chemical potential of the system,

s = 4 is the spin degeneracy of PMEs in SGDL, and ζ (3) is the
Riemann zeta function. Here, n = ns + nn, with nn being the
normal component density and ns being the superfluid density.
Because μ0 is approximately inversely proportional to the
effective mass, the critical temperature of the KT transition of
PMEs in SGDL should be greater than that of magnetoexciton
in double-layer graphene in an external magnetic field by a
factor of the order of [(2 + γ + γ −1)/4]2.19 Typical results
of Eq. (20) are shown by the thick curves in Fig. 6.
From this, we can conclude that increasing the imbalance
of the strains (by making γ sufficiently different from 1) in
the different layers of a SGDL device may effectively enhance
the KT transition temperature of the PMEs. A large imbalance
parameter γ is also realistic since the PMF can be tuned to
as high as 300 T in experiments.15 Because there is no direct
bonding interaction between the electron and hole layers in
our double-layer system, the PMF in each layer can be tuned
independently.

V. EXPERIMENTAL PROPOSAL

To design the required SGDL system in practice, graphene
ribbons can first be deposited onto an elastic substrate and
then deformed by bending the substrate into a cylindrical
arc automatically (Fig. 1). Prior to graphene transfer onto a
SiO2 thin film, graphene layers, prepared by micromechanical
cleavage of graphite, are deposited on two different flexible
substrates, and then the substrates are deformed by a two-point
or four-point bending setup.25 The strength of strain could
be measured by Raman spectroscopy. In order to produce
controllable and reproducible strain on slippage, it is extremely
important to apply the strain in the most controlled way.25 This
is then transferred onto the SiO2 thin film26,27 before carefully
removing the elastic substrate by heating or dissolving it with
a chemical agent. A uniform PMF can be created in graphene
ribbons deposited on SiO2 thin film since the strain distribution
in the substrate projects onto the graphene ribbon. In practice,
however, the PMFs produced by strain in the outer and inner
bent graphene ribbons may be different because of their dif-
ferent automatic deformations. This justifies our discussion of
the importance of the imbalance parameter γ . Metal electrodes
are then grown or evaporated on the other side of the SiO2 thin
film, and the device is finally packaged for measurements.

The possibility of achieving high-quality graphene
samples28 and a strong PMF in graphene, together with the

FIG. 6. (Color online) Calculated Kosterlitz-Thouless tempera-
ture vs the PMF. The PME density is set to n = 4.0 × 1011 cm−2, and
the spacer width d = 30 nm.
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technical advances in designing graphene multilayer devices,
makes it possible to experimentally explore very original
optical and superfluidity-normal state KT transition of PMEs
in graphene in the absence of an external magnetic field.
Moreover, the SGDL system proposed here could also be
used to detect the (valley-polarized) unconventional fractional
quantum Hall effect of a charged Dirac-type electron-hole
fluid or a Bose condensate of PMEs in the absence of an
external magnetic field by measuring transport coefficients.
Because the fixed number of PMEs corresponds to a fixed
valley polarization in the SGDL system, transport studies of
the SGDL system will provide unique information that cannot
be obtained in direct studies of conventional two-component
electron-electron/electron-hole systems.23

VI. CONCLUSIONS

In conclusion, we herein proposed a SGDL system, and
by considering the relevant physics, we showed this setup
can be made to detect PMEs that are associated with elastic
deformations or curvature in graphene. The special cases

discussed in this paper only served to illustrate the potential
for applications of the SGDL system. The fabrication process
described above is achievable within currently available
experimental techniques. There are at least three differences
between PMEs in the SGDL system and the more conventional
magnetoexcitons obtained in a real magnetic field: (i) The
imbalance of the PMFs in electron and hole layers reduces
the PLL degeneracy. (ii) Thus, the PME optical absorption
spectrum should be more interesting in the SGDL system.
(iii) With increasing strain imbalance between the different
layers in SGDL, the KT transition temperature of PMEs will
be observably improved. We hope to see these predictions and
the suggested SGDL system realized in the near future.
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