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It is shown that a frequently used relation between the interband momentum and dipole matrix elements
(shortened to the “p-r relation”) in semiconductors acquires an additional correction term if applied to finite-
volume crystals treated with periodic boundary conditions. The correction term, which is a generalization of the
one obtained by Yafet [Phys. Rev. 106, 679 (1957)] for infinite crystals, does not vanish in the limit of infinite
volume. We illustrate this with numerical examples for bulk GaAs and GaAs superlattices. The persistence of the
correction term is traced to the subtle nature of the dipole matrix element with spatially extended wave functions.
In contrast, a straightforward application of the findings by Blount [Solid State Phys. 13, 305 (1962)] and Haug
[Theoretical Solid State Physics (Pergamon, Oxford, 1972)] yields the usual p-r relation in the distribution sense,
without any corrections, when Bloch wave functions normalized to delta functions in crystal momentum space are
used. Our findings therefore show that, for the interband dipole matrix element, using Bloch wave functions under
periodic boundary conditions is not the proper way to approach the infinite-volume limit. From our numerical
evaluations, we find that the correction term is large in the case of interband transitions in bulk GaAs, and that
it can be chosen to be small in the case of intersubband transitions in superlattices, which are important in the
context of terahertz (THz) radiation. We also show that one can interpret the infinite-volume p-r relation in terms
of a limiting procedure using progressively broadened wave packet states that approach delta-normalized Bloch
wave functions. Finally, we discuss the p-r relation for nanostructures in the envelope function approximation and
show that the cell-envelope factorization of the nanostructure dipole matrix element into a cell-matrix element
and an envelope overlap integral involves the cell gradient-k rather than the cell dipole matrix element.
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I. INTRODUCTION

Dipole-allowed optical transitions can be characterized in
terms of their dipole matrix elements or in terms of their
momentum matrix elements. The use of the dipole matrix
element has some practical advantages: (i) It facilitates the
comparison with models of classical dipole oscillators and
(ii) it provides immediate information on the approximate
spatial extension of the oscillator (after dividing the dipole
matrix element by the electron charge). Using the dipole matrix
element is unproblematic in atomic and molecular optical
transitions, where the wavelength of the light far exceeds the
spatial extension of the atom and the electric field is effectively
space independent. In that (atomic) case, the electron-light
coupling Hamiltonian can be chosen in the form of the dipole
approximation −d · E (where d = −er is the dipole operator,
−e the electron charge, and E the electric field amplitude),
which has been found to be the proper physical choice of the
coupling in the sense that the unperturbed atomic Hamiltonian
represents a form-invariant physical quantity (see Ref. 1,
Chap. 5.A.2, and references therein to the original literature).
Of course, in general the light-matter coupling is based on
the minimal coupling Hamiltonian that involves the A · p̂
term (where p̂ = −ih̄ �∇ is the momentum operator and A
the vector potential). In atoms, the matrix elements of d
(or, equivalently, r) and p̂ are related by the well-known

relation

p̂ = im

h̄
[H0,r]−, (1)

where the unperturbed Hamiltonian includes the static
Coulomb interaction V (r) between the electron and the atomic
core, H0 = p̂2

2m
+ V (r). The matrix elements between, say,

states |1〉 and |2〉, which are spatially restricted to the size
of the atom, are then given by

〈2|p̂|1〉 = im

h̄
(ε2 − ε1)〈2|r|1〉. (2)

Since the time derivative of the position operator is given
by ṙ = i

h̄
[H0,r]− (or, equivalently, p̂ = mṙ), Eq. (2) is some-

times seen as quantum mechanical analog to the classical
relation between momentum and velocity, p = mṙ [with the
time derivative approximately replaced by iω � i(ε2 − ε1)/h̄].
Throughout this paper, we will refer to the relation given in
Eq. (2), and all its generalizations, as p-r relations.

We recall, for later reference, that, while the operator
relation Eq. (1) holds at each point in r space, deriving the p-r
relation [Eq. (2)] includes the step that invokes 〈2|H0 = 〈2|ε2,
which is valid because H0 is Hermitian. In more algebraic
detail, integrations by parts are carried out in the matrix
element 〈2|H0r|1〉, and the surface terms are shown to vanish.
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The dipole approximation, in particular, the transition
Hamiltonian er · E, is also routinely applied in calculations
of interband transitions in solid state systems such as semi-
conductors (including bulk semiconductors, quantum wells,
quantum wires, quantum dots), even though the spatial extents
of the electron energy eigenstates of crystalline solids are not
small compared to the typical wavelength of the radiation field.
A common justification for using the dipole approximation
here is that, for interband transitions, the proper length scale
to compare with the wavelength is the size of the unit cell.
Nevertheless, it is also known that evaluating the dipole matrix
elements of Bloch wave functions, and thus deriving p-r
relations analogous to Eq. (2), are conceptually nontrivial.
We will point out below that, despite having been discussed
in the literature for decades, some issues surrounding the p-r
relations in semiconductors are still not satisfactorily resolved.
The purpose of this paper is to clarify these issues.

We will use both Bloch wave functions defined over the
infinite space domain and those defined in a box with periodic
boundary conditions. It will facilitate our discussions to fix
our notations for these wave functions here. An infinite-volume
Bloch wave function is denoted by ϕ

(∞)
νk (r) = 1

(2π)3/2 e
ik·ruνk(r),

where uνk(r) is the lattice-periodic part, ν is the band index,
and the superscript “∞” indicates that the wave function
is defined over an infinite volume. These Bloch waves are
normalized to delta functions in k space. A popular way
of avoiding distributions is the use of periodic boundary
conditions (PBCs) which allows one to work with a finite
volume v, yet keeping the benefits of Bloch’s theorem. These
Bloch waves are denoted by ϕ

(vol)
νk (r) = 1√

v
eik·ruνk(r). They

are normalized to the volume, and the wave vectors are dis-
crete. Throughout this paper, we use the following definitions
for expectation values of an operator Ô,

〈uck′ |Ô|uvk〉cell = 1

vc

∫
cell

d3ru∗
ck′(r)Ôuvk(r), (3)

〈ck′|Ô|vk〉vol =
∫

v

d3rϕ
(vol)∗
ck′ (r)Ôϕ

(vol)
vk (r), (4)

〈ck′|Ô|vk〉∞ =
∫

all
space

d3rϕ
(∞)∗
ck′ (r)Ôϕ

(∞)
vk (r), (5)

and

ωck′,vk = (εck′ − εvk)/h̄. (6)

Here, the subscript c denotes the conduction band, the subscript
v the valence band, and vc is the cell volume.

We start by briefly recounting some previous discussions
of the p-r relation in crystalline solids. Discussing the atomic
version of the p-r relations, Haug noted on p. 370 of his
book Theoretical Solid State Physics2 that “the assumption
[underlying the p-r relation] is that the eigenfunctions from
which the matrix elements are formed decrease sharply
enough, which is guaranteed in the exponential decrease of the
atomic functions.” Martin points out that electric polarization
in crystals “cannot solely be derived in terms of the charge
density in a unit cell”3 and derives an additional surface term
(he, however, did not consider the interband matrix elements
or a p-r relation). Burt considers quantum wells4 and notices
that the dipole matrix element taken with a unit-cell integral

depends on the choice of the unit cell, and hence cannot have
any direct physical significance. Using k · p theory, he derives
a p-r relation that involves the momentum matrix element
reduced to the unit cell, but the matrix element of the dipole
is still taken over the whole quantum well. Resta (see Ref. 5
and references therein) notes that, while ϕ

(vol)
νk (r) is v periodic

(meaning it obeys PBCs), the same is not true for the function
rϕ(vol)

νk (r). Combescot and Betbeder-Matibet6 note that “the
change from A · p to E · d relies on an integration by parts
which is only valid for wave functions canceling at infinity, as
in the case of atomic systems, but not for solids with lattice
periodicity.”

For Bloch wave functions in the infinite lattice, p-r relations
involving matrix elements of the lattice-periodic parts uνk(r)
have been worked out in detail. Adams7 derived a relation
between the momentum matrix element (more precisely, the
velocity matrix element in the presence of spin-orbit coupling)
and that of i �∇k,

〈uck|p̂|uvk〉cell = imωck,vk〈uck|i �∇k|uvk〉cell, (7)

and Yafet8 derives a p-r relation for matrix elements that are
diagonal in k,

〈uck|p̂|uvk〉cell = imωck,vk〈uck|r|uvk〉cell + Bcv(k), (8)

where the additional correction term Bcv(k) is given as a
surface integral over the unit cell [see Eq. (14) in Ref. 8
and Eq. (2.15) in Ref. 9]. Blount10 showed that the dipole
matrix element evaluated over the whole volume is a k-space
distribution (delta function) multiplied by the matrix element
of i �∇k taken over the unit cell. He derived a Bloch space (i.e.,
|ν,k〉∞) representation of the r operator (using our notation),

r =
∑
νν ′

∫
BZ

d3kd3k′|ν ′k′〉〈ν ′k′|r|νk〉〈ν,k|, (9)

where all states are understood to carry the subscript ∞. The
matrix elements are

〈ν ′k′|r|νk〉∞ = −i �∇k〈ν ′k′|νk〉∞
+ δ(k − k′)〈uν ′k′ |i �∇k|uνk〉cell. (10)

Blount discussed conditions under which the delta function in
the first term, 〈ν ′k′|νk〉∞ = δ(k − k′)δν,ν ′ , can be integrated
by parts (over k) without surface (in k-space) terms, i.e.,
resulting in δ(k − k′)i �∇kδν,ν ′ (in which case the the intraband
term is indeed diagonal in both the band indices and the
wave vector). For a general wave function (e.g., Refs. 10
and 11) |ψ〉 = ∑

ν

∫
d3kcνk|νk〉 the r operator acting on the

coefficients cνk is given by r = δν,ν ′ i �∇k + 〈uν ′k′ |i �∇k|uνk〉cell,
which is the standard form widely used not only in optics but
also transport theory including in the theory of the anomalous
Hall effect and related topics (see, for example, Ref. 12 and,
for a recent review of the anomalous Hall effect, Ref. 13, and
references therein). As mentioned in Ref. 13, it is sometimes
worth remembering that the Bloch state representation (9)
does not alter the basic properties of the position operator. If,
therefore, the p-r relation for infinite systems can be derived
using the Bloch space representation, it must also hold for the
configuration space representation, in which the r operator
is nothing but the factor r multiplying the wave function.
More generally, it also means that for any crystal (with either
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TABLE I. Synopsis of the matrix elements and relations between momentum and dipole matrix elements for
crystals with infinite volume, nonvanishing boundary conditions (IV/NVBC), and finite volume, periodic boundary
conditions (FV/PBC).

IV/NVBC FV/PBC

〈ck′|r|vk〉∞ = δ(k − k′)〈uck′ |i �∇k|uvk〉cell
a 〈ck|r|vk〉vol �= 〈uck|i �∇k|uvk〉cell

b

〈uck|p̂|uvk〉cell = imωck,vk〈uck|i �∇k|uvk〉cell
c 〈ck|p̂|vk〉vol = imωck,vk〈uck|i �∇k|uvk〉cell

d

〈uck|p̂|uvk〉cell = imωck,vk〈uck|r|uvk〉cell + Bcv(k)e

〈ck′|p̂|vk〉∞ = imωck′,vk〈ck′|r|vk〉∞f 〈ck′|p̂|vk〉vol = imωck′,vk〈ck′|r|vk〉vol + Cck′,vk
g

aReference 10.
bIncorrectly proven with the equal sign in Ref. 2, Eq. (42.76).
cReference 7; Eq. (42.71) in Ref. 2.
dEquation (42.71) in Ref. 2.
eReferences 8 and 9.
fFollows from a and c; see this paper, Sec. IV.
gThis paper, Sec. II.

infinite or finite volume) potential fundamental issues with
the r operator are present in any representation. The analysis
given in the following deals specifically with finite volume
and either periodic or zero boundary conditions. Here, the
matrix elements of the position operator taken with Bloch
wave functions depend on the choice of the unit cell (and in
that sense are not well defined), and this problem cannot be
solved by going from a configuration space representation to
a Bloch space representation.

For the case of periodic boundary conditions (PBCs),
an extended discussion of the various matrix elements and
derivation of a p-r relation has been given by Haug.2 He relates
the momentum matrix element to the matrix element of i �∇k.
The analysis in Ref. 2 then continues with a derivation of a
relation formally analogous to Eq. (10), and from there a p-r
relation [formally identical to Eq. (2)], for the case of PBCs.
However, that relation is incorrect, as we discuss in Sec. II.
In his proof, Haug shows that the term corresponding to the
first term in Eq. (10) is diagonal in the band indices and hence
vanishes in the p-r relation for interband transitions. While in
infinite systems the first term is indeed diagonal in the band
indices (at least under the conditions spelled out by Blount),10

this is not true in PBC systems. In the latter, the r-matrix
element depends on the choice of the unit cell, while the second
term in Eq. (10) does not. Hence, there must be a nonvanishing
contribution from the first term, even for interband transitions.
The subtle mistake in the proof given in Ref. 2 can be traced
back to an incorrect application of the i �∇k operator on Bloch
functions expressed in terms of Wannier functions.

The correct p-r relation in the case of PBCs contains a
surface term (in configuration space) that compensates for the
ambiguity related to the dipole matrix element that depends
on the choice of the unit cell. Of course, the momentum
matrix element does not have such an ambiguity, and from that
consideration alone it is clear that there must be an additional
term to the p-r relation. One might expect that, by now, those
relations are given in the literature and are commonly accepted.
However, we are not aware of a derivation and discussion of
the p-r relation in PBC systems, and we present the derivation
and numerical examples below. An additional motivation for
doing so is the fact that many modern review articles and
textbooks on semiconductor physics present p-r relations that

are either not completely clear and well defined or that are
actually incorrect. From a practical point of view, however,
such errors in the formulation of the light-matter interaction
might have only limited consequences, because in practice the
size of the dipole matrix element and related quantities, such as
the oscillator strength, are usually not obtained from ab initio
calculations, but from a comparison of theoretical results with
experimental data (e.g., Ref. 6).

One can roughly group the publications that include p-r
relations in three classes: those using infinite volume (IV) and
nonvanishing boundary conditions (NVBCs), those using finite
volume (FV) and PBCs, and those dealing with nanostructures,
hence using FV and vanishing (i.e., zero) boundary conditions.
Focusing for the moment on the first two classes, we present in
Table I an overview of what we believe to be the current state
of knowledge (including our own results presented in Secs. II
and IV). The table highlights important differences between
the two cases (IV/NVBC and FV/PBC) that, by and large, are
not reflected in modern review articles and textbooks.

The main objective of this paper is to derive and discuss
the generalization of Eq. (2) to the FV/PBC case (Sec. II).
We will illustrate the results for two cases that are of practical
interest: the conduction to valence band transitions at the 


point in GaAs, and the lowest intersubband transitions in a
GaAs superlattice. We calculate the matrix elements directly
from the wave functions. In the literature, the calculation of the
matrix elements, in particular, the momentum matrix elements
(e.g., Ref. 14), is sometimes performed without knowledge
of the exact Bloch wave functions—see, for example, the
approach in Refs. 15 and 16 (also paragraph 36 in Ref. 17).
We will show in Sec. III that in bulk GaAs the value of the
upper bound for the dipole matrix element is about a factor
of 16 smaller than the value obtained from the momentum
matrix elements, which is really that of the operator i �∇k
[see entry (c) of Table I], with the former being 0.36 Å
and the latter 5.81 Å. A detailed analysis of the matrix
elements has been given by Lew Yan Voon and Ram-Mohan.15

In that reference, a p-r relation has been derived from
a generalized Feynman-Hellman theorem. Their discussion
involves both gradient-k matrix elements and matrix elements
of the position operator z in configuration space representation,
the latter being calculated for semiconductor quantum wells
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and superlattices, however, no clear distinction between the
two forms is presented. Furthermore, calculated values of
the position operator are only listed for the case of quantum
wells and superlattices, not for bulk matrix elements. Quite
generally, in the literature of heterostructure superlattices it
is not uncommon to encounter calculations of intersubband
dipole matrix elements based on the ordinary position (z)
operator, i.e., the position operator in configuration space
representation (e.g., Ref. 18). Since, as pointed out above, the
dipole matrix element computed with the ordinary position
operator is not meaningful (in the sense that it depends on
the choice of unit cell), one might ask why the calculations
for superlattices seem to be appropriate while a calculation
for bulk crystals gives an blatant inconsistency (for example,
the factor of 16 mentioned above). We will see in Sec. III that,
unlike bulk, in a one-dimensional system such as a superlattice,
it is possible to choose a unit cell such that the correction term
in the p-r relation becomes rather small. For example, the
choice of the unit cell in Ref. 18 is such that the unit-cell
boundaries are located in the potential barrier region. This
rather intuitive and widely used choice of unit cell happens to
give numerical results for the matrix elements of the ordinary
position operator that are rather similar to those obtained with
the gradient-k operator. In contrast, in bulk GaAs there does not
exist such an optimal choice of the unit cell. Many researchers
seem to suspect such a discrepancy in bulk systems, and some
suggest defining the dipole matrix element via the atomic
p-r relation (i.e., the one without additional correction term):
rc,v(k)|defined = 〈uck|p̂|uvk〉cell/(imωck,vk). Such a definition
for interband transitions in bulk semiconductors has been
suggested, for example, in Refs. 19–23 (also compare the
discussion in Ref. 24 for the case of molecules and molecular
solids). We note that rc,v(k)|defined is merely a symbol here:
The definition says nothing about whether it is related to a
matrix element of the r operator. Indeed, rc,v(k)|defined is the
same as the matrix element of the i �∇k operator, which in turn
is different from that of the roperator [see entries (b), (c), and
(d) of Table I]. (We note that Glutsch20 uses this definition only
for interband transition, while explicitly using the gradient-k
formulation in the context of superlattices.)

In Sec. IV, we will also discuss briefly the p-r relation
for infinite crystals (IV/NVBC). Combining the treatment of
Blount10 and Haug,2 we show that in this case the p-r relation
can be formulated in terms of distributions. In order to gain
more insight into that relation, we show how to interpret
it as a result of a limiting process involving normalizable
wave packets, involving only the ordinary position operator
in configuration space representation.

As a by-product of our discussion of the generalization of
Eq. (2), we present (in Sec. V) an alternative derivation and
extension of earlier findings by Burt4,25 regarding the dipole
approximation in nanostructures (e.g., quantum dots) and other
structures that are of finite extent in at least one dimension,
such as quantum wells and wires. In such structures, it is
useful to introduce envelope functions that obey the boundary
conditions appropriate to the quantum confined structure.
Probably the simplest example would be a semiconductor
quantum well of width L and with infinite barriers for the
valence and conduction bands. The lowest-subband envelope
function is then simply (with z being the direction normal

to the quantum well) ξ (z) = √
2/L cos(πz/L). If one would

use the light-matter interaction in the dipole approximation,
−d · E, a possible source of error in evaluating the r-matrix
element might be to approximate uνk by uν0 (which we will
call the zone-center approximation or zca for short) and then
to conclude that the dipole matrix element of the structure
is a product of the envelope function overlap integral and
the unit-cell dipole matrix element. As Burt noticed already,
that would be incorrect. Specifically, for a one-dimensional
model such as the quantum well example, this would mean that
one would take the conduction band and valence band wave
functions to be �c(z) = ξ (z)uc,0(z) and �v(z) = ξ (z)uv,0(z),
respectively. Burt concluded that∫ ∞

−∞
dz�∗

c (z) z�v(z) �= 〈uc0|z|uv0〉cell

∫ ∞

−∞
dzξ ∗

c (z)ξv(z)

(11)

(note the “not equal” sign). In particular, Burt noted that the
matrix element 〈uc0|z|uv0〉cell depends on the choice of the unit
cell, while the z-matrix element of the entire finite structure,
i.e., the left-hand side of Eq. (11), cannot depend on that
choice. In Sec. V we give a general proof for the factorization
of the dipole matrix element in terms of envelope function
overlap integrals and cell-matrix elements, provided one takes
the k dependence of uνk into account. For example, the simple
case of a quantum well, which emerges as a one-dimensional
limiting case from our proof, reads∫ ∞

−∞
dz�∗

c
′ (z) z�v
(z) � 〈uck|i∇k|uvk〉cell|k=0

×
∫ ∞

−∞
dzξ ∗

c
′(z)ξv
(z). (12)

Here, 
 is the subband index. The factorization of an interband
matrix element given as a product of cell-matrix element times
envelope overlap integral, an example of which is given in
Eq. (12), is used frequently in the literature because it has a
very intuitive interpretation. In the following we will call any
such factorization cell-envelope factorization. The usefulness
of the cell-envelope factorization is particularly obvious, for
example, in the case of transitions between envelopes that
are of different parity, as the vanishing of the corresponding
envelope overlap integral immediately indicates a vanishing
transition element. Another example where the cell-envelope
factorization is beneficial is the case of the quantum confined
Stark effect, where the electric field transforms the square
well into a triangular well and the concomitant reduction of
the wave function overlap yields a reduction in the exciton
absorption strength. The cell-envelope factorization poses
generally no problem for the momentum matrix element,
and has been used, for example, in Ref. 26 and also in
Ref. 27, where the cell-envelope factorization allowed for a
straightforward neglect of the envelope contribution.

Using the cell-envelope factorization for both the momen-
tum and dipole matrix element of the nanostructure, we derive
in Sec. V a p-r relation that does not contain an additional
correction term. Burt4 derived a quantum well p-r relation
without an additional correction term, but in contrast to our
treatment, he did not outline a path towards a p-r relation that
involves cleanly separated cell-matrix elements and envelope
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overlap functions. Burt did note that, within the zone-center
approximation, uνk � uν0, the dipole matrix elements of a
quantum well is very small. We present an alternative proof,
generalized to three-dimensional nanostructures, and show
that, for example, for a quantum dot,∫

qu.dot
d3r�∗

c (r)r�v(r) = 0 + nondipole terms, (13)

where “nondipole terms” refers to quadrupole and higher
terms in a multipole expansion (for a detailed discussion
of the multipole expansion of the light-matter coupling in
semiconductor optics, see, e.g., Refs. 28–30).

Since incorrect use of the envelope/dipole approximation
can be found in the literature, we hope that, by revisiting
and extending Burt’s analysis, we might help to increase the
acceptance of the correct use of the envelope approximation
in conjunction with the use of dipole matrix elements.

II. FINITE VOLUME (FV), PERIODIC BOUNDARY
CONDITIONS (PBCs)

In this section, we derive the p-r relation for the case of a
finite crystal with periodic boundary conditions and examine
the limiting behavior of this relation as the size of the crystal
goes to infinity. The wave functions are v periodic, meaning
that ϕ

(vol)
νk (r + Niai) = ϕ

(vol)
νk (r), where, for i = 1,2,3, Ni and

ai are the number of cells and primitive translation vectors,
respectively. We first note that the commutator p̂ = im

h̄
[H0,r]−

holds at any point r (including the boundary points, where the
spatial derivatives are well defined by virtue of the periodic
boundary conditions), and we can integrate over the finite
volume v to obtain the general p-r relation:∫

v

d3rϕ
(vol)∗
ck′ (r)p̂ϕ

(vol)
vk (r)

= i
m

h̄

∫
v

d3rϕ
(vol)∗
ck′ (r)[H0r − rH0]ϕ(vol)

vk (r). (14)

Integrating by parts, or, equivalently, using Green’s theorem
(e.g., Ref. 31), yields a term in which H0 operates on ϕ

(vol)∗
ck′ (r)

and a surface term. Replacing, in the usual way, H0ϕ
(vol)
vk (r) by

εvkϕ
(vol)
vk (r) and H0ϕ

(vol)∗
ck′ (r) by εck′ϕ

(vol)∗
ck′ (r) we obtain readily∫

v

d3rϕ
(vol)∗
ck′ (r)p̂ϕ

(vol)
vk (r)

= i
m

h̄
[εck′ − εvk]

∫
v

d3rϕ
(vol)∗
ck′ (r)rϕ(vol)

vk (r) + Cck′,vk, (15)

with the additional surface term

Cck′,vk = +1

2

∫
s(v)

dS · [ϕ∗
ck′(r)p̂ϕvk + (p̂ϕck′ (r))∗ϕvk(r)]r.

(16)

Here, s(v) is the crystal’s surface, dS an outward pointing
surface element, and the dot product is between the surface
element and the gradient of the wave functions (here written
as a momentum operator acting on the wave functions). It is
this term that is generally neglected in p-r relations for FV/PBC
systems. As mentioned above, a correction term involving a
surface integral over the unit cell has been derived for infinite
systems in Ref. 8, and is denoted by Bcv(k) in Table I. We note

that, in general, Cck′,vk is not diagonal in k (see Sec. III C), and
therefore the term in the square brackets in Eq. (16) is only
periodic in the crystal (v periodic), but not in the unit cell (i.e.,
not vc periodic). However, in the diagonal elements Cck,vk that
term is lattice periodic (vc periodic), and the diagonal elements
are equal to the correction term Bcv(k).

In one-dimensional (1D) crystals of length L = Na, located
between an arbitrary left boundary point x = L0 and the right
boundary point x = L0 + L, the surface term is particularly
simple, as it consists only of a difference of two terms, one at
each side of the crystal, multiplied by its position. Using the L

periodicity of the wave functions and their spatial derivatives,
we have

Cck′,vk = −i
h̄

2
L

(
ϕ

(vol)∗
ck′

∂ϕ
(vol)
vk

∂x
− ϕ

(vol)
vk

∂ϕ
(vol)∗
ck′

∂x

)∣∣∣∣
x=L0

(17)

= −i
h̄

2
ei(k−k′)x

(
u∗

ck′
∂uvk

∂x
− uvk

∂u∗
ck′

∂x

+ i(k + k′)u∗
ck′uvk

)∣∣∣∣
x=L0

. (18)

We note that the surface term does not depend on the crystal’s
volume (L), which in turn implies that it does not vanish if L

goes to infinity. Apparently, the case of an infinite crystal has
to be treated conceptually differently and cannot be obtained
from an infinite-volume limit of the finite system with periodic
boundary conditions. Second, we note that the surface term
depends on the arbitrary (left) boundary point of the crystal,
L0. The point can be chosen anywhere in an arbitrary unit cell,
and thus defines the interval of the unit cell (the leftmost unit
cell extending from L0 to L0 + a). Of course, the momentum
matrix element [left-hand side of Eq. (15)] does not depend on
the choice of the unit cell, and the L0 dependence of the surface
term cancels exactly that of the dipole matrix element, which is
proportional to 〈ck′|x|vk〉vol = ∫ L0+L

L0
dxϕ

(vol)∗
ck′ (x)xϕ

(vol)
vk (x).

We will come back to this point when we discuss nume-
rical examples in Sec. III.

The presence of the nonvanishing surface term Cck′,vk

implies that H0 does not act as a Hermitian operator in
the matrix element

∫
v
d3rϕ

(vol)∗
ck′ (r)H0rϕ(vol)

vk (r) in Eq. (14).
We discuss this issue in more detail here. For a spatial
differential operator of the form β(i �∇)n, with β a real constant
and n a positive integer, its being Hermitian, relative to an
inner product defined as an integral over a spatial domain,
is equivalent to the vanishing of the surface terms arising
from the integration by parts. A sufficient condition for this
to happen is when the functions on which this operator
acts are restricted to those that are either L periodic (and
possess continuous derivatives up to order n) or zero at the
boundaries. For the case under consideration, our Hilbert
space does consist of (normalizable) L-periodic functions,
ϕ(x + L) = ϕ(x). However, the position operator x is not L

periodic, and neither is the function xϕ(x) (cf. Ref. 5), i.e.,
the operator x maps ϕ(x) to a state outside of our Hilbert
space. Therefore, one must conclude that either x is not a
legitimate operator in our Hilbert space, in which case Eq. (14)
is meaningless, or our Hilbert space should be extended to
include non-L-periodic functions, in which case H0 may not be
Hermitian in the matrix element 〈ck′|H0x|vk〉vol. As explained
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above, this problem is obtained for any size L of the crystal
and persists at the limit L → ∞.

We can gain yet another perspective on the problem by
constructing an operator that preserves L periodicity and is
equal to x inside the physical domain. In this case, denoting
the L-periodic position operator by x̂, we have

〈ck′|[H0,x̂]−|vk〉vol = (εck′ − εvk)〈ck′|x̂|vk〉vol. (19)

This equation can be proven by doing integration by parts and
noting that all functions are L periodic, which eliminates the
surface terms. It is straightforward to construct an L-periodic
x operator. Denoting by Sa,b(x) = θ (b − x) + θ (x − a) − 1
the function that is unity in the interval a � x � b and zero
elsewhere [θ (x) being the Heavyside step function], we have

x̂ =
∞∑

n=−∞
(x − L0 − nL)SL0+nL,L0+(n+1)L(x). (20)

The operator x̂ has a sawtooth shape and therefore does not
grow as x goes to infinity, but rather duplicates the x operator
from the physical crystal volume (n = 0). It satisfies Eq. (19),
but the commutator im/h̄[H0,x̂]− is no longer equal to the
momentum operator at all x. Straightforward differentiation
yields

[H0,x̂]− = − h̄2

2m

(
2
∂x̂

∂x

∂

∂x
+ ∂2x̂

∂x2

)
. (21)

Using

∂x̂

∂x
= 1 +

∞∑
n=−∞

(x − L0 − nL)[δ(x − L0 − nL)

− δ(x − L0 − (n + 1)L)], (22)

we obtain a generalization of Eq. (1),

p̂ = im

h̄
[H0,x̂]− + Ĉ, (23)

where we defined the L-periodic operator

Ĉ = ih̄

∞∑
n=−∞

(x − L0 − nL)[δ(x − L0 − nL)

− δ(x − L0 − (n + 1)L)]
∂

∂x
+ i

h̄

2

∂2x̂

∂x2
, (24)

with

∂2x̂

∂x2
=

∞∑
n=−∞

{
[δ(x − L0 − nL) − δ(x − L0 − (n + 1)L)]

+ (x − L0 − nL)

[
∂δ(x − L0 − nL)

∂x

− ∂δ(x − L0 − (n + 1)L)
∂x

]}
. (25)

It is now easy to evaluate matrix elements over the length L,
say, again from x = L0 − η to x = L0 + L − η (with η ↓ 0)
with the point x = L0 inside that interval, of the commutator
p-r relation Eq. (23),

〈ck′|p̂|vk〉vol = im

h̄
〈ck′|[H0,x̂]−|vk〉vol + 〈ck′|Ĉ|vk〉vol.

(26)

The volume integration in the C term picks up the delta-
function contributions at x = L0 from n = 0 and n = −1
terms, and yields Cck′,vk = 〈ck′|Ĉ|vk〉vol, exactly as in Eq. (17).
Using Eq. (19) and noting that, for our chosen volume, we can
replace 〈ck′|x̂|vk〉vol by 〈ck′|x|vk〉vol, we finally obtain

〈ck′|p̂|vk〉vol = im

h̄
(εck′ − εvk)〈ck′|x|vk〉vol + Cck′,vk.

(27)

This shows that an L-periodic position operator, combined
with “normal” manipulations of Hermitian operators, yields
the same p-r relation as a “normal” position operator (defined
as the factor x from −∞ to ∞) combined with straightforward
integration by parts of the volume matrix elements of the
commutator [H0,x]−.

We conclude this section with a brief comment about the
derivation of a p-r relation in the FV/PBC case, derived for
k′ = k in Ref. 2. The p-r relation derived there [Eq. (42.78)
in that reference] does not contain the additional surface term
Cck,vk. The proof in Ref. 2 proceeds in two steps. First, the
following relation [Eq. (42.71) in Ref. 2],∫

v

d3rϕ
(vol)∗
ck (r)p̂ϕ

(vol)
vk (r)

= i
m

h̄
[εck − εvk]

∫
cell

d3ru∗
ck(r)i �∇kuvk(r), (28)

is shown (for clarity, we use our notation rather than that of
Ref. 2). The proof of this relation utilizes integration by parts
of Bloch wave functions that obey PBCs. In the second step,
the dipole matrix element is written as [Eq. (42.76) in Ref. 2,
again in our notations]

〈ck|r|vk〉vol = 1

i

∫
v

d3rϕ
(vol)∗
ck (r) �∇kϕ

(vol)
vk (r)

+
∫

cell
d3ru∗

ck(r)i �∇kuvk(r). (29)

It is then claimed that the first term on the right-hand side
is zero, for which a proof is presented. Equations (28)
and (29) are then taken together to give the p-r relation
without the correction term, in contradiction to our result
above. We will show here that the proof for the vanishing
of

∫
v
d3rϕ

(vol)∗
ck (r) �∇kϕ

(vol)
vk (r) contains an essential error and is

thus not valid. The “proof” in Ref. 2 is as follows. First, the
Bloch functions are represented in terms of Wannier functions,
then the gradient-k acts on the expansion coefficients but
not on the Wannier functions, and then the orthogonality
between the conduction and valence band Wannier functions
is invoked. The subtle error in this argument is that it misses
the fact that the gradient-k of Bloch wave functions under
periodic boundary conditions cannot be evaluated with a
Wannier expansion of Wannier functions which are themselves
v periodic. Let us illustrate this, for clarity, in a 1D model. The
Wannier expansion for band ν (=c or v) reads

ϕ
(vol)
νk (x) = 1√

N

∑
m

wν,m(x)eikRm. (30)

Here, wν,m(x) ≡ wν(x − Rm) is the Wannier function local-
ized at lattice point Rm = ma, and the sum over m extends
over the finite number N of units cells in the crystal. Being
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constructed as finite superpositions of L-periodic Bloch wave
functions, the Wannier functions are also L periodic, i.e.,
wν,m(x + L) = wν,m(x) on the real line (i.e., x from −∞ to
∞). The wave vector k assumes the discrete values k
 = 2π

L



(
 integer) because of the PBCs. If we were to use Eq. (30)
to evaluate the k derivative of ϕ

(vol)
νk (x) at k = k
, we would

conclude that

∂

∂k
ϕ

(vol)
νk (x)

∣∣∣∣
k=k


(31)

equals

1√
N

∑
m

iRmwν,m(x)eik
Rm . (32)

Since the Wannier functions are L periodic, we would conclude
that the k derivative of the Bloch wave function is L periodic,
i.e., that ∂

∂k
ϕ

(vol)
νk (x)|k=k


equals ∂
∂k

ϕ
(vol)
νk (x + L)|k=k


. This,
however, cannot be correct, as a direct demonstration shows:

∂

∂k
ϕ

(vol)
νk (x)

∣∣∣∣
k=k


= ∂

∂k
[eikxuνk(x)]

∣∣∣∣
k=k


(33)

= eik
x

[
ixuνk


(x) + ∂

∂k
uνk(x)

∣∣∣∣
k=k


]
.

(34)

Since uνk(x) and ∂uνk(x)/∂k are lattice periodic, they are also
L periodic since L is an integer multiple of the lattice constant.
One can then readily arrive at

∂

∂k
ϕ

(vol)
νk (x + L)

∣∣∣∣
k=k


− ∂

∂k
ϕ

(vol)
νk (x)

∣∣∣∣
k=k


= iLeik
xuνk

(x),

(35)

i.e., ∂
∂k

ϕ
(vol)
νk (x)|k=k


is not L periodic.
The point is, for a k �= k
, the Wannier expansion on the

right-hand side of Eq. (30) is still L periodic while, in general,
ϕ

(vol)
νk (x) is not. This implies that the equality in Eq. (30) is not

valid for k �= k
. But evaluating the k derivative,

∂

∂k
ϕ

(vol)
νk (x)

∣∣∣∣
k=k


= lim
�k→0

1

�k

[
ϕ

(vol)
νk
+�k(x) − ϕ

(vol)
νk


(x)
]
,

(36)

involves taking the Bloch wave function at k = k
 + �k

which, for small enough �k, would not coincide with any
k values giving L-periodic plane waves. So using Eq. (30)
to evaluate the k derivative of the Bloch wave function is
incorrect. One could, in principle, construct Wannier functions
with the proper periodicity of ϕ

(vol)
νk
+�k(x), but in that case the

Wannier functions become k dependent, and the arguments in
Ref. 2 would not apply. We finally note that a relation formally
similar to item (b) in Table I (but involving only cell integrals),
has been discussed and shown to be incorrect by Zak.32

III. NUMERICAL EXAMPLES

In this section, we wish to illustrate the p-r relation for
finite crystals, Eq. (15), with numerical examples: (i) bulk
GaAs restricted to k′ = k, (ii) a GaAs square-well superlattice
(i.e., a Kronig-Penney model), also restricted to k′ = k, and a

GaAs superlattice with δ barriers for arbitrary k and k′. For
the first two cases, the limitation to equal k vectors, k′ = k,
facilitates the numerical analysis because we can rewrite the
p-r relation in terms of integrals over the units cells. To do this,
we proceed in the usual manner by writing a volume integral
as a sum over cell integrals,

∫
v
f (r) = ∑

m̄

∫
cell f (r + Rm̄),

where Rm̄ = m1a1 + m2a1 + m3a1, m̄ = (m1,m2,m3). Using

1

N

M̄∑
m̄=−M̄

ei(k−k′)·Rm̄ =
∑

G

δk−k′,G, (37)

with Ni = 2Mi + 1 being the number of unit cells in direction
i, M̄ = (M1,M2,M3), the m̄ sum being a triple sum, N =
N1N2N3, and G denoting the reciprocal lattice vectors, we
obtain immediately the well-known result for the momentum
matrix element,∫

v

d3rϕ
(vol)∗
ck′ (r)p̂ϕ

(vol)
vk (r) = δkk′ 〈uck|p̂|uvk〉cell. (38)

Here, we have used the fact that both k and k′ are in the first
Brillouin zone, which restricts the G sum to G = 0. We now
restrict ourselves to the case k = k′, in which case the r matrix
element assumes a form similar to that of p̂:∫

v

d3rϕ
(vol)∗
ck′ (r)rϕ(vol)

vk (r) = δkk′ 〈uck|r|uvk〉cell. (39)

Hence, the p-r relation is manifestly independent of the volume
in this case:

〈uck|p̂|uvk〉cell = imωck,vk〈uck|r|uvk〉cell + Cck,vk. (40)

The cell integrals can be computed easily numerically.

A. Bulk GaAs

As a first example, we look at bulk GaAs. We use a simple
Cohen-Bergstresser pseudopotential approach33 to calculate
the band structure and wave functions. The Bloch wave
functions are expanded by plane wave functions as

ϕ
(vol)
νk (r) =

∑
G

cν,G(k)ei(k+G)r, (41)

where G is reciprocal lattice vector. The coefficients cν,G(k)
and the eigenvalues ενk are determined by

ενkcν,Gi
=

∑
i �=j

Vp(Gi − Gj )cν,Gj
+ h̄2

2m
(k + Gi)

2cν,Gi
,

(42)

where m is the electron mass in vacuum and Vp(Gi − Gj ) are
Fourier components of the pseudopotential. The Fourier com-
ponents are decomposed into symmetric and antisymmetric
parts, each consisting of the product of a pseudopotential form
factor and a structure factor:

Vp(Gi − Gj ) = Vs(|Gi − Gj |a/2π ) cos[(Gi − Gj )s]

− i Va(|Gi − Gj |a/2π ) sin[(Gi − Gj )s].

(43)

The vector s in Eq. (43) is the position of the Ga atom inside a
Wigner-Seitz cell with the origin chosen to be in the middle of
the two basis atoms, i.e., s = a/8 (1,1,1) (where a is the lattice
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constant). These pseudopotential form factors reproduce quite
well both the conduction and valence band states (here
without spin). Their values for GaAs are taken from Ref. 33.
In units of Rydbergs they are Vs(

√
3) = −0.23, Vs(

√
8) =

0.01, Vs(
√

11) = 0.06, Va(
√

3) = 0.07, Va(2) = 0.05, and
Va(

√
11) = 0.01. Zero values are taken for |Gi − Gj | �

2π/a
√

12. The reciprocal lattice of GaAs is a bcc structure. We
use G = m1b1 + m2b2 + m3b3 with b1 = (2π/a) (−1,1,1),
b2 = (2π/a) (1,−1,1), and b3 = (2π/a) (1,1,−1). In our cal-
culations, we have included the reciprocal lattice vectors
within −4 � m1 � 4, −4 � m2 � 4, and −4 � m3 � 4. Sat-
isfactory convergence has been obtained for the band gap, and
the calculated charge distributions are also consistent with the
results in Ref. 34.

At the 
 point, the valence band has threefold degenerate
solutions that belong to the irreducible representation 
15

of the point group Td . The numerical solutions of Eq. (42)
yield eigenfunctions |uvi

〉 that are arbitrary superpositions of
commonly used basis eigenfunctions |uxj

〉 = {|ux〉,|uy〉,|uz〉},
defined relative to the axes of the conventional unit cell,

∣∣uvi

〉 =
3∑

j=1

aji

∣∣uxj

〉
. (44)

To construct the basis functions |uxj
〉, we calculate the

coefficients aji and invert the matrix aji . For that, we multiply
Eq. (44) by the factor xn (n = 1,2,3) and integrate over a
Wigner-Seitz cell with its center chosen to coincide with one of
the symmetry points for the point-group symmetry operations
of GaAs (these points include the centers of the conventional
cells defined with either all Ga atoms or all As atoms at their
eight corners, and the positions of the Ga and As atoms).
With the center chosen that way, the Wigner-Seitz cell integral
(integral over the volume of the shape of a Wigner-Seitz cell)
of xn|uxj

〉 is proportional to δn,j as a result of the fact that, for
n �= j , the integrand is odd under the improper rotation S4 of
the point group Td . By utilizing this relation, we can obtain
the basis functions |uxj

〉.
As mentioned above, both the (Wigner-Seitz) cell dipole

matrix element 〈uck|r|uvk〉cell and the correction term Cck,vk
depend on the location of the cell over which the integrals
are taken. We illustrate this in Fig. 1, where we show the
variation of the matrix elements as we move the center of the
cell along the [111] diagonal of the conventional unit cell (this
line is more clearly presented in Fig. 2). (Note that we define
directions and Miller indices according to the conventional
cubic unit cell, not the primitive cell.) Here, the wave functions
and matrix elements are evaluated at k = 0 (we suppress the
k index in the following).

The momentum matrix element 〈uc|p̂|uxj
〉cell is indepen-

dent of the cell center, and furthermore its magnitude pcv is
independent of j . The magnitude of the r-matrix element,
|〈uc|r|uxj

〉cell|, is independent of j for cell center locations on
the [111] line. Note that this independence requires the C3

rotation symmetry of the group Td and therefore, in general,
does not hold for center locations away from the [111] line.
Also note that even on the [111] line, the magnitudes of the
three r-matrix elements would in general not be the same
had we chosen the arbitrary basis |uvi

〉. Cross sections of
the conduction band wave function and of one of the three

FIG. 1. (Color online) (a) Magnitude of the 
-point r-matrix
element in bulk GaAs. (b) Magnitude of the additional correction
term at the 
 point. In (a) and (b), the magnitudes are given in units
of Å (left axis) and in units of the momentum matrix element pcv, after
appropriate multiplication/division by mωcv (right axis). It is apparent
that |Ccv| is much larger than mωcv|rcv|. (c) The pseudopotential Vp(r)
(solid blue line) and the cosine of the angle β between rcv and −ipcv

(dashed red line). The horizontal axis scans the cell center on the
[111] line of the conventional unit cell; the positions of the cell center
are given by t(a,a,a). In (a), the red asterisks indicate the positions
of the atoms (with the As atoms at t = −0.125 and t = 0.875).

equivalent valence band wave functions in the (110) plane are
shown in Fig. 2.

Figure 1 shows that the magnitude of the r-matrix element
is slightly smaller than the distance between the maximum
of the s-like wave function and the that of the pz-like wave
function (which is roughly 0.71 Å; see Fig. 2). It is therefore
significantly smaller than the magnitude of the appropriately
scaled momentum matrix element (pcv/mωcv = 5.81 Å) and
also much smaller than the GaAs lattice constant a = 5.65 Å.
Since the value of the r-matrix element is generally small,
that of the additional correction term Cc,v is rather large
(comparable to pcv). The variation of its magnitude reflects
roughly that of the pseudopotential, which in turn contains
contributions from the atoms on the [111] line as well as
atoms in the vicinity of that line. The variation of the
pseudopotential on the [111] line can be understood better
by looking at its variation in the (110) plane (Fig. 2). The
generic form of atomic pseudopotentials comprises a (local
or global, depending on the element) maximum at the atom’s
position, a minimum approximately located at the maximum
of the valence electron charge density, and an asymptotic
rise to the ionization energy at large radius. In Fig. 1, we
see that the two minima from the As atom at t = −0.125
and the Ga atom at t = 0.125 have merged (this describes
the basic Ga-As bond), and the local maximum at the As
atom is lower than that of the Ga atom (which reflects the
larger electron affinity of As). The remaining features of
the pseudopotential in Fig. 1 can be traced back to the shape of
the pseudopotential in the (110) plane shown in Fig. 2. Looking
at the lower-left-cell cross section of the pseudopotential in
Fig. 2, one can identify the minima around the As atoms, which
are located at (z,t) = (−0.125a,−0.125), (−0.125a,0.375),
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FIG. 2. (Color online) Cross section of the 
-point pseudopoten-
tial (top), conduction band wave function (middle), and valence band
wave function |uz〉 (bottom) of bulk GaAs. The coordinates on the hor-
izontal axis are given by t(a,a,0). For clarity, the cross sections of four
conventional unit cells are shown, which are separated by the white
horizontal and vertical lines. One position of the As atoms is (z,t) =
(0.875a,0.875); the corresponding s-like orbital of the conduction
band and a pz-like orbital of the valence band can be recognized in
the figure. One position of the Ga atoms is (z,t) = (0.125a,0.125); its
local pseudopotential maximum is easy to recognize but its underlying
atomic orbitals are more difficult to infer from the figure. The diagonal
black dashed line in the lower-left-cell cross section indicates the line
along which matrix elements are given in Fig. 1.

and (−0.125a,0.875), and the local maxima of the Ga atoms at
(z,t) = (0.125a,0.125) and (0.125a,0.625). The four absolute
maxima in this cell cross section are on the lines connecting
the Ga atoms at (z,t) = (0.125a,0.125) and (0.125a,0.625)
on the one hand and the As atoms at (z,t) = (0.875a,−0.125),
(0.875a,0.375), and (0.875a,0.875) on the other hand. Along
each of these four lines, the atomic pseudopotential minima of
the Ga and As atoms are clearly separated (the two atoms are
relatively far away from each other) with a maximum nearly
at the half point between the two atoms. (The very shallow
maxima at the As atoms on these lines cannot be seen in the
figure.) Now, the global maximum of the pseudopotential in
Fig. 1 can be recognized as the [111] line (dashed black line)
crossing the vicinity of the global maximum around (z,t) ≈
(0.5a,0.5) in Fig. 2. The basic features in the pseudopotential
are reflected in valence and conduction band wave functions,
which are also shown in Fig. 2.

From the middle and bottom figures of Fig. 1, we see that
the variation of the correction term |Cc,v| is very similar to that
of the pseudopotential and therefore related to the variation of
the wave functions. However, the variation of |〈uc|r|uxj

〉cell|
is quite different. In a one-dimensional system, the parametric
variation of |Cc,v| and |〈uc|r|uxj

〉cell| would be the same or
opposite to each other, as either the sum or the difference of the

two quantities would be equal to the constant |〈uc|p̂|uxj
〉cell|.

In the three-dimensional case, the vectors 〈uc|p̂|uxj
〉cell,

〈uc|r|uxj
〉cell, and Cc,v are generally not parallel. Hence, the

variation in |〈uc|r|uxj
〉cell| and |Cc,v| can differ, if the angles

between those vectors vary. We show the variation of the angle
between the momentum matrix element and the dipole (i.e., r)
matrix element multiplied by imωcv in Fig. 1. For cell centers
at the symmetry points (t = −0.125, 0.125, 0.375, 0.625, and
0.875), all three vectors are either parallel or antiparallel, but
away from the symmetry points this is in general not true.
In particular, moving the cell center from the As atom at t =
−0.125 to the Ga atom at t = 0.125 means that the momentum
and dipole change from being parallel to antiparallel.

We finally note that the global maximum value for
|〈uc|r|uxj

〉cell| is approximately 0.36 Å, which it assumes at
the symmetry point t = 0.625 in Fig. 1, and correspondingly,
at point (z,t) = (0.625a,0.625) in Fig. 2 (this point exhibits
a clearly visible local minimum in the pseudopotential).
Within a conventional unit cell, there are four equivalent
points at which the global maximum is achieved. These
points are (0.625a,0.625a,0.625a), (0.625a,0.125a,0.125a),
(0.125a,0.125a,0.625a), and (0.125a,0.625a,0.125a). Our
results show clearly that, calculating the cell dipole matrix
elements from the solution of the Schrödinger equation, rather
than treating it as an experimental fit parameter, and using
that value in the dipole Hamiltonian, could lead to rather large
errors in the strength of the light-matter coupling. We also
note that in the one-dimensional example discussed in the next
section, the cell can be chosen in a way that the correction term
becomes very small and the dipole matrix element essentially
as large as momentum matrix element (divided by mass and
transition energy), which is quite different from the present
bulk GaAs example. It might therefore be conjectured that,
more generally, it is difficult in three dimensions to find a cell
location such that the wave functions are vanishingly small
on its entire surface, whereas in one dimension one just needs
to place the cell such that its boundaries are deep inside the
barriers.

B. GaAs/AlGaAs superlattice, k = 0

We now consider the textbook example of a
GaAs/AlxGa1−xAs square-well superlattice. The mole fraction
is taken as x = 0.24 and the conduction band offset at the
interface is V0 = 0.2 eV. For simplicity, we take the effective
electron mass me = 0.067m (m = electron mass in vacuum)
to be the same in the well and the barrier (this does not affect
the qualitative behavior of the matrix elements and of the p-r
relation to be discussed in the following). In a single quantum
well, the envelope functions ξν
(z) are labeled by the subband
index 
. In the superlattice, the envelope function ξν
(z) itself is
a Bloch wave function, and the discrete labels of the quantum
well states, 
, have to be amended by a superlattice wave vector
k, i.e., the envelope function takes the form

ξν
k(z) = 1√
L

eikzuν
k(z). (45)

Here, we use the letter u to denote the lattice-periodic part of
the envelope function and denote the length of the superlattice
by L and its period by a, and the superlattice wave vector
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by k. The latter should not be confused with the wave vector
in the atomic lattice, which we also denoted by k [for the
purpose of this illustration, we will not consider the influence
of the lattice-periodic part uνk(r) of the atomic lattice on
intersubband transitions]. To be specific, we assume in the
following the superlattice states to be the subbands of the
conduction band, ν = c, and suppress the band index c.
Furthermore, we restrict ourselves to the k = 0 superlattice
states (i.e., the 
 point of the miniband). We solve the envelope
equation{

− h̄2

2me

∂2

∂z2
+ VSL(z)

}
u
0(z) = ε
ku
0(z), (46)

with the periodic potential being zero in the well (of width b)
and V0 > 0 in the barrier,

VSL(z) =

⎧⎪⎨
⎪⎩

V0 if b/2 + na < z < a/2 + na,

0 if − b/2 + na < z < b/2 + na,

V0 if − a/2 + na < z < −b/2 + na,

(47)

where n is an arbitrary integer, and a is the superlattice lattice
constant. In order to make our discussion of the numerical
results unambiguous, we briefly summarize the (textbook)
results for the wave functions. The even wave functions at
k = 0, with energies below V0, are

u
0(z) =
{

cos q
z in well,

A
(cosh q̄
z ∓ tanh q̄

a
2 sinh q̄
z) in barrier,

(48)

where the “−” (“+”) indicates the right (left) part of the
barriers adjacent to the well. The energy of this wave
function is determined by the variable q
, and given by
ε
0 = h̄2q2


 /2me. Hence, the condition ε
0 < V0 is equivalent

to 0 � q
 �
√

2mV0/h̄
2. The variable q̄
 is a function of q
,

q̄
 =
√

|q2

 − 2mV0/h̄

2|. The continuity of the wave function
and its derivative lead to an equation for q
,

−q
 tan q


b

2
= q̄


(
sinh q̄


b
2 − tanh q̄


a
2 cosh q̄


b
2

cosh q̄

b
2 − tanh q̄


a
2 sinh q̄


b
2

)
, (49)

and the amplitudes A
 are given by

A
 = cos q

b
2

cosh q̄

b
2 − tanh q̄


a
2 sinh q̄


b
2

. (50)

Similarly, the odd wave functions with energies less than V0

(i.e., with 0 � q
 �
√

2mV0/h̄
2) are

u
0(z) =
{

sin q
z in well,

A


(± cosh q̄
z − coth q̄

a
2 sinh q̄
z

)
in barrier.

(51)

The variable q
 must satisfy

q
 cot q


b

2
= q̄


(
sinh q̄


b
2 − coth q̄


a
2 cosh q̄


b
2

cosh q̄

b
2 − coth q̄


a
2 sinh q̄


b
2

)
(52)

and the amplitude coefficient A
 is given by

A
 = sin q

b
2

cosh q̄

b
2 − coth q̄


a
2 sinh q̄


b
2

. (53)

FIG. 3. (Color online) Wave functions and matrix elements for
k = 0 in a square-well GaAs superlattice with superlattice constant
a = 200 Å. The barriers are indicated by the solid gray regions.
(a) Wave functions u1,0(z) (dashed purple line) and u2,0(z) (solid
yellow line). (b) The intersubband matrix element r2,1 (solid red
line) and the additional correction term C2,1 (dotted blue line) as a
function of the lower integration limit z0 (with the unit-cell integration
ranging from z0 to z0 + a). Also shown, as the green dashed line, is
the momentum matrix element, p2,1. All quantities are given in units
of Å (left axis) and in units of p2,1 (right axis). The barrier width in
(a) and (b) is 40 Å. (c) Same as (b) but for a barrier width of 120 Å.

With these wave functions, we evaluate the matrix elements
and correction term C2,1 of the transitions between the
energetically lowest two states. Integrals are taken over one
superlattice unit cell a. In this and in the following, we choose
the phase of the wave functions such that the momentum matrix
element and the correction term are purely imaginary and the
dipole matrix element is real valued.

Figure 3 shows that both the dipole matrix element r2,1 =
〈u2,0|r|u1,0〉cell and the correction term |C2,1| vary strongly as
the integral’s lower limit z0 changes from −a to +a. Unlike
in the case of the atomic matrix elements in three-dimensional
bulk GaAs, here either mω2,1|r2,1| or |C2,1| can be as large
as the value of |p2,1|, or as small as zero. Interestingly, both
r2,1 and iC2,1 change signs at certain values of z0. The sign
change of r2,1 stems from the fact that, for certain z0, the
dipole involves neighboring wells. As a consequence, if z0 is
in the middle of a barrier, the dipole matrix element r2,1 is
positive while for z0 = −a it is negative. This is because, if,
say, z0 = −100 Å (i.e., at the center of the barrier on the left
of the well centered at z = 0), then the cell integral involves
an even and positive integrand, as the odd wave function u2,0

is multiplied by the dipole operator z. The electron motion
described by the r2,1 is restricted to one well, and r2,1 is
positive. If, however, z0 = 0 Å (i.e., in the middle of the
well centered at z = 0), the cell integral is dominated by
the negative u2,0 in the adjacent well (which is centered at
z = 200 Å. The negative contribution of the adjacent well
dominates because of the factor z (the dipole operator) in the
matrix element. In this case, the dipole describes a motion of
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an electron between two adjacent wells. This analysis shows
that r2,1 can be negative for certain cell locations, as can be
seen from Figs. 3(b) and 3(c).

In order to make the magnitude of r2,1 close to p2,1/meω2,1,
one simply needs to choose a cell with boundaries deep
inside the barriers. That minimizes the role of the additional
correction term C2,1, as it involves the wave functions at the
cell’s boundary. Comparing a narrow-barrier case [Fig. 3(b)]
with a wide-barrier case [Fig. 3(c)], we see that the wide-
barrier case has a wide range of z0 (almost over the entire
barrier) for which C2,1 is almost negligible. Moreover, there
are points where the correction term vanishes, C2,1 = 0, which
implies imω2,1r2,1 = p2,1. This again is in contrast to the
three-dimensional example discussed in the previous section.
Depending on the barrier thickness, the zero crossing of C2,1

can happen for z0 inside the well [Fig. 3(b)] or inside the barrier
[Fig. 3(c)] (the zero crossing at, for example, z0 ≈ −75 Å, is
barely noticeable).

C. GaAs/AlGaAs superlattice, k dependence

In the previous section, we studied the p-r relation for
realistic well and barrier widths, but restricted the superlattice
Bloch wave to k = 0. That allowed us to vary the cell
boundaries continuously through the well and barrier and to
determine the influence of the additional correction term as
a function of that variation. In the following, we study the
k dependence of the p-r relation in the superlattice using δ

barriers. This allows us to illustrate, within a concrete example,
the fact that in the p-r relation involving volume integrals,
〈2,k′|p̂|1,k〉vol = imeω2,k′;1,k〈2,k′|z|1,k〉vol + C2k′,1k , neither
〈2,k′|z|1,k〉vol nor C2,k′;1,k are diagonal in k (k = k′), but of
course the momentum matrix element is.

We solve Eq. (46) with

VSL(z) = V0

M∑
l=−M

δ(z − zn), (54)

where zn = na are the barrier locations. In each interval zn <

z < zn+1, the wave function is given by right (“+”) and left
(“−”) traveling waves,

ξ
k(z) = α(n,+)
q eiq(z−zn) + α(n,−)

q e−iq(z−zn), (55)

with energy ε
k = h̄2q2/(2m). Bloch’s theorem, ξ
k+a(z) =
eikaξ
k(z), yields the dispersion relation with real-valued
solutions q ≡ q
(k),

eika = Re A ±
√

β2 − (Im A)2, (56)

where A = eiqa(1 − iβ) and β = mV0/(qh̄2). The wave func-
tion coefficients are given by

α(−)
q

α
(+)
q

= 1

β
(iei(k−q)a − β − i), (57)

independent of the cell index n.
Figures 4 and 5 show the diagonal momentum matrix

element p2,1(k) = 〈2,k|(−ih̄)d/dz|1,k〉vol, the dipole matrix
element r2,1(k′,k) = 〈2,k′|z|1,k〉vol, and C2,k′;1,k for a fixed
sample position (z0 = −1 μm) and a superlattice of length
L = 2 μm. As we discuss in Sec. IV, the dipole matrix element
in an infinite crystal is proportional to δ(k′ − k), which is

FIG. 4. Diagonal (k = k′) momentum matrix element of the 2-1
transition for the GaAs superlattice model with δ barriers.

obviously different from the PBC case shown in Fig. 5, where
one can barely see a narrow structure on the diagonal k′ = k.
The appearance of nondiagonal values for the dipole matrix
element (i.e., at k′ �= k) requires the existence of nondiagonal
values for C2,k′;1,k . The figure shows that, in our example,
C2,k′;1,k has strong nondiagonal contributions, and is nonzero
throughout the entire Brillouin zone.

We note that the matrix elements depend strongly on the
value for the effective mass me, which is rather small in the
present example. Choosing me to be close to the electron
mass in vacuum, one obtains a relatively strong diagonal
contribution for the dipole matrix element and, accordingly, as
a smaller correction term (Fig. 5). Also, the feature at k′ = 0
becomes less pronounced at larger mass values. At small me,
the kinetic energy dominates, and the behavior is similar to the
case without lattice potential, where the dipole matrix element
acquires a discontinuity at k′ = 0.

IV. INFINITE VOLUME (IV), NONVANISHING BOUNDARY
CONDITIONS (NVBCs)

We recall from Secs. II and III that the interband dipole
matrix element with Bloch wave functions defined in a finite
box with periodic boundary conditions is not uniquely defined,
and the corresponding p-r relation must include a correction
term. At the same time, with Bloch wave functions defined
over the whole (infinite) space ϕ

(∞)
ν,k (r) and normalized to

delta functions, both the momentum matrix element and the
dipole matrix element have been shown by Blount10 to be
well-defined k-space distributions (delta functions). For the
momentum matrix element,

〈ck′|p̂|vk〉∞ =
∫

all
space

d3rϕ
(∞)∗
ck′ (r)p̂ϕ

(∞)
vk (r) (58)

=
∑

G

δ(k − k′ − G)[〈uck|p̂|uvk〉cell

+ h̄k〈uck|uvk〉cell] (59)

= δ(k − k′)〈uck|p̂|uvk〉cell, (60)

where we used again the usual way of splitting the integral
into a sum over cell integrals, the fact that the Bloch functions
are periodic in reciprocal space, and the delta function
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FIG. 5. (a)–(c) The intersubband matrix element r2,1(k′,k) and the additional correction term C2,1(k′,k) for the δ-barrier model with standard
mass me = 0.067m, with the band structure shown in (c). For comparison, (d)–(f) show the same for me = m. The intuitive expectation of
r2,1(k′,k) being dominantly diagonal in k is seen in (d), while in the small-mass result (a) r2,1 is not at all dominated by the diagonal (k = k′). The
small-mass results exhibit an almost discontinuous behavior of r2,1 at k′ = 0 resulting from the almost kinklike feature at k′ = 0 in subband 2.

representation

1

(2π )3

∞∑
m̄=−∞

eik·Rm̄ = 1

vc

∑
G

δ(k − G). (61)

Again, since k and k′ are in the first Brillouin zone, only
G = 0 contributes. The proof that the r-matrix element is also
a distribution is less trivial; it was given by Blount,10 who
showed

〈ck′|r|vk〉∞ =
∫

all
space

d3rϕ
(∞)∗
ck′ (r)rϕ(∞)

vk (r) (62)

= δ(k − k′)〈uck|i �∇k|uvk〉cell. (63)

Obviously, the diagonal elements (i.e., k = k′) of the interband
matrix elements taken over all space (both momentum and
dipole) are not defined, while, trivially, the equal-k cell-matrix
elements exist, provided that the k derivative of uvk exists
(the cell-matrix element is not that of r, but of gradient-k). A
detailed analysis of the connection between degeneracy and
nonanalytic behavior of uνk(r) as function of k has been given
in Refs. 9 and 35.

In order to obtain a p-r relation for the IV/NVBC case, we
use the p-r relation for cell integrals,

〈uck|p̂|uvk〉cell = imωck,vk〈uck|i �∇k|uvk〉cell, (64)

which was derived by Haug and given as Eq. (42.71) in
Ref. 2. Equations (60), (63), and (64) immediately give the
“atomlike” p-r relation for infinite crystals, expressed in terms
of distributions:

〈ck′|p̂|vk〉∞ = im

h̄
(εck′ − εvk)〈ck′|r|vk〉∞. (65)

One may now ask whether this p-r relation, which does not
contain a correction term, can be obtained from a finite-volume
p-r relation when the limit of infinite volume is taken. We have
seen already that this is not possible if we use finite volume
and periodic boundary conditions. In the remainder of this

section we proceed in the spirit of the infinite-volume limit,
but instead of using the notion of finite “volume” we will
interpret Eq. (65) as a limiting case involving wave packets
that are of finite extent.

We first note that, since rϕ(∞)
vk (r) not just fails to go to

zero, but actually blows up, as r → ∞, the limit at infinity
in the evaluation of 〈ck′|r|vk〉∞ must be taken with a great
deal of care. A common way to handle issues associated with
delta-function-normalized wave functions is to treat them as
limits of normalized but increasingly extended functions. In
the following, we discuss the interpretation of the p-r relation
Eq. (65) in this way. We note that Blount10 does not follow this
route directly. He stresses that the domain of the operator r,
i.e., the space of wave functions {φ(r) : rφ(r) is normalizable},
is smaller than the full Hilbert space of normalizable wave
functions. Expanding functions that belong to the domain of
r in the Bloch basis {ϕ(∞)

νk (r)}, he shows that it is formally
correct to make the identification Eq. (63).

It is argued in Appendix A that one can construct a sequence
of wave packet states for each band with the following
properties. (i) For a given band, each wave packet state is
a superposition of Bloch states only from that band (note
that an arbitrary wave packet has components in multiple
bands). (ii) The wave packets converge pointwise in space to
a single Bloch wave function as the packet width in k space
shrinks to zero. That is, the wave packet states are of a form
similar to the Weyl’s eigendifferentials (e.g., Ref. 36). Using
ϕν,k+G(r) = ϕν,k(r), we write

�ν,k0 (r) =
∑

G

∫
BZ

d3k

(2π )3
ξν(k + G − k0)ϕ(∞)

ν,k (r), (66)

where the envelope functions ξν(k) are narrowly peaked
around k = 0. (iii) Each wave packet state �ν,k0 (r) is normal-
izable and r�ν,k0 (r) is also normalizable. It is straightforward
to show, as is done below, that the p-r relation Eq. (65)
can be treated as the limit of p-r relations with the wave
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packet states �ν,k0 (r). We recall that in the FV/PBC treatment,
the fundamental reason for the presence of the correction
terms in the p-r relation is that the operator r maps a Bloch
wave function to a function outside the space in which H0

is hermitian. With the wave packet states here, the mapping
images of r stay within the domain of hermiticity of H0.

Since r�ν,k0 (r) is square integrable, the p-r relation with
�ν,k0 (r) has the same form as in the atom case (for ν �= ν ′):∫

all
space

d3r�∗
ν ′k′

0
(r)p̂�νk0 (r)

=
∫

all
space

d3r�∗
ν ′k′

0
(r)

im

h̄
[H0r − rH0]�νk0 (r). (67)

The wave functions go to zero sufficiently fast at infinity so
that the integration by parts does not generate surface terms.
Substituting Eq. (66) into Eq. (67), we obtain

0 =
∑
GG′

∫
BZ

d3k

(2π )3

d3k′

(2π )3
ξ ∗
ν ′(k′ + G′ − k0

′)ξν(k + G − k0)

×
{ ∫

all
space

d3rϕ
(∞)∗
ν ′k′ (r)p̂ϕ

(∞)
νk (r) − im

h̄
(εν ′k′ − ενk)

×
∫

all
space

d3rϕ
(∞)∗
ν ′k′ (r)rϕ(∞)

νk (r)

}
. (68)

If we now perform the limit ξν(k) → (2π )3δ(k) or, equiv-
alently, �νk0 (r) → ϕ

(∞)
νk0

(r), then only G = G′ = 0 contribute
and we obtain the desired p-r relation for Bloch wave functions
in an infinite crystal:

〈ck′
0|p̂|vk0〉∞ = im

h̄

(
εck′

0
− εvk0

)〈ck′
0|r|vk0〉∞. (69)

V. ENVELOPE FUNCTION APPROXIMATION IN
NANOSTRUCTURES

The envelope function formalism (see, for example,
Refs. 37–43) finds widespread application in the theory
of nanostructures and quantum confined systems, such as
quantum dots, quantum wires, and quantum wells. While the
finite extent does not require the use of envelope functions (one
could just treat the system as a large, but finite, molecule; see,
for example, Ref. 44), it is desirable, when the length scale of
variations of the confining potential is much longer than the
lattice constant, to write the wave function in terms of lattice-
periodic functions uνk(r) (given by the solution of the infinite
system) and the envelope ξν
(r) (with 
 labeling the subband),
and to ensure vanishing (i.e., zero) boundary conditions
using the envelope function, ξν
(r)|r on boundary = 0. That way,
interband transition matrix elements of nanostructures can still
be largely reduced to those of the corresponding bulk system.
The intersubband transition matrix elements, which we are not
concerned with in this paper, are determined by the envelope
functions.

As usual in an envelope function theory, we assume that
the confining potential varies spatially so slowly that it does
not mix the bands. That is, the energy eigenfunctions can
be grouped into the same bands as in the bulk. We call these
eigenfunctions nanostructure Bloch wave functions and denote
them by �

(nano)
ν
 (r), where ν labels the band and 
 labels the

individual states inside a band. Since these eigenfunctions have
finite spatial support, it is clear that they satisfy the atomlike
p-r relation (for ν �= ν ′)

〈
�

(nano)
ν ′
′ |p̂|�(nano)

ν


〉 = im

h̄
(εν ′
′ − εν
)

〈
�

(nano)
ν ′
′ |r|�(nano)

ν


〉
.

(70)

Note that, written in this form, the conceptual benefits that
arise from the fact that the wave functions contain cell-periodic
contributions are not yet incorporated. We will discuss in the
following how one can interpret Eq. (70) in terms of cell-
matrix elements and envelope overlap integrals. One aspect of
that discussion will be that, at least for states near the band
edges, the dominant contribution to the dipole matrix element
〈�(nano)

ν ′
′ |r|�(nano)
ν
 〉 is given by 〈uck|i �∇k|uvk〉cell|k=0, as could

be expected from the previous section.
Under the no-band-mixing approximation stated above, a

nanostructure Bloch wave function in band ν can in general be
written as a superposition of bulk Bloch wave functions from
the same band, weighted by the envelope ξ (k),

�
(nano)
ν
 (r) =

∑
G

∫
BZ

d3k

(2π )3
ξν
(k + G)eik·ruνk(r),

(71)

where one assumes the envelope function to be localized
around k � 0, which, in turn, implies that only G = 0
contributes to the sum

�
(nano)
ν
 (r) =

∫
BZ

d3k

(2π )3
ξν
(k)eikruνk(r). (72)

Furthermore, in real space ξν
(r) is zero at the boundaries of
the nanostructure. The spatial Fourier coefficients ξν
(k) may
be determined by substituting Eq. (72) into the one-electron
Hamiltonian eigenvalue equation with the confining potential.
Since ξν
(k) is peaked around k = 0, the eigenvalue problem
can be simplified by the zone-center approximation (zca),
uνk(r) � uν0(r), which allows us to write the eigenfunction
as

�
(nano)
ν
 (r) ≈ �

(nano,zca)
ν
 (r) = ξ

(zca)
ν
 (r)uν0(r), (73)

where ξ
(zca)
ν
 (r) is the Fourier transform of ξ

(zca)
ν
 (k). The

label “zca” indicates that ξ
(zca)
ν
 (r) is obtained by solving the

Hamiltonian eigenvalue problem with the approximate wave
function Eq. (73). One might think that the wave functions
from two bands of the form Eq. (73) would give the dominant
contribution to the dipole matrix element between states in the
two bands. But Burt4 shows that this contribution is actually
highly suppressed, i.e., for ν �= ν ′,〈

�
(nano,zca)
ν ′
′ |r|�(nano,zca)

ν


〉 ≈ 0, (74)

as Lc/a gets large, where Lc is the length scale of variation
of ξ

(zca)
ν
 (r). We give an alternative proof of this fact in

Appendix B. To obtain the leading contribution to the dipole
(r) matrix element, then, one needs to consider corrections to
Eq. (73). Burt4 uses an expansion in terms of uν ′0(r) from all
bands

�(nano,Burt)
ν (r) =

∑
ν ′

Fνν ′(r)uν ′0(r), (75)
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of which Eq. (74) is the zeroth-order term. However, Burt4

does not outline a path towards the cell-envelope factorization
as defined in Sec. I.

We stay within one band and introduce a correction by
retaining the k dependence of uνk(r) in the neighborhood
of k = 0. The dipole matrix element taken with the general
nanostructure Bloch wave functions Eq. (72) between the
valence band and the conduction band is

〈c
′|r|v
〉nano =
∫

all
space

d3r�
(nano)
c
′ (r)r�(nano)

v
 (r)

=
∫

BZ

d3k

(2π )3

d3k′

(2π )3
ξ ∗
c
′(k′)ξv
(k)(2π )3

×
∫

all
space

d3rϕ
(∞)∗
ck′ (r)rϕ(∞)

vk (r)

=
∫

BZ

d3k

(2π )3

d3k′

(2π )3
ξ ∗
c
′(k′)ξv
(k)(2π )3

× δ(k − k′)〈uck′ |i �∇k|uvk〉cell, (76)

where we have used the result from Sec. IV. For slowly varying
confinement potentials and states close to the band edges, we
approximate

〈uck|i �∇k|uvk〉cell � 〈uck|i �∇k|uvk〉cell|k=0, (77)

which could be labeled the “generalized zone-center approxi-
mation” (as it involves the functions uνk and their k derivatives
at the zone center), and obtain

〈c
′|r|v
〉nano � 〈uck|i �∇k|uvk〉cell|k=0

×
∫

BZ

d3k
(2π )3

ξ ∗
c
′(k)ξv
(k). (78)

Again assuming that the spatial Fourier spectrum of the
envelope is fully contained in the Brillouin zone, we find that
the nanostructure r-matrix element is given in the form of the
cell-envelope factorization, i.e., as a product of the envelope
overlap integral and the gradient-k cell-matrix element,

〈c
′|r|v
〉nano � 〈c
′|r|v
〉zone center
nano

= 〈uck|i �∇k|uvk〉cell|k=0

×
∫

all
space

d3rξ
(zca)∗
c
′ (r)ξ (zca)

v
 (r), (79)

where, consistent with the approximation Eq. (77), we have
replaced ξν
(r) in the overlap integral by ξ

(zca)
ν
 (r). When the

envelope function overlap integral is nonzero, Eq. (79) is the
dominant contribution to the interband dipole matrix element
in nanostructures in which there is a separation of length
scales between the whole nanostructure and the unit cell. If
the overlap integral vanishes, e.g., for symmetry reasons, the
subdominant terms would have to be considered. This problem
will not concern us here.

It is now straightforward to derive a p-r relation for the
nanostructure that contains only cell-matrix elements and
envelope overlap integrals in the form of the cell-envelope

factorization. For this, we first note that〈
�

(nano,zca)
c
′

∣∣p̂∣∣�(nano,zca)
v


〉 ≈ 〈uc0|p̂|uv0〉cell

×
∫

all
space

d3rξ
(zca)∗
c
′ (r)ξ (zca)

v
 (r),

(80)

which can readily be verified. Hence, both the momentum
[Eq. (80)] and dipole [Eq. (79)] matrix elements are written
in the form of the cell-envelope factorization. The relation
between the cell-matrix elements (here to be taken at k =
0) in those two quantities has been given by Eq. (64). This
yields immediately the zone-center approximation version of
the more general Eq. (70),〈

�
(nano,zca)
c
′

∣∣p̂∣∣�(nano,zca)
v


〉
= im

h̄
(εc0 − εv0)〈c
′|r|v
〉zone center

nano , (81)

where (εc0 − εv0) is the bulk band gap. Note that, just as in the
case of an infinite crystal, there is no correction term in the p-r
relation, but, also similar to the infinite crystal, the cell-matrix
element determining the dipole is that of gradient-k.

Finally, we briefly compare our nanostructure transition
dipole Eq. (79) with that obtained by Burt.4 In Eq. (79), the
roles of the bulk unit-cell wave functions and the envelopes
are cleanly separated. In contrast, the expressions obtained
by Burt [Eqs. (14) and (16) in Ref. 4] contain only the
envelope functions. This does not imply that Burt’s expressions
are independent of the uν0’s, since the envelope functions
are determined in a diagonalization of the Hamiltonian in
a uν0 basis. After all, the dipole matrix element in Ref. 4
does satisfy essentially the same p-r relation as Eq. (81).
But its dependencies on uν0 and the envelopes are entan-
gled. In particular, in the case where ξ

(zca)
v
 and ξ

(zca)
c
′ have

opposite parities, the overlap integral in Eq. (79), and thus
〈c
′|r|v
〉zone center

nano , vanish, implying that the nanostructure
transition dipole between the two states is highly suppressed.
This is not immediately clear from the expressions in Ref. 4.

VI. CONCLUSION

In conclusion, we have discussed the relation between
momentum and dipole (or, equivalently r) matrix elements
in semiconductors, including bulk semiconductors with finite
volume (treated with periodic boundary conditions), bulk
semiconductors with infinite volume, and semiconductor
nanostructures. In contrast to many common textbook treat-
ments, we derived a correction term to the p-r relation in the
case of periodic boundary conditions. With those boundary
conditions, the correction term does not vanish in the limit
of infinite volume. On the other hand, the p-r relation for
infinite-volume crystals in the distribution sense does not have
a correction term. We showed that the absence of the correction
term in the infinite-volume case can be understood on the basis
of a limiting procedure in which first wave packets of finite
extent are constructed and then the limit of infinite extent is
taken.

The correction term in the case of periodic boundary
conditions was illustrated with several numerical examples.
For bulk GaAs, the interband r matrix element at the 
 point
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was shown to be much smaller than the lattice constant and
its value depends on the choice of the unit-cell center. The
correction term was found to be dominant in the p-r relation
for any choice of unit-cell center.

In contrast, the relative importance of the correction term
for the transition between the lowest two subbands in a GaAs
superlattice depends strongly on the origin of the unit cell. In
particular, the correction term becomes small if the unit cell is
chosen such that its boundary points lie in the barriers where
the wave functions are small.

We also discussed the interband matrix elements in nanos-
tructures. We showed that the cell-envelope factorization of the
r matrix into a product of cell-matrix element and envelope
overlap integrals involves the gradient-k cell integral rather
than the r cell integral, which is consistent with well-known
cell-matrix element relations for bulk semiconductors.

We believe that our analysis has some significance for the
application of the dipole approximation in the light-matter
coupling Hamiltonian. Unlike atomic systems, where the light
fields can be assumed to be spatially homogeneous over the
spatial extent of the atom, and where, as a consequence, a
simple gauge transformation is available that eliminates the
vector potential in favor of the electric field (entering the
coupling Hamiltonian −d · E), such a simple transformation
is not applicable to extended Bloch wave functions. Practical
solutions may include dealing with Wannier or tight-binding
functions45 (which are localized, but unfortunately not energy
eigenfunctions of the single-electron Hamiltonian with the
lattice-periodic potential). If periodic boundary conditions and
Bloch wave functions are used, the matrix elements of the r
operator are not the same as those of the gradient-k operator,
and if one wants to use the p-r relation, one has to account
for the additional correction term. A practical alternative to
that is to use matrix elements of the gradient-k operator in
place of those of r in a naive application of the atomic p-r
relation. Starting from an A · p Hamiltonian one can use that
atomiclike p-r to eliminate the momentum matrix elements by
a matrix element that one can loosely call r-matrix elements
(but which is indeed not the r-matrix element but the gradient-k
matrix element), and, together with reformulating the time
derivative of the vector potential in terms of the electric field
amplitude, one can obtain a coupling Hamiltonian that is
formally similar to a dipole Hamiltonian, −d · E. References 2
and 10 show that, in this practical alternative, the result is valid
for both delta-normalized and box-normalized (with periodic
boundary conditions) Bloch wave functions. The analysis in
this paper shows it is also valid in a cell-envelope approach
to nanostructures. Adopting this recipe in the formulation of
the dipole electron-light coupling, one need not worry, if one
chooses not to, about the pathologies of the r-matrix elements
with extended wave functions (one just has to be aware that
the matrix elements of the gradient-k operator are not the same
as those of the the r operator, even if, in practice, one may be
tempted to equate the gradient-k with the r operator).
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APPENDIX A: WAVE PACKETS OF BLOCH
WAVE FUNCTIONS

In this Appendix, we argue that one can construct a
sequence of wave packet states for each band which satisfy the
conditions laid down above and below Eq. (66): (i) For given
band ν, each wave packet state �ν,k0 (r) is a superposition
of Bloch states only from that band. (ii) The wave packets
converge pointwise in space to a single Bloch wave function
as the packet width in k space shrinks to zero. (iii) Each
wave packet state �ν,k0 (r) is normalizable and r�ν,k0 (r) is
also normalizable.

We begin by arguing that one can construct a sequence of
envelope functions ξν(k) which reside completely in the first
Brillouin zone, go to a delta function around k = 0, and have
Fourier transforms in r space which are suitably normalized.
We show this with an example in one dimension. Consider the
following sequence of functions, for m = 1,2, . . .:

ξνm(k) = 0, k < −Km,

= 2π

K2
m

(k + Km), − Km � k < 0,

= 2π

K2
m

(Km − k), 0 � k < Km,

= 0, k � Km, (A1)

where Km is within the first Brillouin zone for all m and
Km → 0 as m → ∞. Each ξνm(k) is a sequence of triangular
“tent” functions of height 2π/Km and base length 2Km. The
area under the curve is the same (=1) for all m, while the base
support tends to zero: The sequence tends towards 2πδ(k). The
Fourier transform to x space of ξνm(k) is

ξνm(x) = 2

K2
mx2

[1 − cos(Kmx)]. (A2)

It can readily be verified that ξνm(x) is a smooth function of x

and both itself and xξνm(x) are square normalizable. The basic
point is that ξνm(k) is not smooth at the points k = −Km,0,Km,
at each of which the first-order derivative is discontinuous. This
translates to a 1/x2 behavior at large x in ξνm(x). In general, if
one desires to bound the large x behavior of ξνm(x) by 1/xn,
where n is a positive integer larger than 1, one constructs a
tent function ξνm(x) in k space with at least n − 2 continuous
derivatives.

We now turn to the wave packet state Eq. (66). Since ξν(k)
is chosen to be completely in the first Brillouin zone, we can
limit the G sum to G = 0 and formally extend the integration
range to all k space,

�νk0 (r) =
∫

all
k space

d3k

(2π )3
ξν(k − k0)ϕ(∞)

νk (r). (A3)

Here one might argue that since ξν(k − k0) is made progres-
sively narrow, we can approximate the lattice-periodic part of
the Bloch wave function uνk(r) by uνk0 (r). But, as is shown in
Sec. V and Appendix B, there is a pitfall in doing this when
the wave packet state is used in a dipole matrix element. To
exercise more care, we expand uνk(r) around k0 [restricting
ourselves to points k0 where uνk(r) is analytic as a function of
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k; see Refs. 9 and 35],

uνk0+k(r) =
∞∑


=0

1


!
(k · �∇k)
uνk0 (r), (A4)

and using keik·r = −i �∇re
ikr we can write

�νk0 (r) =
∞∑


=0

c
(r). (A5)

In an unorthodox, but compact, notation, we can write the 
th
term as

c
(r) = 1

(2π )3/2
eik0·r 1


!

( − i �∇(ξ )
r · �∇k

)

ξν(r)uνk0 (r), (A6)

where it is understood that �∇(ξ )
r operates only on ξ (r) [note that

ξ (r), i.e., the Fourier transform of ξ (k), appears because we
were able to extend the k integral over all k space]. A formal,
but slightly cumbersome, expression is

c
(r) = 1

(2π )3/2
eik0·r 1


!


∑
n=0


−n∑
m=0

(



n

)(

 − n

m

)

× ∂
−n−mξν(r)

∂x
−n−m

∂
−n−muνk(r)

∂k
−n−m
x

∣∣∣∣
k0

× ∂mξν(r)

∂ym

∂muνk(r)

∂km
y

∣∣∣∣
k0

× ∂nξν(r)

∂zn

∂nuνk(r)

∂kn
z

∣∣∣∣
k0

,

(A7)

where ( n

m ) are the binomial coefficients.
It is important to note that the k derivative of the lattice-

periodic function is itself lattice periodic,

�∇kuνk(r + Rm̄) = �∇kuνk(r), (A8)

and hence does not grow or diverge at infinity, provided it
is finite within a unit cell. Since ξν(r) decays sufficiently
fast at large r, each c
(r) as defined in Eq. (A6) and rc
(r)
are square normalizable. The remaining question is whether
the series Eq. (A5) retains this property. We provide a rough
argument that this is the case with the example of tent functions
introduced above. In that example, Eq. (A6) reduces, for each
m, to

c
m(x) = 1

(2π )1/2
eik0x

1


!
(−i)


d
ξνm(x)

dx


∂
uνk(x)

∂k


∣∣∣∣
k=k0

.

(A9)

With ξνm(x) given by Eq. (A2), in each derivative d
ξνm(x)
dx


the leading term as x → ∞ is O(1/x2) and is bounded by
2K
−2

m /x2. Therefore the leading term in �νk0 (r) is bounded
by the sum

2

(2π )1/2K2
mx2

∞∑

=0

1


!
K


m

∂
uνk(x)

∂k


∣∣∣∣
k=k0

= 2

(2π )1/2K2
mx2

uνk0+Km
(x), (A10)

which satisfies condition (iii) above.

APPENDIX B: PROOF OF EQ. (74)

In this Appendix, we provide a proof of Eq. (74). We have〈
�

(nano,zca)
c
′

∣∣r∣∣�(nano,zca)
v


〉
=

∫
all

space
d3rξ

(zca)∗
c
′ (r)ξ (zca)

v
 (r)u∗
c0(r)ruv0(r). (B1)

We show now that this is not a product of the envelope overlap
integral and a r-matrix element taken over the unit cell. In
contrast, we show that this is basically zero. To simplify the
notation, let us define

ξ
(zca)∗
c
′ (r)ξ (zca)

v
 (r) = g(r), (B2)

with the subscripts c
′,v
 suppressed to keep the notation
simple. Now

〈
�

(nano,zca)
c
′

∣∣r∣∣�(nano,zca)
v


〉 =
∫

all
space

d3rg(r)u∗
c0(r)uv0(r)

=
∑
m̄

∫
cell

d3rg(r + Rm̄)u∗
c0(r)

× [r + Rm̄]uv0(r). (B3)

Expanding the envelope functions to first order in r,

g(r + R) � g(R) + �∇g|R · r, (B4)

we have〈
�

(nano)(0)
c
′

∣∣r∣∣�(nano)(0)
v


〉
=

∑
m̄

∫
cell

d3r[g(Rm̄)Rm̄ + g(Rm̄)r + R �∇g|Rm̄
· r

+ r �∇g|Rm̄
· r]u∗

c0(r)uv0(r). (B5)

The first term in the brackets is zero due to the orthogonality of
the u functions, and the last term is a quadrupole term that we
neglect (after all, we are evaluating the dipole matrix element
and multipole corrections to this element would be an intrinsic
conceptual contradiction). Denoting the cell r-matrix element
by

r(cell)
cv = 1

vc

∫
cell

d3ru∗
c0(r)ruv0(r), (B6)

we have 〈
�

(nano)(0)
c
′

∣∣r∣∣�(nano)(0)
v


〉
=

∑
m̄

vc

[
g(Rm̄)r(cell)

cv + Rm̄
�∇g

∣∣
Rm̄

· r(cell)
cv

]

+ nondipole terms. (B7)

We have indicated explicitly the nondipole term; in the
following we will suppress this. We evaluate the m̄ sum
approximately by interpreting it as a Riemann sum and taking
the limit to an integral,

∑
m̄

vc →
∫

d3R, (B8)

which yields

〈
�

(nano)(0)
c
′

∣∣r∣∣�(nano)(0)
v


〉 =
∫

d3R
[
g(R)r(cell)

cv + R �∇g
∣∣
R · r(cell)

cv

]
.

(B9)
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Consider the ith Cartesian component of this equation:
〈
�

(nano)(0)
c
′

∣∣ri

∣∣�(nano)(0)
v


〉

=
∫

d3R

[
g(R)r (cell)

cv,i + Ri

∑
j

∂g

∂Rj

r
(cell)
cv,j

]
. (B10)

The terms in the j sum with j �= i vanish since the integral
over Rj can be trivially performed, yielding the envelope
functions [i.e., g(R)] evaluated at the integration boundary (the

surface of the nanostructure), and by assumption the envelope
functions are zero at that boundary. The i = j contribution
in the j sum can be integrated by parts. The surface term
again vanishes by the same argument (vanishing envelope
functions at the boundary), while the remaining term cancels
exactly the first term in Eq. (B10). Hence, except for nondipole
corrections,

〈
�

(nano,zca)
c
′

∣∣r∣∣�(nano,zca)
v


〉 = 0. (B11)
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