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Anisotropic RKKY interaction in spin-polarized graphene
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We study the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in the presence of spin polarized two-
dimensional Dirac fermions. We show that an externally applied spin polarization along the z axis mediates an
anisotropic interaction which corresponds to an XXZ model interaction between two magnetic moments. For
undoped graphene, while the x part of interaction keeps its constant ferromagnetic sign, its z part oscillates
with the distance R of magnetic impurities. A finite doping causes both parts of the interaction to oscillate
with R. We explore a beating pattern of oscillations of the RKKY interaction along armchair and zigzag lattice
directions, which occurs for some certain values of the chemical potential. The two characteristic periods of
the beating are determined by inverse of the difference and the sum of the chemical potential and the spin
polarization.
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I. INTRODUCTION

The charge and spin oscillatory interactions in metals
has attracted considerable attention both on theoretical and
experimental sides.1,2 Ruderman and Kittel3 suggested that
the spin oscillatory interaction in metals could provide a long-
range interaction between nuclear spins in metals. Afterwards,
Kasuya and Yosida4 extended the theory to include the long-
range interaction between magnetic impurities and thus the
combined refers to RKKY interaction.

The recent discovery of graphene,5 the two-dimensional
crystal of carbon atoms, has provided a new material with a
peculiar structure for charge and spin interactions. This stable
crystal has already attracted considerable attention because of
its unusual effective many-body properties6–13 that follow from
the chiral nature of linearly dispersing low-energy excitations
described by pair of Dirac cones at the K and K ′ edges of the
first Brillouin zone.

The RKKY interaction in pristine graphene has been stud-
ied by several groups.14–16 Due to the particle-hole symmetry
of graphene, the RKKY interaction induces ferromagnetic cor-
relations between magnetic impurities on the same sublattice,
and antiferromagnetic correlations between those on different
sublattices. The dependence of the interaction on the distance
R between two local magnetic moments, at the Dirac point, is
found to be R−3, whereas it behaves as R−2 in conventional
two-dimensional (2D) systems.17 Such a fast decay rate means
that the interaction is rather short ranged. In doped graphene,
on the other hand, the spatial dependence of the interaction is
predicted to be similar to conventional 2D systems, but this
still remains to be experimentally verified.

Due to the fact that the RKKY interaction is originated
by the exchange coupling between the impurity moments
and the spin of itinerant electrons in the bulk of the system,
spin polarization of electrons is expected to influence directly
this interaction.18 In particular, the combination of the spin
dependence with a Dirac-like spectrum can mediate a much
richer collective behavior of magnetic adatoms.19 This has
been explained for surface states of a three-dimensional
topological insulator, on which magnetic impurities exhibit
a frustrated RKKY interaction with two possible phases:

an ordered ferromagnetic phase and a disordered spin-glass
phase.20 Graphene, in particular, with imbalanced chemical
potentials of spin-up and spin-down electrons, presents a
unique spin chiral material in which the interplay between the
spin polarization, gapless spectrum, and the chiral nature of
electrons has been shown to result in intriguing phenomena.21

In the two-dimension graphene system, the polarization of the
chemical potential can be tuned to be of order or even higher
than the mean chemical potential; a condition which is not
possible in ordinary conductors. The aim of the present study
is to address the question of how this peculiarity can affect
the collective coupling of magnetic impurities on the surface
of a graphene sheet with a finite polarization of the spin. One
would expect that the interplay or interference between an
externally applied polarization of the spin and the spin density
wave produced by magnetic ad atoms on a graphene sheet
leads to novel collective phenomena.

In this work, we calculate the RKKY interaction mediated
by spin-polarized Dirac fermions in monolayer graphene
using the Green’s function method. Our theory for the spin-
polarization dependence of the RKKY interaction is motivated
not only by fundamental transport considerations, but also
by application and potential future experiments in the field
of graphene spintronics. With a spin polarization along the
z axis, we show that the RKKY interaction is anisotropic,
corresponding to an XXZ-model interaction between the two
magnetic moments when their spin orientations are fixed. This
Hamiltonian can be used to investigate the ground-state phase
diagram of magnetic ordering of randomly distributed adatoms
on the surface of spin-polarized graphene in the dilute limit.22

Such a study has been of great interest because it provides an
important contribution to the physics of magnetic graphene
in particular and to spintronic technological applications in
general. Besides the R−3 dependence of the interaction for
undoped graphene, we show in particular that the interaction
behaves like R−2 when the spin polarization is finite. In
addition, a beating pattern for the interaction in the cases where
impurities are located along certain directions is obtained near
the resonance condition which is controlled by the chemical
potential and the spin polarization.
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The paper is organized as follows: In Sec. II we introduce
the formalism that will be used in calculating the RKKY
interaction from the lattice Green’s function. In Sec. III we
present our analytic and numeric results for the coupling
strengths of the RKKY interaction in both undoped and doped
graphene sheets. Section IV contains discussions and a brief
summary of our main results.

II. METHOD AND THEORY

We consider a spin-polarized graphene system identified by
a spin-dependent chemical potential μs (s = ±1), implying
a mean chemical potential μ = ∑

s μs/2 and the spin po-
larization μp = ∑

s sμs/2. Such a spin polarization can be
injected, for instance, by ferromagnetic electrodes on top of
the graphene sheet.23,24 Intrinsic ferromagnetic correlations
are also predicted to exist in graphene sheets25 and nanoribbons
with zigzag edges26 under certain conditions.

The electronic structure of spin-polarized graphene can be
reasonably well described using a rather simple tight-binding
Hamiltonian, leading to analytical solutions for their energy
dispersion and related eigenstates. The noninteracting nearest-
neighbor tight-binding Hamiltonian for π -band electrons with
spin s is determined by27

Ĥs
0 = −t

∑
〈i,j〉

(a†
i,sbj,s + b

†
i,saj,s) − sμp

∑
i

(a†
i,sai,s + b

†
i,sbi,s),

(1)

where ai,s (bi,s) annihilates an electron with spin s on sublattice
A (B) of unit cell i and t � 2.9 eV denotes the nearest-neighbor
hopping parameter.28 The sum 〈i,j 〉 in Eq. (1) runs over distinct
nearest neighbors.

The s component of the noninteracting Hamiltonian in
momentum space is written as

Ĥs
0 =

(−sμp f (k)

f ∗(k) −sμp

)
, (2)

where the form factor in the general case is f (k) =
−t

∑
j eik·dj , in which dj s are nearest-neighbor position

vectors. In this work, we are interested in the low-energy
behavior, in which f (k) = vFk�(k), where �(k) = ei(π/3+θk )

at the Dirac point K and �(k) = −ei(π/3−θk ) at the other
Dirac point K ′, the chiral angle is θk = tan−1(kx/ky),
vF = 3ta/(2h̄) � 106 m/s is the Fermi velocity with a �
1.42 Å being the carbon-carbon distance in the honeycomb
lattice.

Our system incorporates two localized magnetic moments
whose interaction is mediated through a spin-polarized elec-
tron liquid. We assume that the graphene is spin polarized first,
and then we add the magnetic moments. There are number of
ways in experiments that a spin-polarized graphene can be
made. Spin-polarized electron emission from the graphene/Ni
system before and after exposure to oxygen has been recently
studied29 and the study of spin polarization of secondary
electrons obtained from this system upon photoemission
suggested the use of passivated Ni surfaces as a source of
spin-polarized electrons, since it is stable against adsorption
of reactive gases. Incidentally, the contact interaction between
the spin of itinerant electrons and two magnetic impurities

with magnetic moments M1 and M2, located respectively at
R1 and R2, is given by

Ĥint = λ
∑
j=1,2

Mj · s(Rj ), (3)

where λ is the coupling constant between conduction electrons
and impurity, s(r) = h̄

4

∑
i δ(ri − r)σ i is the spin density

operator1 with ri and σ i being respectively the position and
vector of spin operators of the ith electron.

The RKKY interaction, which arises from quantum effects,
is obtained by using a second-order perturbation3,4,30,31 which
reads as (from now on we set h̄ = 1)

Ĥαβ

RKKY = −λ2

π
Im

∫ ∞

−∞
dεTr[(M1 · σ )Gαβ(R1,R2; ε)

× (M2 · σ )Gβα(R2,R1; ε)]n(μ), (4)

where n(μ) denotes the Fermi-Dirac distribution function, σ is
the vector of Pauli matrices in the spin space, Gαβ (R1,R2; ε) is
a 2 × 2 matrix of the single-particle retarded Green’s function
in spin space, α and β refer to the sublattices where two
impurities are placed and, finally, the trace is taken over the
spin degree of freedom.

For spin-unpolarized graphene, Eq. (4) simplifies to
Ĥαβ

RKKY = λ2

4 χ (R1,R2)M1 · M2, where χ (R1,R2) is the spin
susceptibility of the itinerant electrons and determines the
indirect interaction between two local moments.

In order to calculate the interaction Hamiltonian of Eq. (4),
the form of the electronic single-particle Green’s function,
Gs(R1,R¯ 2; ε) = 〈R1|(ε + i0+ − Ĥs

0)−1|R2〉 is needed. To cal-
culate the retarded Green’s function in real space, its Fourier
components in momentum space might be first obtained. Due
to the fact that our 2D Dirac fermion system is noninter-
acting and thus the direction of spin remains unchanged,
the retarded Green’s functions Gαβ are diagonal in the spin
space:

Gs
AA(R,0,ε) = (eiK·R + eiK′ ·R)gAA(ε − sμp), (5)

and

Gs
AB(R,0,ε) = eiπ/3(eiK·R+iθR − eiK′ ·R−iθR )

× gAB(ε − sμp). (6)

Moreover, Gs
BB = Gs

AA and Gs
BA(0,R,ε) = exp(−iπ/3)

[exp(−iK · R − iθR) − exp(−iK′ · R + iθR)]gAB(ε − sμp).
Here gAA(ε) = γ εK0(−iεR/vF) and gAB(ε) = γ εK1(−iεR/

vF), where K0(x) and K1(x) are modified Bessel functions of
the second kind, θR is the angle of the position R with respect
to the K′ − K direction, and γ = −2π/(�v2

F), in which � is
the area of the Brillouin zone.

By inserting the retarded Green’s functions given by
Eqs. (5) and (6) in Eq. (4), and taking the trace over the spin
degree of matrices, the RKKY Hamiltonian simplifies to

Hαβ

RKKY = λ2

π

[
J αβ

x (M1xM2x + M1yM2y) + J αβ
z M1zM2z

]
,

(7)

which is the honored XXZ model. Here J
αβ
x =

−C�αβI
αβ
x /R3 and J

αβ
z = −C�αβI

αβ
z /R3, with C =
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2(2π )2/(�2vF), �AA = 1 + cos[(K − K′) · R], and �AB =
−1 + cos[(K − K′) · R + 2θR]. The different components of
Iαβ for impurities on the same sublattice read as

IAA
x = 2Im

[∫ yF

−∞
dyx−K0(−ix−)x+K0(−ix+)

]
,

(8)

IAA
z = Im

[∫ yF

−∞
dy

∑
s=±

x2
s K

2
0 (−ixs)

]
,

where yF = μR/vF, x± = y ± hF, y = εR/vF, and hF =
μpR/vF. For impurities on different sublattices, one only needs
to replace K0(x) with K1(x) in the above equations. Note that
JBB = JAA and JBA = JAB .

We find analytic results for the z component of the RKKY
exchange coupling strength Iz for both cases where magnetic
moments are located on the same or different sublattices. For
the same-sublattice case, we begin by splitting the integral in
the second line of Eq. (8) into the conduction- and valance-
band contributions and find

IAA
z (R) = 2Im

[∫ 0

−∞
dx x2K2

0 (−ix)

]

+
∑
s=±

Im

[∫ xFs

0
dx x2K2

0 (−ix)

]
, (9)

where xF± = yF ± hF. The first integral can be solved15,16

easily and the result is π2/32. The contribution from the second
line of Eq. (9) can be obtained by replacing Im[K2

0 (−ix)] with
−π2sgn(x)J0(|x|)Y0(|x|)/2 and using the following relation:∫ xF

0
dx x2sgn(x)J0(|x|)Y0(|x|) = − |xF|

2
√

π
M(xF), (10)

where M(x) = G[{{ 1
2 }, { 3

2 }}, {{1,1}, {− 1
2 ,1}}, x2] is Meijer G

function.32 As a result, the function IAA
z is given by

IAA
z (R) = π2

4

∑
s=±

[
1

8
+ |xFs |√

π
M(xFs)

]
. (11)

To calculate the long-range behavior of the RKKY inter-
action, the asymptotic behavior of the Meijer G function is
needed. It is also easy to see that asymptotic behavior of M(x)
at large x is32 [2 cos(2x) + 8x sin(2x) − π ]/(8

√
πx). It should

be noticed that the M(x) tends to its long-range asymptotic
expression for x > 2. Therefore, IAA

z (R) for the long-range
regime is simplified as

IAA
z (R 	 a) ≈ π

16

∑
s=±

[cos(2xFs) + 4xFs sin(2xFs)]. (12)

On the other hand, for the case that the impurities are located
on two different sublattices we can follow the same procedure
discussed above, while we use

∫ 0
−∞ dxx2Im[K2

1 (−ix)] =
3π2/32, and Im[K2

1 (−ix)] = π2sgn(x)J1(|x|)Y1(|x|)/2 to
find∫ xF

0
dxx2sgn(x)J1(|x|)Y1(|x|) = − |xF |

2
√

π
M ′(xF ), (13)

where M ′(x) = G[{{ 1
2 }, { 3

2 }}, {{1,2}, {− 1
2 ,0}}, x2]. Finally,

the IAB
z (R) reads as

IAB
z (R) = π2

4

∑
s=±

[
3

8
− |xFs |√

π
M ′(xFs)

]
. (14)

The asymptotic behavior of M ′(x) at large x is [3π −
10 cos(2x) − 8x sin(2x)]/(8

√
π |x|). Therefore, the long-

range behavior of IAB
z is obtained as

IAB
z (R 	 a) ≈ π

16

∑
s=±

[5 cos(2xFs) + 4xFs sin(2xFs)].

(15)

It should be mentioned that we were not able to find simple
analytic expressions for the in-plane components I

αβ
x of the

exchange coupling and in the next section we will present our
numerical results for them.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present our main results for the RKKY
exchange coupling in the presence of spin-polarization Dirac
fermions along the z axis by analyzing the above-calculated
integrals of Ix and Iz. We extend the previously studied16

results for dependencies on the distance R and lattice direction
θR to the case of μp �= 0, for two different regimes of undoped
(μ = 0) and doped (μ �= 0) graphene.

For the Iz component of interactions, we solve the two
expressions in Eqs. (11) and (14) numerically and then
compare the results with asymptotic results obtained from
the analytical expressions given by Eqs. (12) and (15),
respectively. Generally, the results obtained from the two
approaches match quite well in most of the cases, especially at
long distances. The distance dependence of Iz for both AA and
AB cases are illustrated in Fig. 1 for undoped graphene. For
unpolarized graphene μp = 0, IAA

z = IAA
x is just a constant. At

finite μp, the integral Iz has quite different behavior, exhibiting
an oscillatory behavior as a function of R, with a linearly
growing amplitude and a period given by 2π/hF , as can be
obtain directly from Eq. (12). This behavior of IAA

z results in
an oscillatory JAA

z with a decreasing amplitude as R−2, which
mimics the behavior of the RKKY coupling of unpolarized
doped graphene.16 We can understand this analogy by noting
that the polarization induces spin-dependent doping of up-
and down-spin Dirac bands of an undoped sample by shifting
their chemical potential from the Dirac point. A comparison
between R dependence of the integral IAA

z and that of IAB
z

for various values of μp in Fig. 1(b) shows their difference at
short distance while reaching each other as R increases. As
R → 0 the coupling interactions tend to their values of the
unpolarized case where JAB is three times larger than JAB , as
is discussed in Ref. 16.

From the numerical calculations of the integrals appearing
in Eq. (8), we can also obtain the behavior of IAA

x and
IAB
x for the RKKY interaction coupling of the components

of the magnetic moments which are perpendicular to the
spin-polarization axis. Figure 2(a) shows IAA

x as a function
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FIG. 1. (Color online) (a) Integral IAA
z as a function of distance

|R| when both impurities are located on the same sublattice for
various values of the spin polarization μp in units of eV. The
chemical potential is set to zero. Symbols refer to the analytical
results of Eq. (12) which are compared to the numerical evaluation of
Eq. (11), plotted as lines. For μp = 0, IAA

z = IAB
z is just a constant.

(b) Comparison between integrals IAA
z and IAB

z as a function of the
distance R for various values of the spin polarization μp in units of eV.
At finite μp , the integral Iz has a quite different behavior, oscillating
as a function of R with a period given by 2π/hF and a linearly
growing amplitude. A comparison between the R-dependence of the
integral IAA

z and that of IAB
z shows their difference at short distance

while reaching each other as R increases.

of R for the undoped graphene at different values of the
spin polarization μp. For μp = 0, this function is a constant
resulting in a JAA

x which decays as R−3. A finite difference μp

between the chemical potentials of spin-up and spin-down
carriers produces a linear increase of IAA

x with a slope
proportional to μp. Thus, JAA

x decays as R−2. Importantly,
the sign of the interaction JAA

x is always positive which shows
that the coupling between the perpendicular components of the
moments remains ferromagnetic like for all Rs. To analyze the
difference between the two configurations of AA and AB, in
Fig. 2(b) we compare IAA

x and IAB
x , which shows that, despite
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FIG. 2. (Color online) (a) Integral IAA
x versus distance between

two impurities, |R|, when both impurities are located on the same
sublattice for undoped graphene and for several values of μp in units
of eV. Finite μp produces a linear increase of IAA

x with a slope
proportional to μp . (b) Comparison between Ix and Iz for different
configurations and for μp = 0.5 eV.

the difference at short distances, they tend to each other at
larger distances.

At finite values of both the chemical potential and the
spin polarization, a more complicated behavior of the RKKY
coupling can be occurred. In this case, the behavior of Iz is
determined by a superposition of four sinusoidal functions
with two different periods of 2πR/(xF−) and 2πR/(xF+)
each occurring twice with amplitudes 1,xF− and 1,xF+,
respectively. As a result, we observe that for certain values of
μ and μp, oscillations of Iz exhibit a beating pattern with two
characteristic periods. Figure 3(a) shows this beating behavior
of the integral IAA

z as a function of the impurity distance along
the armchair direction (where R = 3na with n being an integer
number) for μ = 1.2 eV and μp = 1.0 eV. Figure 3(b) shows
the similar behavior of the integral IAA

z as a distance along
the zigzag direction (where R = √

3ma for an integer m) for
μ = 1.2

√
3 eV and μp = √

3 eV. We have obtained a similar
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FIG. 3. (Color online) (a) Integral IAA
z as a function of impurities

distance along the armchair direction when both impurities are located
on the same sublattice. The existence of two different periods in doped
polarized graphene for certain values of μ = 1.2 eV and μp = 1.0 eV
is clear in this figure. (b) Integral IAA

z as a distance along zigzag
direction for μ = 1.2

√
3 eV and μp = √

3 eV.

beating pattern for oscillations of IAB
z , which also occurs for

a certain values of μ and μp.
The behavior of the perpendicular components Ix for μ �= 0

is also different from their linear behavior for the undoped
case, as shown in Fig. 4(a) for the fixed value of μ =
0.5 eV and different values of μp. In this case Ix(R) exhibits
oscillations with a linearly increasing amplitude whose slope is
proportional to |μ − μp|. Figure 4(b) is the same as Fig. 4(a),
but this time μp is fixed and μ changes.

IV. SUMMARY AND CONCLUSIONS

In conclusion, we studied the influence of spin polarization
on the RKKY interaction in graphene. With a spin polarization
along the z axis, the induced interaction between two magnetic
impurities is found to be described by an anisotropic XXZ

Hamiltonian with an exchange coupling depending on the
distance R between the impurities and the doping level. For
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FIG. 4. (Color online) (a) Integral Ix versus distance between two
impurities, |R|, when both impurities are on the same sublattice for
doped graphene with the chemical potential 0.5 eV and various value
of μp in units of eV. (b) Same as panel (a) but for fixed μp = 0.5 eV
and various values of the chemical potential.

undoped but spin-polarized graphene, we found that while the
interaction between the x components of the moments remains
constant with ferromagnetic sign, for the z components it
oscillates with distance R. In the unpolarized-spin case,
the RKKY interaction induces ferromagnetic correlations
between magnetic impurities on the same sublattice and
antiferromagnetic correlations between those on different
sublattices.14–16 The dependence of the interaction on the
distance R between two local magnetic moments, at the Dirac
point, is found to be R−3, whereas it behaves as R−2 in a
doped graphene sheet. Besides the R−3 dependence of the
interaction for undoped graphene, we show in particular that
the interaction behaves like R−2 when the spin polarization is
finite.

For finite values of both the chemical potential and the
spin polarization, a more complicated behavior of the RKKY
coupling can occur. We found that both components of the
interaction oscillate with R. We explored that, for the chemical
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TABLE I. A breakdown of the results on the scaling form of the RKKY interactions in monolayer graphitic systems. The results for
vanishing spin polarization are reported from Ref. 16 while those for finite spin polarization are from the present work. It is worthwhile
mentioning that the interaction Hamiltonian is modelled by the Heisenberg model for μp = 0 and by the XXZ model for the case that μp �= 0.
We introduce a parameter kh = μp/vF and C = (μ − μp)/(μ + μp) which are given by the chemical potential as well as the spin polarization.

Chemical potential Spin polarization Coupling of strength interaction

μ = 0 μp = 0 J AA ∝ −R−3

μ = 0 μp = 0 J AB ∝ R−3

μ �= 0 μp = 0 J AA ∝ − sin(2kFR + α)R−2

μ �= 0 μp = 0 J AB ∝ sin(2kFR + β)R−2

μ = 0 μp �= 0 J AA
x ∝ −μpR−2

μ = 0 μp �= 0 J AA
z ∝ − sin(2khR)μpR−2

μ = 0 μp �= 0 J AB
x ∝ μpR−2

μ = 0 μp �= 0 J AB
z ∝ + sin(2khR)R−2

μ �= 0 μp �= 0 J AA
x ∝ − sin(2kFR)R−2

μ �= 0 μp �= 0 J AA
z ∝ −[sin(2xF+) + C sin(2xF−)]R−2

μ �= 0 μp �= 0 J AB
x ∝ sin(2kFR)R−2

μ �= 0 μp �= 0 J AB
z ∝ [sin(2xF+) + C sin(2xF−)]R−2

potentials μ close to the polarization μp, oscillations of
the RKKY interaction exhibit a beating pattern when the
impurities are located along zigzag or armchair directions.
The two characteristic periods of the beating oscillations are
determined by inverse of the difference and the sum of the
chemical potential and the spin polarization. Since several
works on RKKY interaction in 2D graphene systems are

available, a proper comparison with those results seems to
be in order (see Table I).
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