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We describe a recent implementation of the combined GW and dynamical mean field method (GW + DMFT)
for the two-dimensional Hubbard model with onsite and nearest-neighbor repulsion. We clarify the relation of the
GW + DMFT scheme to alternative approaches in the literature, and discuss the corresponding approximations
to the free-energy functional of the model. Furthermore, we describe a numerically exact technique for the
solution of the GW + DMFT equations, namely, the hybridization expansion continuous-time algorithm for
impurity models with retarded interactions. We compute the low-temperature phase diagram of the half-filled
extended Hubbard model, addressing the metal-insulator transition at small intersite interactions and the
transition to a charge-ordered state for stronger intersite repulsions. GW + DMFT introduces a nontrivial
momentum dependence into the many-body self-energy and polarization. We find that the charge fluctuations
included in the present approach have a larger impact on the latter than on the former. Finally, within the
GW + DMFT framework, as in extended DMFT, the intersite repulsion translates into a frequency dependence
of the local effective interaction. We analyze this dependence and show how it affects the local spectral
function.
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I. INTRODUCTION

Understanding the effects of strong electronic correlations
in lattice systems remains a challenge in condensed matter
physics. The competition between the tendency of electrons
to delocalize due to the resulting gain in kinetic energy
and localization by the Coulomb interaction gives rise to a
panoply of interesting phenomena, ranging from simple mass
enhancements in the sense of Landau theory to charge-, spin-,
or orbital-ordering phenomena. To reduce the complexity of
the problem, while still keeping the main qualitative effects,
e.g., of the delocalization-localization transition, one resorts
to low-energy effective models such as the Hubbard or
Anderson lattice models. The two-dimensional single-band
Hubbard Hamiltonian with a static onsite repulsive interaction
U , for example, is believed to describe the physics of the
high-temperature superconducting cuprates.1 Charge-ordering
transitions can be captured when an additional intersite interac-
tion term, mimicking the longer-range Coulomb interactions,
is retained. This motivates the study of the extended Hubbard
model, where charge-ordering effects and screening of the
local interactions due to the nonlocal ones are included in
addition to the pure Hubbard model physics.

In the paramagnetic phase at half-filling, the Hubbard model
exhibits a Mott transition from a metal to a Mott insulator
whose spectral function is characterized by a gap at the
Fermi energy and Hubbard bands corresponding to atomic-
like excitations. This behavior is captured by computational
schemes such as the dynamical mean field theory (DMFT)
(see Refs. 2 and 3 for reviews) and its extensions [C-DMFT,4,5

dynamical cluster approximation (DCA),6 dual fermions,7

dual bosons,8 D�A,9 DMFT + �k
10]. A formalism which

allows one to treat screening by nonlocal interactions is

extended DMFT (EDMFT).11–15 Its combination with the
ab initio GW approach16–18 introduces some momentum de-
pendence into the self-energy, thereby capturing the interplay
of screening and nonlocal correlations. This scheme allows
for a self-consistent computation of the effective “Hubbard
U” in a solid and in principle a fully parameter-free ab
initio simulation approach for correlated materials. The idea
is to take the local part of the self-energy from the EDMFT
calculation and supplement it by the nonlocal component of
the GW self-energy. A rigorous functional formulation, which
is detailed in Sec. II, puts this theory on the same level
of mathematical rigor as, e.g., the functional formulation of
Hohenberg-Kohn density functional theory.

Despite these promising perspectives, the technical difficul-
ties associated with the numerical treatment of the frequency-
dependent effective interaction have for a long time prevented
a self-consistent calculation of spectral properties within
GW + DMFT, even at the model level. Recent progress,
both within approximate schemes19 and numerically exact
Monte Carlo techniques,20,21 is currently giving a new impact
to the field.22–26 In particular, the development of efficient
continuous-time Monte Carlo techniques,27,28 generalized to
dynamical interactions in Refs. 20 and 21, now allows for the
fully self-consistent solution of the GW + DMFT equations,
with high enough accuracy to also extract spectral properties.

In this paper, we use these state-of-the-art techniques to
study an extended Hubbard model with onsite interaction U

and nearest-neighbor repulsive interaction V , and explore the
interplay of screening and nonlocal correlations. We show that
this model, if solved within the EDMFT framework, captures
dynamical screening effects related to the nonlocal interaction
V , high-energy satellite features in the one-particle spectra
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and, for large V , a transition to a charge-ordered state. We then
proceed to study how diagrammatic corrections to EDMFT in
the form of momentum-dependent GW contributions to the
self-energy modify this picture, and compare the results of
self-consistent and non-self-consistent implementations.

The paper is organized as follows: In Sec. II, we discuss
the model. In particular, we will show how the Hamiltonian
formulation of the problem can be recast into an action
or functional formulation. We will explicitly construct two
flavors of free-energy functionals whose stationary points
would give the exact solution of the model, the first one
due to Almbladh et al.29 (see also Ref. 30), the second one
constructed by Sun et al.14 In Sec. III, we present different
methods of solution: extended DMFT, GW , and combined
schemes. We argue that the GW + DMFT formalism can
be derived from the Almbladh free-energy functional, and
discuss the differences to the scheme proposed in Ref. 14.
The latter stems from another energy functional, which would
correspond to a “GD + SOPT + DMFT” method, where D is
the boson propagator associated with screening of the nonlocal
interaction only, used in a GW -like fashion, supplemented
by second-order perturbation theory (SOPT) for the nonlocal
effects of the local interaction and dynamical mean field theory
for the local ones. Numerical techniques for the solution of
the equations are described in Sec. IV and the computational
scheme used in this work is summarized in Sec. V. The results
of our study are presented in Sec. VI. Section VII contains
a summary of our most important findings, and provides
perspectives as to how our work inserts itself into the field.

II. MODEL

A. Hamiltonian formulation

We consider the single-band U -V Hubbard model on a
two-dimensional square lattice, defined by the grand-canonical
Hamiltonian

H = −t
∑
〈ij〉σ

(c†iσ cjσ + H.c.) − μ
∑

i

ni

+U
∑

i

ni↑ni↓ + V
∑
〈ij〉

ninj , (1)

where ciσ and c
†
iσ denote the annihilation and creation

operators of a particle of spin σ = ↑,↓ at the lattice site
i, niσ = c

†
iσ ciσ , and ni = ni↑ + ni↓.

∑
〈ij〉 denotes the sum

over nearest-neighbor bonds, t > 0 is the hopping integral
between two neighboring sites, μ is the chemical potential, U

the onsite interaction between electrons of opposite spin, and
V the interaction between two electrons on neighboring sites,
irrespective of their spin. The number of nearest neighbors is
z = 2d = 4, where d is the dimension.

With certain approximations, this model can be derived
from first principles, as discussed in Appendix A. The
limiting case V = 0 corresponds to the conventional Hubbard
model.31–33 In this study, we will limit ourselves to the
paramagnetic phase at half-filling with repulsive interactions
U > 0 and V > 0.

In the limit of large V , the extended Hubbard model
has been shown to display a transition to a charge-ordered
state characterized by a freezing of charge carriers and a

spatial modulation of the charge density [charge-density wave
(CDW)]. This can be explained by a simple energetical
argument34 in the strongly correlated regime (U � t) at
half-filling: while for U much larger than V , electrons will
lower their energy by arranging themselves one per site to
minimize the onsite repulsion, for V much larger than U ,
electrons will minimize their off-site repulsion by choosing
an arrangement such that one sublattice is occupied by two
electrons per site while the other is empty, leading to a
commensurate charge order. In the metallic phase (U � t), the
effect of V is more easily understood in terms of screening: the
charge fluctuations induced by the V term lead to a reduction
of the local effective interaction.

The U -V Hubbard model has been studied in a variety
of approximations. An early study in the zero-overlap limit
(U/t � 1) has predicted a phase transition between a Mott
insulator and a charge-ordered (CO) insulator at Vc = U/z at
zero temperature,35 while weak-coupling mean field studies
have predicted a transition between antiferromagnetic order
(AFM, i.e., commensurate SDW) and charge order (i.e.,
commensurate CDW) at the same boundary.36,37 This has been
confirmed by Monte Carlo calculations in two dimensions.38

The Vc = U/z boundary has been shown to hold in the
U/V → 0 limit as well as in the U/V → ∞ limit by a study
at half-filling in the infinite-dimensional limit.39 Higher-order
corrections have been considered in Refs. 40 and 41, leading
to a renormalization of the critical temperature and order
parameter, as well as the prediction of phase separation in the
zero-temperature limit. More recently, variational cluster42 and
two-particle self-consistent approaches43 have been applied to
the U -V Hubbard model.

A first DMFT treatment described the opening of a “pseudo-
gap” and the reentrant behavior of the critical Vc as a function
of temperature.44 In this scheme, the V term only contributed
at the Hartree level by shifting the chemical potential since
in the limit of infinite dimensions, the contributions beyond
Hartree of nonlocal terms vanish, while fluctuations due to
local terms such as the onsite Hubbard U do not vanish under
rescaling.45,46 The screening effects contained in the V term
are not captured by standard single-site DMFT. Therefore,
an extended DMFT (EDMFT) scheme has been proposed
to remedy this shortcoming.11–15 Within this scheme, the
nonlocal interactions induce a frequency dependence of the
effective local interaction and lead to a sizable reduction of the
static value of U . In addition, Refs. 14 and 15 showed that one
of the consequences of adding a spatially nonlocal contribution
to the self-energy is to make the system more insulating.

In this work, we give a precise account of how U and
V affect the properties of the local frequency-dependent
interactions, and how the latter in turn modify the spectral
properties of the system, while systematically investigating the
effect of nonlocal GW contributions. We restrict ourselves to
the paramagnetic phase at half-filling and will give all energies
in units of the half-bandwidth (4t). The inverse temperature
will be denoted by β = 1/T (kB = 1).

B. Action formulation

The solution of model (1) amounts to computing the
Green’s functions and other correlation functions. For this
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purpose, it is convenient to write the grand-canonical partition
function Z = Tre−βH as a coherent-state path integral47 Z =∫
D[c∗

i ,ci]e−S where

S[c∗,c] =
∫ β

0
dτ

{ ∑
ijσ

c∗
iσ (τ )[(∂τ − μ)δij + tij ]cjσ (τ )

+U
∑

i

ni↑(τ )ni↓(τ ) + 1

2

∑
ij

vnl
ij ni(τ )nj (τ )

}
.

(2)

c∗
i and ci denote conjugate anticommuting Grassmann fields

for site i [ci(τ + β) = −ci(τ )], tij = −tδ〈ij〉, vnl
ij = V δ〈ij〉, and

δ〈ij〉 = 1 if i and j are nearest neighbors and 0 otherwise. τ

is the imaginary-time variable. We will denote by ωn = (2n +
1)π/β (νn = 2nπ/β) the corresponding fermionic (bosonic)
Matsubara frequencies. The Fourier transforms of tij and vnl

ij

on the lattice are

εk = −2t[cos(kx) + cos(ky)], (3)

vnl
k = 2V [cos(kx) + cos(ky)]. (4)

Using the identity nini = 2ni↑ni↓ + ni , we can rewrite the
interaction terms of Eq. (2) as 1

2

∑
ij vijni(τ )nj (τ ) with vij =

Uδij + V δ〈ij〉, or

vk = U + vnl
k , (5)

provided that we shift the chemical potential μ → μ̃ = μ +
U/2. The action hence becomes

S[c∗,c] =
∫ β

0
dτ

{ ∑
ijσ

c∗
iσ (τ )

[
(∂τ − μ̃) δij + tij

]
cjσ (τ )

+ 1

2

∑
ij

vijni(τ )nj (τ )

}
. (6)

C. Functional formulation

The problem of finding the solution to the Hamiltonian
model (1) or calculating the Green’s function corresponding
to the action (6) can also be formulated in a functional
language. The familiar Luttinger-Ward or Baym-Kadanoff
functionals provide examples of such a construction. In the
present context, a formulation in terms of the free energy
written as a functional of both the Green’s function G and
the screened Coulomb interaction W is the method of choice
since the combined GW + DMFT method can naturally be
viewed as a specific approximation to such a functional.
Indeed, the GW + DMFT solution as formulated in Refs. 16
and 17 can be derived as a stationary point (G,W ) of the
free-energy functional introduced by Almbladh et al.,29 after
approximating the correlation part of this functional by a
combination of local and nonlocal terms stemming from
DMFT and GW , respectively. To draw an illustrative analogy,
GW + DMFT provides an approximation to the correlation
part of the Almbladh free-energy functional, on the same
footing as the local density approximation of density functional
theory48 is an approximation to the exchange-correlation part
of the Hohenberg-Kohn functional of the energy.

In the literature, several variants of functionals of G

and W have been discussed,14,17,30 and different derivations
given. Using a Hubbard-Stratonovich (HS) decoupling as in
Ref. 16, we discuss two flavors of free-energy functionals
which differ by the choice of the part of the interaction
that is decoupled by the HS transformation. The first one
reproduces the  functional introduced by Almbladh on which
the GW + DMFT construction of Ref. 16 is based. The second
one is a variant that was used in the study of the extended
Hubbard model in Ref. 14.

The Hubbard-Stratonovich transformation49 relies on the
following identity:

exp

(
1

2

∫ β

0
dτ bi(τ )Aijbj (τ )

)

=
∫ D[x1(τ ),x2(τ ), . . .]√

(2π )N det A

× exp

(∫ β

0
dτ

{
−1

2
xi(τ )[A−1]ij xj (τ ) ∓ xi(τ )bi(τ )

})
,

(7)

where A is a real symmetric positive-definite matrix, bi(τ )
is a periodic field [bi(τ + β) = bi(τ )], xi(τ ) a real periodic
field, and summation over repeated indices is assumed. In the
following, we will choose the upper sign for the last term.

Decoupling the whole (local and nonlocal) interaction
1
2

∑
ij vij ni(τ )nj (τ ) by the HS transformation corresponds

to applying the above formula (7) to the interaction term in
Eq. (6), that is, to the choice bi ≡ ini , Aij ≡ vij , and xi ≡ φi .
This choice, denoted as HS-UV in the following, leads to the
construction of the  functional as in Almbladh et al.29 and the
formalism of Ref. 17. Within the approximation introduced in
the next section, this corresponds to the GW + DMFT scheme
as introduced in Ref. 16. This approach (which was also used
in Ref. 15) relies on the argument that the two terms, which
represent different matrix elements of the same interaction,
should be treated on the same footing.

In Ref. 14, on the other hand, the HS transform has been ap-
plied only to the nonlocal interaction term 1

2

∑
ij vnl

ij ni(τ )nj (τ )
in the action (2). This approach, dubbed HS-V in the following,
leads to a modified free-energy functional, which we denote
by V . It was motivated by the aforementioned fact that in
the limit of infinite dimensions, with the nonlocal interaction
rescaled as V → V/z, the nonlocal term results in a trivial shift
of the chemical potential, while the onsite interaction remains
nontrivial, justifying a separate treatment for the nonlocal
term.

We will first explicitly derive the two functionals  and
V and, in Sec. VI A, we will compare the results from
both decoupling strategies. The results in the reminder of the
section, finally, are based on the HS-UV decoupling, that is, on
the  functional and the GW + DMFT formalism of Ref. 16.

1. “UV decoupling”: The � functional

In the HS-UV decoupling scheme, the full interaction term
is decoupled via an auxiliary bosonic field φi . Choosing bi ≡
ini , Aij ≡ vij , and xi ≡ φi , the transformation (7) applied to
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the action (2) leads to

S[c∗,c,φ]

=
∫ β

0
dτ

{
−

∑
ijσ

c∗
iσ (τ )

[(
GH

0

)−1]
ij
cjσ (τ )

}
+

∫ β

0
dτ

×
{

1

2

∑
ij

φi(τ )[v−1]ij φj (τ ) + iα
∑

i

φi(τ )ni(τ )

}
,

(8)

where we introduced the fermionic lattice Hartree Green’s
function GH

0 defined by [GH−1
0 ]ij ≡ [(−∂τ + μ + U

2 )δij −
tij ]. For later use, we have moreover inserted a coupling
constant α in front of the fermion-boson coupling term. The
physically relevant case corresponds to α = 1.

The HS transformation replaces an electron-electron inter-
action by an electron-boson interaction, and introduces a new
variable: the auxiliary real boson field φ. This has an important
consequence: even a first-order diagram in this new interaction
contains diagrams of infinite order in the electron-electron
interaction. Making even simple approximations on the new
action can thus lead to nontrivial diagrams for the original
action. Moreover, the electron-boson vertex iφini is local.
This locality ensures that in the limit of infinite dimensions,
the interactions (and in particular V ) will contribute beyond
the Hartree level.

The generating functional of correlation functions is ob-
tained by introducing the bilinear sources Jf and Jb, coupling
to the fermionic and bosonic operators, respectively, so that
the action becomes S[c∗,c,φ] − S[Jf,Jb], with

S[Jf,Jb] =
∫ β

0
dτ dτ ′ ∑

ij

{
Jf,ij (τ,τ ′)c∗

i (τ )cj (τ ′)

+ 1

2
Jb,ij (τ,τ ′)φi(τ )φj (τ ′)

}
. (9)

The fermionic and bosonic Green’s functions for this action
are Gij (τ − τ ′) = −〈T ci(τ )c∗

j (τ ′)〉 = δ�/δJf,ij (τ,τ ′) and
Wij (τ − τ ′) = 〈T φi(τ )φj (τ ′)〉 = −2δ�/δJb,ij (τ,τ ′), where
we have defined

� ≡ − ln Z[Jf,Jb] = − ln Tre−S[c∗,c,φ]+S[Jf ,Jb]. (10)

The noninteracting Green’s functions (obtained by setting
iφini = 0) are, respectively, G|α=0=GH

0 and W (k,iνn)|α=0 =
[v−1

k ]−1 = vk . This gives a first hint as to the physical meaning
of W : without renormalization by the auxiliary bosons, it
corresponds to the bare interaction. Coupling to the bosons,
which represent density fluctuations of the system, introduces
screening into the physical description.

We next perform a Legendre transformation with respect to
the sources Jf and Jb,

�[G,W ] = �[Jf [G],Jb[W ]] − TrJfG + 1
2 TrJbW, (11)

with the reciprocity relations Jf = − δ�
δG

and Jb = 2 δ�
δW

. The
physical Green’s functions will be obtained by setting Jf = 0
and Jb = 0 or, equivalently, by requiring the stationarity of �

with respect to G and W .
The free-energy functional � can be written as

�α=1 = �α=0 + , (12)

where we have defined

 ≡
∫ 1

0
dα

d�

dα
. (13)

� is the well-known Baym-Kadanoff functional,50 while  is
the extension of the Luttinger-Ward functional �[G] to one-
and two-particle propagators.51

The noninteracting (α = 0) part of the � functional is
readily evaluated as

�α=0 = Tr ln(−G) − Tr
(
G−1

0 − G−1
)
G

− 1
2 Tr ln W + 1

2 Tr(v−1 − W−1)W. (14)

Indeed, when α = 0, the action becomes Gaussian and
thus explicitly integrable, namely, �α=0 = − ln Det[−G−1

0 +
Jf ] − ln(Det[v−1 − Jb])1/2. The above definition G = δ�/δJf

imposes (G−1
0 − Jf)G = 1 and similarly (v−1 − Jb)W = 1,

yielding Eq. (14). Finally, stationarity of the full � implies
δ�
δG

= 0 = δ�α=0
δG

+ δ
δG

= G−1 − G−1
0 + δ

δG
for G and 0 =

− 1
2 (W−1 − v−1) + δ

δW
for W . Defining the self-energies as

� = δ

δG
, � = −2

δ

δW
(15)

yields Dyson’s equations for G and W :

G−1 = G−1
0 − �, W−1 = v−1 − �. (16)

Being “ derivable,” these self-energies will obey global
conservation rules.52

The above formulation shows that, formally, solving the
lattice problem defined by Eq. (2) amounts to evaluating the
corresponding  functional, from which G and W can be
derived. In Sec. III, we will describe two complementary ways
of approximating this functional, EDMFT and GW , before
showing how to merge the two approaches, thus arriving at the
GW + DMFT free-energy functional.

2. “V decoupling”: The �V functional

In the HS-V scheme, proposed in Ref. 14, only the
nonlocal interaction term is decoupled via an auxiliary bosonic
field φi . Choosing bi ≡ ini , Aij ≡ vnl

ij , and xi ≡ φi , the
transformation (7) applied to the action (2) leads to

S[c∗,c,φ] =
∫ β

0
dτ

{
−

∑
ijσ

c∗
iσ (τ )

[
G−1

0

]
ij

cjσ (τ )

+αU
∑

i

ni↑(τ )ni↓(τ )

}

+
∫ β

0
dτ

{
1

2

∑
ij

φi(τ )[(vnl)−1]ij φj (τ )

+ iα
∑

i

φi(τ )ni(τ )

}
, (17)

where we used the noninteracting fermionic lattice Green’s
function G0 defined by [G−1

0 ]ij ≡ [(−∂τ + μ)δij − tij ].
Again, a coupling constant α was introduced, and the physical
case corresponds to α = 1. Now, however, the coupling
constant is not only a switch for turning on or off the
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fermion-boson coupling but at the same time also the local
Hubbard interaction.

In principle, the interaction should be a positive-definite
matrix in order for the Gaussian integrals invoked in the
HS transformation to converge. In contrast to the HS-UV

decoupling, where U and V are matrix elements of the
screened Coulomb interaction, which is positive definite, this is
not the case for the interaction of HS-V , vnl

ij . This issue can be
dealt with by adding an auxiliary identity matrix multiplied by
a large enough constant.14 In practice, however, the simulation
results are not affected by the value of this constant.

As before, the generating functional of correlation functions
is obtained by introducing source terms. The fermionic
Green’s function for this action is unchanged compared to
the UV -decoupling case: Gij (τ − τ ′) = −〈T ci(τ )c∗

j (τ ′)〉 =
δ�/δJf,ij (τ,τ ′). The bosonic propagator formally still reads
Dij (τ − τ ′) = 〈T φi(τ )φj (τ ′)〉 = −2δ�/δJb,ij (τ,τ ′). It does
not, however, correspond to the screened interaction, as in
the HS-UV scheme: in the case of vanishing fermion-boson
coupling, the bosonic propagator reduces by construction to
only the nonlocal part of the bare interaction.

The construction of the free-energy functional � proceeds
as before by Legendre transformation with respect to the
sources Jf and Jb,

�V [G,D] = �[Jf[G],Jb[D]] − TrJfG + 1
2 TrJbD, (18)

with the reciprocity relations Jf = − δ�V

δG
and Jb = 2 δ�V

δD
. The

physical Green’s functions will be obtained by setting Jf = 0
and Jb = 0 or, equivalently, by requiring the stationarity of �V

with respect to G and D. Thanks to the choice of the coupling
constant α in front of the interaction and boson-fermion
coupling terms α(U

∑
ni↑ni↓ + i

∑
i φini), �V acquires the

same form as before, �V,α=1 = �V,α=0 + V , with V ≡∫ 1
0 dα d�V

dα
, but it is now a functional of G and D.

The noninteracting (α = 0) part of the � functional reads

�V,α=0 = Tr ln(−G) − Tr
(
G−1

0 − G−1
)
G

− 1
2 Tr ln W + 1

2 Tr[(vnl)−1 − D−1]D. (19)

Finally, stationarity of the full �V reproduces the fermionic
Dyson equation for the Green’s function and self-energy.
For the bosonic part, however, we obtain 0 = − 1

2 [D−1 −
(vnl)−1] + δV

δD
for D. The bosonic self-energy

�V = −2
δV

δD
(20)

is thus not equal to the physical polarization of the system.
Again, solving the lattice problem defined by Eq. (2)

amounts to evaluating the corresponding V functional, from
which � and �V , and in turn G and D, can be derived.
Compared to the previous case of the  functional, however,
the subtlety of D being the screened nonlocal interaction (not
equal to the full W ) requires additional care in the construction
of a combined DMFT scheme.

III. METHODS OF SOLUTION

A. EDMFT

 is a functional of the fermionic and bosonic Green’s
functions Gij and Wij . EDMFT replaces this functional by a

functional of the local components of the Green’s function and
screened interaction only. The numerical procedure outlined
below thus corresponds to a numerically exact solution of
the purely local but otherwise exact �[Gii,Wii]. Similarly,
the HS-V approach constructs a functional of the local parts
of G and D, V [Gii,Dii]. The local Green’s functions can
be obtained by solving an auxiliary effective local problem
defined by the action

SEDMFT
eff,HS-UV = −

∫ β

0
dτ dτ ′ ∑

σ

c∗
σ (τ )G−1(τ − τ ′)cσ (τ ′)

+ 1

2

∫ β

0
dτ dτ ′φ(τ )U−1(τ − τ ′)φ(τ ′)

+ i

∫ β

0
dτφ(τ )n(τ ), (21)

SEDMFT
eff,HS-V = −

∫ β

0
dτ dτ ′ ∑

σ

c∗
σ (τ )G−1(τ − τ ′)cσ (τ ′)

+
∫ β

0
dτ Un↑(τ )n↓(τ )

+ 1

2

∫ β

0
dτ dτ ′φ(τ )D−1(τ − τ ′)φ(τ ′)

+ i

∫ β

0
dτ φ(τ )n(τ ). (22)

These actions are very similar to the lattice actions [Eqs. (8)
and (17)], with GH

0 and G0 replaced by an appropriately
defined dynamical G describing the excursions of an electron
in the lattice from a given site (the impurity) and back, and the
bare and instantaneous interaction v (or vnl in HS-V ) replaced
by the retarded interaction U (or D). The effective actions (21)
and (22) are obtained by integrating out all sites but one in the
lattice action and taking the infinite-dimensional limit. The
derivation of the action for the HS-UV scheme, as well as the
EDMFT loop sketched below, are presented in Appendix B.

Integrating out the φ field in Eqs. (21) and (22) yields the
impurity actions

SEDMFT
eff, HS-UV = −

∫ β

0
dτ dτ ′ ∑

σ

c∗
σ (τ )G−1(τ − τ ′)cσ (τ ′)

+ 1

2

∫ β

0
dτ dτ ′n(τ )U(τ − τ ′)n(τ ′) − 1

2
Tr lnU ,

(23)

SEDMFT
eff, HS-V = −

∫ β

0
dτ dτ ′ ∑

σ

c∗
σ (τ )G−1(τ − τ ′)cσ (τ ′)

+
∫ β

0
dτ Un↑(τ )n↓(τ )

+ 1

2

∫ β

0
dτ dτ ′n(τ )D(τ − τ ′)n(τ ′) − 1

2
Tr lnD,

(24)

which feature a retarded interaction U(τ − τ ′) (for HS-UV )
or D(τ − τ ′) (for HS-V ) between charges.

The solution of this impurity problem, described in detail
in Sec. IV, requires the calculation of the one-particle Green’s
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functions Gloc ≡ −〈T c(τ )c∗(0)〉 and Wloc ≡ 〈T φ(τ )φ(0)〉 (or
Dloc for HS-V ). From Gloc and Wloc, one computes the corre-
sponding self-energies �loc = G−1 − G−1

loc and �loc = U−1 −
W−1

loc [or (�V )loc = D−1 − D−1
loc ]. The EDMFT approximation

identifies the impurity self-energies with the lattice self-
energies: �(k,iωn) ≈ �loc(iωn), �(k,iνn) ≈ �loc(iνn) [or
(�V )loc(iνn)]. This allows one to evaluate (approximate)
lattice Green’s functions G(k,iωn) and W (k,iνn) [or D(k,iνn)]
through Dyson’s equation and estimates of the local lattice
Green’s functions by summation over k. Eventually, one
obtains updated G and U (or D) via

G−1 = G−1
loc[�loc] + �loc, (25)

U−1 = W−1
loc [�loc] + �loc, (26)

D−1 = D−1
loc [(�V )loc] + (�V )loc. (27)

B. GW approximation

While EDMFT can treat strong local correlations, it
completely neglects the nonlocal contributions to the self-
energy. A complementary approach, which treats spatial
fluctuations, but works reliably only in the weakly correlated
regime, is the GW method.53–55 The GW approximation
has been used extensively to investigate the properties of
weakly correlated materials, such as the band gaps of semi-
conductors and is nowadays implemented in several different
electronic structure codes (see, e.g., Refs. 56 and 57). In
these materials, GW correctly accounts for the screening
effects of the electrons at the random-phase approximation
(RPA) level. Schematically, for a general Coulomb interaction
v(r) ∼ 1/r , one-shot GW replaces the bare interaction v of
the Fock self-energy �F ∼ G0v by the screened interaction
W = v/εRPA, where εRPA = 1 − vP0 and P0 ∼ G0G0 is the
dynamical Lindhard function. In a self-consistent scheme,
G0 is replaced by the interacting Green’s function G.58 The
Fock self-energy thus becomes �GW ∼ GW, hence the name of
the approximation. Formally, the GW approximation can be
obtained by Hubbard-Stratonovich decoupling the Coulomb
interaction v via an auxiliary bosonic field φ characterized
by the propagator W ∼ 〈φφ〉. This amounts to replacing the
electron-electron interaction by the indirect interaction of two
electrons mediated by a boson described by φ. The first-order
self-energy diagram in the expansion of this electron-boson
interaction is � ∼ GW.

The standard derivation of the GW approximation relies
on a truncation of Hedin’s equations,53 where the three-
legged vertex � = 1 + δ�

δG
GG� is set to unity. In the

following, we will derive the GW approximation for our
lattice model in a diagrammatic way based on the four-
legged vertices of standard perturbation theory for both
free-energy functionals, that is, both choices of the HS
decoupling. In the HS-V approach, the lattice action of Eq. (8)
contains two interaction vertices: a local electron-electron
interaction Uni↑ni↓ and a local electron-boson interaction
iφini . Consequently, the perturbation expansion of the Green’s
function will contain two types of bare interaction ver-
tices, namely, �(0)

ee (τ1,τ2,τ3,τ4)ijkl = Uδijklδi↑δj↓δk↑δl↓δ(τ1 −
τ2)δ(τ3 − τ4)δ(τ2 − τ3) and �

(0)
eb (τ1,τ2,τ3)ijk = iδijkδ(τ1 −

= + + + . . .

FIG. 1. Diagrammatic expansion of the electron-electron vertex.
From left to right, top to bottom: Bare electron-electron interaction
vertex �(0)

ee . Fully boldified �ee. Expansion of the full electron-
electron vertex �ee.

τ2)δ(τ3 − τ2), which we will represent as shown in Figs. 1
and 2. We will suppose that we can perform the expansions
separately and then sum the two results (which is an approx-
imation since there could well be sequences of interactions
with alternating �(0)

ee and �
(0)
eb ). In the HS-UV approach, there

is only the electron-boson vertex �
(0)
eb .

The vertex �(0)
ee will lead to contributions that are not present

in the HS-UV decoupling scheme. The perturbation expansion
in powers of �(0)

ee yields a series of self-energy diagrams, the
lines of which are noninteracting Green’s functions G0. Since
some higher-order diagrams contain “self-energy insertions,”
the number of diagrams can be reduced by “boldifying” the
lines, namely, by replacing G0 by the interacting Green’s
function G. Subsequently, the number of diagrams can be
further reduced by regrouping the interaction vertices into a
“boldified” vertex �ee pictured in Fig. 1. Thus, the electron-
electron part of the self-energy (beyond the Hartree self-
energy) can be described (Fig. 1) by the exact expression60

�ee = −�(0)
ee GGG�ee, (28)

with bold propagators G and bold vertices �ee. Note that only
the right vertex is boldified to avoid double counting. This

= + + . . .

FIG. 2. Diagrammatic expansion of the electron-boson vertex.
From left to right, top to bottom: Bare electron-boson interaction
vertex �

(0)
eb . Fully boldified �eb. Fully boldified �. Expansion of the

full electron-boson vertex �eb.
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vertex is also called the fully reducible vertex. We stress that
this electron-electron contribution to the electronic self-energy
is absent in the HS-UV approach since in this scheme there is
no longer any electron-electron interaction vertex after the HS
decoupling.

Similarly, the expansion of the partition function in powers
of �

(0)
eb can be simplified by boldifying the G0 and W0 (=v

or vnl) lines and the vertices, leading to graphs of the form
displayed in Fig. 2, corresponding to the expressions

�eb = �
(0)
eb GW�eb, (29)

�eb = −2�
(0)
eb GG�eb. (30)

The expansion for the bold electron-boson vertex �eb is also
pictured in Fig. 2.

The usual GW approximation truncates the expansion of
the electron-boson vertex function �eb after its first term,
namely, by taking �eb ≈ �

(0)
eb = iδ. This simplification, which

amounts to neglecting the so-called vertex corrections, yields
the familiar expressions �GW

eb = −GW and �GW = 2GG.61

For the HS-UV decoupling, � = �eb and thus

�GW
HS-UV = −GW. (31)

For the HS-V decoupling, there is a second contribution
coming from the electron-electron vertex. If one approximates
�ee ≈ �(0)

ee (as in Ref. 14), one gets �GW
ee = −U 2GGG, and

hence

�GW
HS-V = −GD − U 2GGG. (32)

At this point, a few remarks are in order: the two
approximations (31) and (32) are not equivalent. Making the
lowest-order approximation on the electron-electron vertex is a
stronger assumption than truncating the electron-boson vertex.
In the HS-V approach, the series of diagrams corresponding
to Eq. (32) contains the ring of “bubbles” made up of G

and vnl
ij (which contains only the off-site repulsion V ), plus

a second-order diagram in U . In contrast, the diagrams in
�GW

HS-UV contain the ring of bubbles made up of G and
vij (which contains U and V ). Put differently, it not only
comprises the off-site interaction V to all orders (at the RPA
level), but also the onsite interaction U to all orders (at the
RPA level). We thus expect the HS-UV scheme to be better
poised to capture nonlocal effects arising from V and U , while
the HS-V scheme will probably give nontrivial contributions
only in parameter regimes where V plays the dominant
role. Therefore, while benchmarking both approaches in the
results section, we will focus on the formulation in terms of
the Almbladh functional in the following discussion of the
combined GW + DMFT scheme. A similar combination based
on the V functional is possible, leading to a combination of
the GD plus self-consistent second-order perturbation theory
expression of Eq. (32) with dynamical mean field theory, as
described in Ref. 14. We refer to this combination in the
following as “GD + SOPT + DMFT”.

C. GW + DMFT approach

As already hinted at before, EDMFT and GW are com-
plementary approximate schemes: EDMFT provides a good

description of local correlations, while GW captures longer-
range correlations and in particular long-range screening.
Therefore, combining both approximations appears promising.
The GW + DMFT approach16,17 makes an approximation on
[Gij ,Wij ] by decomposing it in the following way:

 ≈ EDMFT[Gii,Wii] + GW
nonloc[Gij ,Wij ], (33)

where GW
nonloc = GW − GW

loc .
While EDMFT will generate the series of local self-energy

diagrams up to infinite order, the nonlocal contributions to 

will be generated in a perturbative way by the nonlocal part of
the GW diagrams, thus avoiding double counting.

In the limit of infinite dimensions, nonlocal diagrams
vanish. Thus, the effect (if any) of the nonlocal contributions
is expected to manifest itself only as the dimension is lowered.
The proximity to a phase transition should also enhance
spatial fluctuations. In principle, the GW contribution should
nonetheless remain a correction to the DMFT part, which
justifies why nonloc[Gij ,Wij ] can be treated on a perturbative
level, while [Gii,Wii] is evaluated to all orders.

The approximate electronic self-energy will be given by
�ij = �loc

i δij + (1 − δij )�GW
ij . The 1 − δij factor ensures that

only the nonlocal part of the GW self-energy is added.
Analogous expressions hold for �ij . This approach is very
general. In the specific case of the extended Hubbard model,
one can expect the GW contribution to become significant
as one approaches an instability in the charge sector, namely,
close to the charge-ordering transition. The GW diagrams can
in principle be replaced by other perturbative diagrammatic
corrections, corresponding to a decoupling of the interaction
in other channels.

IV. NUMERICAL IMPLEMENTATION

A. Solution of the EDMFT impurity problem

The impurity models (23) and (24) can be solved efficiently
using the hybridization-expansion continuous-time quantum
Monte Carlo solver (CTQMC-hyb).27 The formalism has
been previously derived using a Hamiltonian representation
of the impurity model.20,21 Here, we discuss an alternative
derivation based on the effective action, focusing on the case of
action (23). A CTQMC-hyb simulation samples configurations
representing specific time sequences of “hybridization events,”
with weight proportional to the determinant of a matrix of
hybridization functions. The perturbation expansion of the
partition function Z and the summation of diagrams with
identical operator sequences leads to

Z =
∞∑

{nσ }=0

∏
σ

[
1

(nσ !)2

∫ β

0
dτσ

1

∫ β

0
dτ ′σ

1 . . .

×
∫ β

0
dτσ

nσ

∫ β

0
dτ ′σ

nσ
Det�σ

] ∫
D[c∗,c]e−Sat T

×
∏
σ

c∗
σ

(
τ ′σ

1

)
cσ

(
τσ

1

)
. . . c∗

σ

(
τ ′σ

nσ

)
cσ

(
τσ
nσ

)
, (34)

where (�σ )ij = �σ (τi − τ ′
j ) is the hybridization function

evaluated for the time difference between annihilation operator
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overlap

U

D
U

K

0 β

l

FIG. 3. (Color online) Illustration of a Monte Carlo configuration
in the segment representation. The top figure corresponds to a
configuration with one spin-up and one spin-down segment, each
representing a time interval marked by a creation operator (empty
circle) and an annihilation operator (full circle). The overlap of
the segments, corresponding to the width of the hashed region,
yields the weight due to the instantaneous interaction U . The
retarded interaction D(τ − τ ′) is represented by the blue curved lines.
The bottom panel represents the weight of this configuration after
integration of the retarded interaction over the segments. The dashed
blue lines correspond to the interaction K(τ̃i − τ̃j ) between creation
and annihilation operators.

i and creation operator j and

Sat = 1

2

∑
σσ ′

∫ ∫
dτ dτ ′nσ (τ )Uσσ ′(τ − τ ′)nσ ′(τ ′)

+
∫

dτ
∑

σ

cσ (τ )∗ (∂τ − μ) cσ (τ ) (35)

represents the interaction and chemical potential contributions
of action (23). The interaction U can always be split into
a delta-function contribution and a nonsingular contribution
U(τ )σσ ′ = Uδ(τ )(1 − δσσ ′) + D(τ )σσ ′ . (In the HS-V scheme,
this separation is already explicit.) The last factor of Eq. (34)
can be easily evaluated since the time-evolution operators
are diagonal in the occupation-number basis. In the segment
representation,27 each imaginary-time interval with occupa-
tion nσ = 1 is marked by a segment, and the last factor
can (up to a permutation sign) be written as wμwUwD with
wμ = eμ(l↑+l↓) and wU = e−Uloverlap . Here, lσ stands for the
total length of segments of spin σ , while loverlap is the total
overlap between segments of opposite spin (see illustration of
a segment configuration in Fig. 3). The retarded interaction
contributes a factor

wD = e
− 1

2

∑
σ1σ2

∫ β

0 dτ1
∫ β

0 dτ2D(τ1−τ2)σ1σ2 nσ1 (τ1)nσ2 (τ2)

= exp

⎛
⎜⎝ − 1

2

∑
σ1σ2

kσ1 kσ2

∫ τkσ1

τ ′
kσ1

dτ1

∫ τkσ2

τ ′
kσ2

dτ2D(τ1 − τ2)σ1σ2

⎞
⎟⎠,

(36)

where {kσ } represents the collection of segments of spin σ .

Let us now define a function K(τ ) such that K ′′(τ ) = D(τ )
for 0 < τ < β and K(0+) = K(β−) = 0. K is β periodic and
symmetric around τ = β/2. It has a slope discontinuity at
zero, so that the second derivative also gives a delta-function
contribution. In the interval [0,β],

K(τ ) = 1

β

∑
n�=0

D(iνn) − D(0)

(iνn)2
(eiτνn − 1). (37)

Carrying out the integral in Eq. (36) thus yields

ln wD = −1

2

∑
σ1σ2

kσ1 kσ2

[−K
(
τ ′
kσ1

− τ ′
kσ2

) + K
(
τkσ1

− τ ′
kσ2

)

+K
(
τ ′
kσ1

− τkσ2

) − K
(
τkσ1

− τkσ2

)]
+K ′(0)(l↑ + l↓) + 2K ′(0)loverlap. (38)

Using the fact that K(τ ) is an even function, we can
write ln wD = ∑

i>j sisj [K(τ̃i − τ̃j ) − K(0)] + K ′(0)(l↑ +
l↓) + 2K ′(0)loverlap where the time arguments of the hybridiza-
tion events (creation and annihilation operators) are now
ordered as 0 < τ̃1 < τ̃2 < . . . < β and s is +1 for a creation
operator and −1 for an annihilation operator.

We conclude that the retarded part of the interaction,
D(τ − τ ′), results in a retarded “interaction” between all pairs
of impurity creation and annihilation operators, as well as a
shift of the instantaneous interaction U → Ũ = U − 2K ′(0)
and a shift of the chemical potential μ → μ̃ = μ + K ′(0). If
one writes the interaction term in terms of density fluctuations,
1
2

∫∫
n̄(τ )D(τ − τ ′)n̄(τ ′) with n̄ = n − 〈n〉, the only change

induced in the weight is yet another shift of the chemical
potential μ̃ = μ + K ′(0) − 2〈n〉K ′(0). The retarded interac-
tions can be evaluated at negligible computational cost since
the calculation of this contribution for a local update is O(n)
(where n is the number of operators), while the evaluation of
a determinant ratio is O(n2).

In practice, the local bosonic propagator Wloc =
〈T φ(τ )φ(0)〉 needed in Eq. (26) is deduced from the connected
charge-charge correlation function χloc = 〈T n̄(τ )n̄(0)〉 via the
relation

Wloc(iνn) = U(iνn) − U(iνn)χloc(iνn)U(iνn). (39)

Indeed, using Eq. (21), Wloc can be reexpressed as Wloc =
−2 δ ln Z

δU−1 . The chain rule δ ln Z
δU−1 = −U δ ln Z

δU U and Eq. (23) give
δ ln Z
δU = − 1

2χloc + 1
2U−1, and hence one arrives at Eq. (39). An

analogous expression holds for Dloc.

B. Self-consistency

The GW + EDMFT scheme is generally expected to work
well if the nonlocal GW contribution to the self-energy is a
relatively small correction to the local self-energy computed
by EDMFT. It thus makes sense to first obtain a reasonable
guess of the final solution by applying EDMFT only, and
then compute the nonlocal correction and study its effect
on the properties of the system. Following this observation,
we implemented the GW + EDMFT scheme as follows: for a
given U and V , we (i) obtain a converged EDMFT solution,
(ii) take the EDMFT solution as the starting point for a
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self-consistent GW + EDMFT calculation, and (iii) stop when
local and nonlocal observables have converged.

This is not the only possible combination of EDMFT with
GW , although the final result of the self-consistent scheme
should not depend on the starting point, provided the scheme
converges. For instance, one can choose to initialize the scheme
by computing �GW and �GW from the noninteracting propa-
gators G0(k,iωn) = [iωn + μ − ε(k)]−1 and W0(k,iνn) = vk .
Yet, these propagators yield a very large GW polarization
owing to their metallic character (they correspond to the
U = 0, V = 0 case). Especially for the regions of interest
here (V close to Vc and finite U ), this large polarization is
far from the expected solution. Indeed, one can observe that
when taking an insulating G and, e.g., W = v as inputs for
GW , the resulting polarization is small compared to the local
polarization �loc.

C. Analytical continuation

The nontrivial structures of the frequency-dependent in-
teraction result in additional features in the local spectral
function A(ω) = − 1

π
ImG(ω + iη). For example, the case

ImD(ω) = −λ2 [δ(ω − ω0) − δ(ω + ω0)], studied in Ref. 21,
corresponds to the Holstein-Hubbard model, for which the
local spectral function is expected to display plasmonic peaks
at multiples of the “plasmon” frequency ω0.19 However,
the commonly used maximum entropy (MaxEnt) analytical
continuation62 tends to smooth out high-energy features and
therefore a dedicated scheme must be implemented to recover
the sought-after features. A solution to this problem has been
proposed in Ref. 19, inspired from the exact expression of
the Green’s function in the atomic limit.63 We thus proceed as
follows: (a) From U(iνn) (or, equivalently, D), we compute the
bosonic function B(τ ) = exp[−K(τ )], its Fourier transform
B(iνn) and, using a Padé procedure,64 its spectral function
B(ω). (b) From G(τ ), we compute an auxiliary function
Gaux(τ ) = G(τ )/B(τ ) and use MaxEnt to obtain Aaux(ω). (c)
Finally, we compute the spectral function as the convolution

A(ω) =
∫ ∞

−∞
dε B(ε)

1 + e−βω

(1 + eβ(ε−ω))(1 − e−βε)
Aaux(ω − ε).

(40)

V. SUMMARY OF THE COMPUTATIONAL SCHEME

The computational scheme can be summarized as follows
for the HS-UV [resp. HS-V ] decoupling:

(1) Start with an initial guess for �(k,iω) and �(k,iν): for
instance, � = 0 and � = 0 (noninteracting limit).

(2) Lattice Green’s functions. Compute G(k,iω) and
W (k,iν) [resp. D(k,iν)] via Dyson’s equation with vk [resp.
vnl

k ] as the bare interaction.
(3) EDMFT self-consistency. Extract Gloc(iω) =∑
k G(k,iω) and Wloc(iν) = ∑

k W (k,iν) [resp. Dloc]
and use Eqs. (25) and (26) to find G(iω) and U(iν) [resp.
D(iν)].

(4) Impurity solver. Compute Gloc(τ ) and χloc(τ ) [resp.
χV

loc(τ )], as well as Wloc = U − UχlocU [resp. Dloc = D −
DχV

locD]. From these, extract the self-energies �loc = G−1 −
G−1

loc and �loc = U−1 − W−1
loc [resp. (�V )loc = D−1 − D−1

loc ].

(5) GW + DMFT step (optional).
(a) Compute

�GW (k,τ ) = 2
∑

q

G(q,τ )G(q − k, − τ ),

�GW (k,τ ) = −
∑

q

G(q,τ )Wc(k − q,τ )

+
∑

q

G(q,0)v(k − q),

where Wc = W − v is the regular part of W .
Respectively, for HS-V ,

�GW (k,τ ) = −
∑

q

G(q,τ )D(k − q,τ ),

−U 2
∑

q

G(q,τ )�GW (q − k,τ ).

(b) Extract nonlocal parts from GW :

�GW
nonloc(k,iω) = �GW (k,iω) −

∑
k

�(k,iω),

�GW
nonloc(k,iν) = �GW (k,iν) −

∑
k

�(k,iν).

(c) Combine �loc(iω) and �GW
nonloc(k,iω) into �(k,iω),

as well as �loc(iν) and �GW
nonloc(k,iν) into �(k,iν).

(6) Go back to step 2 until convergence.
In a pure EDMFT scheme, steps 5(a)–(c) are skipped. Note

that the decomposition of W into Wc and v in 5(a) is aimed
at suppressing the singular part of W , namely, in the limit
of infinite frequency, W goes to a finite value v, whereas
Wc vanishes, making the Fourier transform of the latter well
defined. Figure 4 gives an overview of the implementation of
the GW + DMFT scheme.

VI. RESULTS

In this section, we present numerical results for the half-
filled U -V Hubbard model on a two-dimensional square
lattice using the different approximate formalisms discussed
in the previous sections. We solve the impurity problems
using the CTQMC-hyb method. Unless otherwise stated, the
computations are performed at inverse temperature β = 100
(we use the half-bandwidth 4t as the unit of energy). The k

sums are discretized in the irreducible Brillouin zone on a
80 × 80 grid, while the imaginary-time correlation functions
are measured on a grid of N = 1000 equally spaced points. Up
to 40 EDMFT steps are required to reach convergence close to
the Mott transition.

A. Phase diagram

Figure 5 shows the phase diagram in the space of the
parameters U and V for the two decoupling schemes HS-UV

and HS-V . The top panel shows the EDMFT result, the bottom
panel corresponds to GW + DMFT. There are three phases:
(i) a Fermi liquid (FL) metal at small U and small V , (ii) a
charge-ordered (CO) insulator at small U and large V , and (iii)
a Mott insulating (MI) phase at large U and small V .
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FIG. 4. Computational scheme (HS-UV decoupling).

The phase boundary to the charge-ordered phase has been
located by approaching the phase transition from below Vc.
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FIG. 5. (Color online) Phase diagram of the U -V Hubbard model
for HS-UV (red), and HS-V (green) decoupling at β = 100. The top
panel shows the EDMFT result, and the bottom panel compares the
GW + EDMFT result for the HS-V scheme to EDMFT.

The phase transition corresponds to a diverging charge suscep-
tibility, namely, to the formation of a pole in the Fourier trans-
form χ (k,ω) of χij (t − t ′) ≡ ∂〈ni(t)〉/∂hj (t ′), where hj (t) is
a probe field. Specifically, the charge-ordering transition will
be signaled by a divergence at Q = (π,π ) and ω = 0 since
the probe field for this phase is hi(t) = heiQRi . Using the
action (2), one can easily show that χij (t − t ′) = 〈n̄i(t)n̄j (t ′)〉.
Recalling that W = v − vχv, we find the exact relation

χ (k,ω) = − �(k,ω)

1 − vk�(k,ω)
(41)

for the HS-UV scheme. Similarly, for the HS-V scheme,
χV can be computed from D = vnl − vnlχV vnl or
χV = −�V /(1 − vnl�V ). This shows that the transition
also corresponds to the appearance of a pole in the fully
screened interaction W (k,iνn), and provides a rigorous
definition of Vc for HS-UV and HS-V , respectively:

1 − (U − 4Vc)� [k = (π,π ),ω = 0] = 0, (42)

1 + 4Vc�V [k = (π,π ),ω = 0] = 0. (43)

On the other hand, the phase boundary between the metal
and the Mott insulator is signaled by a vanishing spectral
weight at the Fermi level, which is related to the imaginary-
time Green’s function by AT →0(ω = 0) = limβ→∞ β

2 G( β

2 ).
The curvature of the FL-MI phase boundary shows that
increasing the nearest-neighbor repulsion V makes the system
more metallic.

Within EDMFT, both decoupling schemes yield very simi-
lar phase diagrams. In the temperature range β ∈ [25,100], the
phase diagram also does not depend much on temperature. The
boundary of the charge-ordered phase is characterized by two
main regimes: for U < Uc ≈ 2.5, dVc/dU ≈ 1

4 , which is the
prediction of mean-field studies. For U > Uc, dVc/dU ≈ 2.
The transition between the two regimes is marked by a kink.
This kink also coincides with the point where the charge-
ordered critical line meets the Mott critical line Uc(V ). The
latter is only weakly dependent on V . The sudden change of
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FIG. 6. (Color online) Imaginary-frequency data for the EDMFT calculations at U = 2.2 and indicated values of V (HS-UV scheme). (a)
ImGloc(iωn). (b) Im�loc(iωn). (c) ReWloc(iνn). (d) Re�loc(iνn).

slope in the critical line can be ascribed to the very nature of the
two transitions at stake: one is a transition between a metal and
a charge-ordered insulator, the other takes place between an
incompressible Mott insulator and a charge-ordered insulator.
The slope change is accompanied by a discontinuity of the
Vc line at its junction with the Mott critical line: this is
due to the first-order character of the Mott transition within
DMFT. We note that the critical value Vc(U ) for U > Uc is
substantially larger than its naive mean field estimate. EDMFT
may, however, overestimate the effect of the local interaction,
so that the true value of Vc is lower.

The effect of the GW contribution to the phase diagram
depends on the decoupling scheme. For HS-UV , GW does
not have any influence on the phase boundaries, while in
HS-V , GW substantially lowers the FL-CO phase boundary.
This has the following origin: the HS-V scheme resums the
diagrammatic series for V and for U separately (and treats U

only to second order), whereas the HS-UV scheme resums
both terms simultaneously. HS-UV is thus better poised to
capture the competition between the localizing term U and the
delocalizing term V . That GW in this scheme does not alter
the phase boundaries should therefore come as no surprise: it
merely shows that the local (EDMFT) physics alone fixes the
critical value of the nonlocal interaction, and suggests that the
HS-V decoupling underestimates Vc. For this reason, we will
henceforth restrict most of our attention to the HS-UV scheme.

Figure 6 plots the results for ImGloc(iωn), ReWloc(iωn),
Im�loc(iωn), and Re�loc(iωn) corresponding to the EDMFT
simulation at U = 2.2 and various values of V . As V

grows, |ImG(iω0)| increases and |�loc(iω0)| decreases, which
indicates that the system becomes more metallic as a result of
screening by V . Indeed, the screening effect can be quantified
by the static values of the fully screened interaction W (0) ≡
Wloc(iν0) and of the partially screened interaction U (0) ≡
U(iν0), which are plotted in Fig. 9. The nearest-neighbor
repulsion V induces a screening of the onsite Hubbard U ,
which becomes U (0). When V increases, W (0) and U (0) get
smaller and smaller, resulting in a more metallic behavior. For
U close to Uc, the transition to the charge-ordered insulator
occurs close to the value of V for which the cost of doublon
formation vanishes, i.e., when W (0) = 0.

The last panel of Fig. 6 shows the polarization �loc(iνn)
(which is the local bosonic self-energy). |�loc(iν0)| gets larger
as one approaches the phase boundary.

B. Screening in EDMFT

1. Screened interaction

The off-site interactions translate into an effective retarded
interaction at the level of the impurity action, as made apparent
in Eq. (23). The frequency-dependent local interactions in the
HS-UV formalism are now described by U(ω) [or U + D(ω)
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FIG. 7. (Color online) Partially screened U(ω = 0) as a function
of U (HS-UV scheme).

in the HS-V decoupling scheme]. They differ from the fully
screened local interactions Wloc insofar as they only include
nonlocal screening effects, at least in EDMFT. In particular,
when the interactions become local (V = 0), U becomes static
and equal to the bare interaction U , and EDMFT becomes
exactly equivalent to the usual single-site DMFT. This is shown
in Fig. 7, where U(ω = 0) = U for V = 0, and explains the
location of the Mott transition for V = 0, which coincides with
that found within single-site DMFT applied to the Hubbard
model. Moreover, one should also emphasize that using a
partially screened interaction (i.e., screened only by nonlocal
processes) to solve the impurity model, one avoids double
counting of the local screening effects, which are taken into
account in the DMFT calculation.

In the following, we will focus more specifically on Wloc,
which we have analytically continued to real frequencies using
a Padé scheme.64 The shape of Wloc(ω) at U = 2.2 and various
V is displayed in Fig. 8. Wloc(ω) has the typical shape of a
screened interaction: the real part features two distinct energy
scales, a bare interaction W∞ = Wloc(ω → ∞) = U at high
energies and a screened interaction W (0) = Wloc(ω = 0) < U

at low energies, separated by a screening frequency ω0. Its
Kramers-Kronig-conjugated imaginary part has most of its
spectral weight concentrated around ω0. We note that U(ω)
has a very similar overall shape. Also noteworthy is the fact
that ReWloc(ω) can become negative at a nonzero frequency
before its static value vanishes, that is, before the phase
transition. This signals that charge-ordering fluctuations to
charge-ordered configurations are already enhanced in the
system before the phase transition occurs.

In order to characterize screening effects, we will mainly
focus on the following three parameters: (i) the value of the
local static screened interaction Wloc(0), (ii) the screening
frequency ω0, and (iii) the strength λ of this screening, which
we will define later.

Wloc(0) is the effective fully screened interaction between
two electrons on the same lattice site. Its evolution across the
U -V plane for the HS-UV scheme is illustrated in Fig. 9.
Wloc(0) decreases for increasing V , and drops to zero as
V approaches Vc. This is intuitively easy to understand:
the critical line corresponds to the locus where the cost
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FIG. 8. (Color online) Influence of V on the effective local
interaction for U = 2.2 (HS-UV scheme). Upper panel: ReWloc(ω).
Lower panel: ImWloc(ω).

Wloc(ω = 0) for the formation of doublons vanishes. The lower
panel of Fig. 9 shows that the screening of the local interaction
is much more efficient and gradual in the metallic phase than
in the Mott insulator. In the insulating phase, screening is
weak and weakly V dependent, all the way up to Vc. Let us
emphasize that there are screening effects even when V = 0 in
the metallic phase (middle panel, red curve with crosses). This
shows that in a EDMFT description of the simple Hubbard
model (V = 0), there is a screening of the static U by the local
polarization caused by U itself, provided one uses the HS-UV

decoupling scheme. In the HS-V method, the screening comes
only from V , as D originates from the HS decoupling of the
nearest-neighbor interaction only. The local static interactions
without polarization effects are shown in Fig. 9. As expected,
U(ω = 0) > W (0) since the local polarization further screens
the local interaction.

2. Screening frequency

A relevant question is in which parameter regime a model
with a static screened interaction provides a reasonable
approximation. A useful quantity to investigate in this context
is the screening frequency ω0, whose precise determination
is a somewhat tricky task owing to the Padé procedure’s
inaccuracy. Instead of measuring ω0 as the minimum of
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ImWloc(ω), we have found it more meaningful to determine
it from the first moment of ImWloc(ω): ω0 ≈ 〈ω〉 ≡∫ ∞

0 dω ω ImWloc(ω)/
∫ ∞

0 dω ImWloc(ω), whose dependence
on U and V in the HS-UV scheme is presented in the upper
panel of Fig. 10. This figure shows that the screening frequency
is only weakly dependent on the nearest-neighbor interaction
V . On the other hand, the larger the bare interaction U = U∞,
the larger the screening frequency.

The U dependence of 〈ω〉 (for V = 0) is discussed in
Appendix D, where we also provide an interpretation of the
two regimes, separated by a kink at U = Uc, based on the
so-called linearized DMFT.65

3. Electron-boson coupling

Motivated by the Hamiltonian representation of the im-
purity model with dynamically screened interaction (see
Appendix C), we define the strength of the screening by the

parameter λ ≡
√

| ∫ ∞
0 dω ImU(ω)|. It follows from Eq. (C5)

that λ ∝
√∑

p λ2
p, where λp is the coupling of the harmonic

oscillator with frequency ωp to the charge on the impurity.
Therefore, λ can be interpreted as the strength of the coupling
to the charge fluctuations. Its dependence on U and V is pre-
sented in the lower panel of Fig. 10. Except in the vicinity of the
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phase transition to the charge-ordered phase, λ is proportional
to V . The square of the proportionality constant (see inset66)
decreases with increasing U , and exhibits two regimes sepa-
rated by a kink at U = Uc: for U � Uc, d

dU
[( dλ

dV
)2] ≈ −2.2,

otherwise d
dU

[( dλ
dV

)2] ≈ −0.34. Recalling that the effective
dynamical interaction is, schematically, λ2D, where D is the
propagator of the mediating boson (see Appendix C), one can
observe that [dλ/dV ]2 is directly proportional to the effective
interaction, since λ ≈ [dλ/dV ]V =0 · V . The inset of the upper
panel of Fig. 10 thus gives a direct indication of the strength of
dynamical effects. In particular, it indicates once again that
screening in the Mott insulator is radically different from
screening in the Fermi-liquid metal.

4. Influence of screening on spectral properties

The screening effects coming from U and V have some
impact on the local spectral function. In the weakly corre-
lated regime (U < Uc), the nonlocal interactions V tend to
smooth out the incoherent Hubbard bands and transfer some
spectral weight to the quasiparticle peak and into the gap
region between the quasiparticle peak and the Hubbard bands
(Fig. 11, upper panel). This behavior is consistent with the
imaginary-frequency data showing a more metallic behavior
as V increases. The effects are more dramatic in the strongly
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correlated regime (U > Uc), where one observes new features
in the local spectral function, as shown in the lower panel
of Fig. 11. In addition to the two Hubbard bands located at
ω = ±U/2, the spectral function has two symmetric satellites
at ω = ±(U/2 + ω0), whose spectral weight grows with V .
The position of the peaks comes from the convolution in
Eq. (40) since Aaux contains spectral weight at ±U/2 and
B contains weight at ±ω0.

C. Momentum dependence in GW + DMFT

1. Nonlocal self-energy

Figure 12 displays �GW
nonlocal(k,iω0) and �GW

nonlocal(k,iν0) in
the metallic phase near the charge-ordering transition. These
quantities vanish in the limit of large dimensions and are thus
neglected in the EDMFT treatment. The GW contribution to
the imaginary part of the electronic self-energy � is negligible
with respect to the local self-energy [for instance, at U = 2
and V = 0.6, Im�loc(iω0) = −0.18, compared to a nonlocal
GW self-energy < 0.001]. This holds across the Fermi-liquid
phase and the Mott insulating phase. The real part of �GW

nonlocal is
relatively large away from the EDMFT Fermi surface, but does
not alter this Fermi surface. On the other hand, the nonlocal
polarization is comparable to its local counterpart [�loc(iν0) =
−0.39 for U = 2, V = 0.6].
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Bottom: Re�GW
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This should have an impact on the phase diagram if one
recalls the criterion of Eq. (42). However, the local observables
are also modified in the self-consistent calculation, as will be
described in the next section, which prevents a direct prediction
of the effect of the nonlocal terms. As shown in Fig. 5, the effect
of GW depends on the decoupling scheme. For the HS-UV

scheme, the GW contribution has a negligible influence on the
phase diagram. For the HS-V scheme, the GW contribution
has a large effect on the phase boundary between the metallic
phase and the charge-ordered phase. The nonlocal polarization,
peaked at k = (π,π ), enhances nesting effects and leads to a
substantially lower Vc compared to EDMFT.

2. Nonlocal polarization

Two-particle quantities such as the charge-charge cor-
relation function or the electron energy-loss spectrum are
quite strongly affected by the nonlocal GW contribution
to the polarization, as discussed in Ref. 24. In particular,
GW + DMFT gives insights into the nature of the collective
modes in the homogeneous system, which EDMFT cannot
give due to the local nature of its polarization.

Figure 13 shows results for the polarization function. We
note that within single-site DMFT, one could in principle
obtain a nonlocal polarization function from the momentum-
dependent one-particle Green’s function G(k,ω) (evaluated
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FIG. 13. (Color online) Comparison of various polarizations for U = 1.5, V = 0.4 (HS-UV scheme).

with the local EDMFT self-energy) by computing the polariza-
tion bubble GG. While this approximation to the polarization
is momentum dependent, it nevertheless lacks any information
about the local vertex other than through G itself. However, as
was demonstrated in Ref. 24, the local vertex plays a major role
when the strength U of local correlations grows. In EDMFT,
on the other hand, the locality of the polarization function is
assumed [see Fig. 13(a)], but the nonperturbative local vertex is
taken into account since the local polarization is obtained from
the nonperturbative local charge-charge correlation function.
The GW + DMFT scheme allows one to overcome both
limitations by encompassing both the local vertex (through the
local part of the polarization) and the momentum dependence
(through the nonlocal part of the bubble). In other words,
conceptually, GW + DMFT contains more than just the bubble
(through the local part of the polarization) and still yields
a momentum-dependent polarization, which is more than
both single-site DMFT and extended DMFT can achieve. To
illustrate this point, we show in Fig. 13 the polarization bubble
computed from a converged EDMFT calculation in Fig. 13(c),
and the full, converged polarization of a GW + DMFT
calculation in Fig. 13(d) (for U = 1.5, V = 0.4).

Using the output of the converged EDMFT calculation,
namely, the local self-energy �imp and the polarization
Pimp, one could again construct a momentum-dependent
polarization in the following way: first, compute the
one-particle Green’s function G(k,ω) from �imp through
Dyson’s equation; second, compute the bubble GG; third,

combine it with Pimp to get the momentum-dependent
polarization: P (k,ω) = Pimp(ω) + (GG)nonloc(k,ω). This
approach is similar to the GW + DMFT method with the
important difference that it is not self-consistent, namely,
the computed momentum-dependent polarization is not in
turn used as an input to the next computational step. Even
if the momentum dependence is physically important, it
will not in this scheme have a consequence on the local
one-particle spectra, for example. In Fig. 13, we compare this
polarization [Fig. 13(b)] to the GW + DMFT polarization
[Fig. 13(d)]. While being quite similar in certain regions of
the Brillouin zone, the two functions are very different in
others [above the (π,0) point for instance]. In particular, one
notices that the structure of the polarization computed on top
of EDMFT, albeit momentum dependent, is very similar to the
local EDMFT polarization [Fig. 13(a)] away from the (0,0)
point, while the GW + DMFT polarization shows significant
deviations from it throughout the Brillouin zone.

D. Influence of the self-consistency on local observables

The self-consistency condition leads to an “adjustment” of
the local quantities to the nonlocal self-energies, as shown in
Fig. 14, which illustrates the convergence from EDMFT to
GW + DMFT: GW not only adds a nonlocal contribution to
the self-energy and polarization, it also induces a change in
the local observables (see also Fig. 15).
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The GW + DMFT local spectral function features more
pronounced Hubbard bands than the EDMFT spectrum.
This is a sign of increased local correlations. Inspection of
the imaginary frequency data corroborates this observation:
Wloc(ω = 0) is enhanced with respect to the EDMFT result,
indicating that the local interactions are stronger. Likewise,
|ImGloc(iω0)| is reduced in GW + DMFT.

These observations mean that the local quantities have be-
come more “insulating” in character as a result of the addition
of the nonlocal GW self-energy. This can be interpreted in
the following way: contrary to the EDMFT case, where all
the screening and correlation effects are absorbed into the
local self-energy, in GW + DMFT some of these effects are
now carried by the nonlocal components. Specifically, GW

nonlocal self-energies carry important screening effects owing
to the very nature of the GW approximation. This leads to
a redistribution of the screening between local and nonlocal
observables: local observables become less screened, and thus
more correlated.

We note that the convergence properties depend on the
observable. For example, after the first iteration, ImGloc looks
more metallic than the EDMFT result, while the converged
solution is more strongly correlated. In the case of ReWloc

already the first iteration leads to an increase in the interaction.
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FIG. 15. (Color online) Influence of the self-consistency for U =
2, V = 0.4 (HS-UV scheme). (a) ImGloc(iωn). (b) ReWloc(iνn). (c)
Aloc(ω) (obtained from MaxEnt continuation).

In both cases, the result is clearly not converged after one
iteration, which casts some doubt on the validity of “one-shot”
GW + DMFT schemes.

Figure 15 shows the converged ImGloc and ReWloc for the
three self-consistent schemes: EDMFT alone, GW + DMFT,
and GW alone (with the GW + DMFT result as a starting
point). As expected, GW is the most metallic in character and
the corresponding spectrum does not have Hubbard bands.
Interestingly, GW + DMFT is not a kind of “average” between
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TABLE I. Summary of the different schemes.

HS-V HS-UV

Single-site DMFT Accurate treatment of local interactions from weakly correlated limit to atomic limit. Cannot deal with long-range
interactions beyond Hartree level. Local description of correlations through a local self-energy. Captures Mott
transition.

EDMFT Accurately handles local interactions from weakly correlated limit to
atomic limit. Captures Mott transition and charge-ordering transition.
Deals with long-range interactions through dynamical interactions at
the local level. Describes local one-particle correlations through the
local self-energy. Captures local polarization processes.

Same as HS-V . Additionally, allows one to
compute a fully screened interaction Wloc(ω),
screened by a nontrivial local polarization,
even when V = 0.

GW Accurately handles local and nonlocal (including long-ranged)
interactions in the weakly correlated regime. Captures local and
nonlocal polarization processes, among which nesting effects. The
self-energy sums up the subset of local and nonlocal diagrams to
infinite order in V , to second order in U , possibly overestimating
nonlocal processes.

Same as HS-V , but treats both local and
nonlocal interaction terms at the same level
of approximation, i.e., to infinite order.
Hence, gives better account of competition
between local and nonlocal processes.

GW + DMFT Accurate treatment of local and nonlocal (including long-ranged)
interactions from weakly correlated regime to atomic limit. Captures
local and nonlocal polarization processes, among which nesting
effects. At a given iteration, the self-energy sums up all the local
diagrams to infinite order in U and V , as well as a (RPA) subset of
nonlocal diagrams to infinite order in V , to second order in U , thus
overestimating nonlocal processes; in particular, underestimates the
value of the critical V to the charge-ordered phase compared to
HS-UV . Intersite antiferromagnetic fluctuations are not included.

Same as HS-UV , but the nonlocal diagrams
treat U and V on the same footing, curing the
deficiency of HS-V ; in particular, gives
better estimate of critical V to the
charge-ordered phase.

GW and EDMFT. It exhibits stronger correlation effects than
both GW and EDMFT.

E. Summary

Table I gives a general overview of the results presented
above.

VII. CONCLUSIONS

We have implemented the EDMFT and GW + DMFT
methods and presented an application to the single-band ex-
tended Hubbard model. In a first step, the two formalisms have
been reviewed in detail: we have discussed the construction
of the free-energy functional, and compared two different
flavors of such functionals that have been proposed in the
literature, corresponding to two distinct decouplings of the in-
teraction term, and leading, respectively, to the GW + DMFT
(Refs. 16–18) and GD + SOPT + DMFT (Refs. 14 and 15)
approaches. We have presented the details of our implemen-
tation of a fully self-consistent GW + DMFT scheme based
on a numerically exact continuous-time quantum Monte Carlo
solver adapted for frequency-dependent local interactions. The
investigation of the frequency dependence of these interactions
for parameters ranging from weak to strong coupling shows
that the U dependence of the local screening frequency
reflects the form of the local one-particle spectrum. We have
investigated the spectral properties of the extended Hubbard
model within three self-consistent schemes, namely, EDMFT,
GW , and GW + DMFT. The nearest-neighbor repulsion V

leads, in the Mott insulator, to high-energy satellites in the
local spectra.

The GW + DMFT calculations demonstrate that the non-
local contributions to the self-energy coming from the GW

diagrams are quite small in the case of the extended Hubbard
model. In view of the strong momentum dependence observed
in self-energies obtained from cluster DMFT calculations for
the two-dimensional Hubbard model as one approaches the
Mott transition,67,68 our results confirm the importance of spin
fluctuations, suggesting that further nonlocal diagrams have to
be considered in order to capture the dominant fluctuations in
the extended Hubbard model.

The model calculations presented in this paper can be
straightforwardly extended to the multiorbital case and to
additional, longer-range matrix elements of the screened
interaction, paving the way for realistic first-principles material
calculations.26 It is worthwhile to note that the GW + DMFT
method and its variations are a computationally cheap way of
incorporating the leading vertex contribution, in the form of
the EDMFT self-energy, into the description of a solid, and
to introduce some spatial fluctuations through a perturbative
scheme. This contrasts with methods involving an explicit
computation of the vertex functions7,9,69 whose implemen-
tation for simple model systems is already a formidable
challenge.

In real materials, further degrees of freedom, stemming
for example from the multiband nature and ligand orbitals,
lead to a renormalization and/or frequency-dependence of the
parameters in the low-energy description. Relatively weak, but
nonlocal correlation effects are expected to play a dominant
role in the case of extended ligand or higher-lying empty states,
thus providing an additional motivation for a combination
of GW and DMFT. Indeed, GW provides an accurate
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and comparatively inexpensive description of the screening
from “uncorrelated” bands, making the application of the
GW + DMFT method to electronic-structure calculations for
realistic solids highly promising.
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APPENDIX A: EXTENDED HUBBARD MODELS FROM
FIRST PRINCIPLES

The Hamiltonian H of the extended Hubbard model is
supposed to describe the low-energy physics of correlated
materials. H can be regarded as an effective Hamiltonian
resulting from a “downfolding procedure,” based on some
localized Wannier basis. The downfolding procedure is akin to
a renormalization group transformation which, starting from
all the bands resulting from a LDA calculation, produces an
effective model for the bands in a low-energy window by
integrating out the remaining bands. In this process, the bare
Coulomb interaction v(r,r ′) = 4πe2/|r − r ′| is transformed
into a frequency-dependent partially screened interaction
Wr (r,r ′,ω),71–73 which acts in the low-energy subspace. In
principle, Wr is computed as Wr = v(1 − vPr )−1, where Pr is
the polarization obtained when transitions within the effective
model are removed. The matrix elements of this interaction in
the Wannier basis are

Vijkl(ω) =
∫

d3r d3r ′φ∗
i (r)φ∗

j (r ′)Wr (r,r ′,ω)φk(r)φl(r
′),

(A1)

where φi denotes a Wannier orbital centered at site i.
Model (1) involves three approximations on the above

matrix elements: (i) the frequency dependence of Vijkl(ω) is
neglected: Vijkl ≡ Vijkl(ω = 0), (ii) the interaction is restricted
to density-density terms Vijkl = Vijij δikδjl ≡ Vij , and (iii)
only the onsite matrix element U ≡ Vii and the nearest-
neighbor matrix element V ≡ Vij (with i and j nearest
neighbors) are retained. The last assumption is valid only if
Wr (r − r ′,ω = 0) decays rapidly in space.74 The neglected
non-site-diagonal parts of the electron-electron interactions
such as, for instance, the bond-charge-bond-charge matrix
elements W ≡ Vijji , are believed to be small in usual solids.75

We also mention that a “locally unscreened cRPA” approach
has been recently implemented.76,77 It is geared at a direct
construction of an impurity Hubbard interaction, akin to the
one resulting from GW + DMFT, but computed from a single-
shot RPA calculation.

APPENDIX B: DERIVATION OF THE SINGLE-SITE
EDMFT ACTION USING THE CAVITY METHOD

In the following, we use the cavity method2 to derive
the EDMFT action (22) and the EDMFT self-consistency
equations which fix G and U . To this end, let us focus on
a given site (denoted by the index 0) and split the lattice
action [Eq. (8)] into three parts: S = S0 + S(0) + �S where
S0 denotes the action of the site 0, S(0) the action of the lattice
with site 0 removed (the lattice with a “cavity” at site 0), and
�S the remaining part:

S0 =
∫ β

0
dτ

{ ∑
σ

c∗
0σ (∂τ − μ) c0σ + iφ0n0

+ 1

2
φ0[v−1]00φ0

}
, (B1)

�S =
∫ β

0
dτ

{
−

∑
i �=0,σ

ti0(c∗
0σ ciσ + c∗

iσ c0σ )

+
∑
i �=0

φi[v
−1]i0φ0

}
, (B2)

S(0) =
∫ β

0
dτ

{ ∑
ij �=0,σ

c∗
iσ (∂τ − μ − tij )cjσ

+ 1

2

∑
ij,�=0

φi[v
−1]ij φj + i

∑
i �=0

φini

}
. (B3)

Defining ηiσ ≡ ti0c0σ and ji ≡ [v−1]i0φ0, we can write �S =∫ β

0 dτ {−∑
i �=0,σ (η∗

i ciσ + c∗
iσ ηi) + ∑

i �=0 jiφi}, such that ηiσ

and ji can be regarded as sources of correlation functions for
the effective action of the site 0, defined by e−Seff[c∗

0 ,c0,φ0]/Zeff ≡∫
Di �=0[c∗

i ,ci,φi]e−(S0+S(0)+�S)/Z. We can express the ac-
tion as Seff = S0 − �[η∗

i ,ηi,ji] + const, where �[η∗
i ,ηi,ji] ≡

ln
∫
Di �=0[c∗

i ,ci,φi]e−(S(0)+�S) is the generating functional of
connected correlation functions of the cavity,47

G
(0)
i1...injn...j1

(τ1 . . . τn,τ
′
1 . . . τ ′

n)

= (−1)n
δ2n�

δη∗
i1

(τ1) . . . δη∗
in

(τn)δηjn
(τ ′

n) . . . δηj1 (τ ′
1)

, (B4)

W
(0)
i1...injn...j1

(τ1 . . . τn,τ
′
1 . . . τ ′

n)

= δ2n�

δji1 (τ1) . . . δjin(τn)δjjn
(τ ′

n) . . . δjj1 (τ ′
1)

. (B5)

An explicit expression for � is thus

�[η∗
i ,ηi,ji] =

∞∑
n=1

∑
i1...in,j1...jn

∫
dτ1 . . . dτ ′

nη
∗
i1

(τ1) . . . ηj1 (τ ′
n)

× (−1)nG(0)
i1...injn...j1

(τ1 . . . τ ′
n)

+
∞∑

n=1

∑
i1...in,j1...jn

∫
dτ1 . . . dτ ′

nji1 (τ1) . . . jjn
(τ ′

n)

×W
(0)
i1...injn...j1

(τ1 . . . τ ′
n). (B6)

The DMFT approximates � by its infinite-dimensional
limit. In this limit, the hopping t between sites must be
scaled as t/

√
z (with z = 2d) in order to keep a finite kinetic

energy, while V must be scaled as V/z in order to keep
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the Hartree energy corresponding to the nearest-neighbor
interaction finite.46 As a consequence of taking this limit,
all terms of order n > 1 in Eq. (B6) vanish, so that
�DMFT = ∫

dτ dτ ′c∗
0(τ )(−∑

ij ti0tj0G
(0)
ij (τ − τ ′))c0(τ ′) +∫

dτ dτ ′φ0 (τ ) (
∑

ij v−1
i0 v−1

j0 W
(0)
ij (τ − τ ′))φ0(τ ′). We thus

arrive at the DMFT effective action of Eq. (21) (where we
have dropped the index 0 in order to simplify the notation)
with

G−1(iωn) ≡ iωn + μ −
∑
ij

ti0tj0G
(0)
ij (iωn), (B7)

U−1(iνn) ≡ v−1
00 −

∑
ij

v−1
i0 v−1

j0 W
(0)
ij (iνn). (B8)

Furthermore, in the limit of infinite dimensions, the cavity
Green’s function is related to the lattice Green’s func-
tion through G

(0)
ij = Gij − Gi0G0j /G00 and W

(0)
ij = Wij −

Wi0W0j /W00, which is shown by considering the paths
contributing to Gij (Wij ) and not to G

(0)
ij (W (0)

ij ) (see Ref. 2

for more details). This allows us to write
∑

ij ti0tj0G
(0)
ij , after

Fourier transformation, as

∑
k

ε2
kGk(iωn) −

(∑
k

εkGk(iωn)

)2 / ∑
k

Gk(iωn). (B9)

At this point, a second approximation is made: the self-
energies are assumed to be k-independent, namely, �(k,iω) ≈
�loc(iω) and �(k,iν) ≈ �loc(iν). This also becomes exact
in the d → ∞ limit.78 As a consequence, we can define the
densities of states ρ(ε) = ∑

k δ(ε − εk) and ρ ′(ε) = ∑
k δ(ε −

v−1
k ), which allows us to rewrite (B9) as∫

dε ρ(ε)ε2

ζ − ε
−

(∫
dε ρ(ε)ε

ζ − ε

)2 / ∫
dε ρ(ε)

ζ − ε
, (B10)

where ζ ≡ iωn + μ − �loc(iωn). The same expression holds
for the screened interaction, with ρ → ρ ′ and ζ → ζ ′ =
[v−1]00 − �loc(iνn) [as can be seen by comparing Eqs. (B7)
and (B8)].

Using the following identities for Hilbert transforms,∫ ∞

−∞

dερ(ε)ε2

ζ − ε
= ζ

∫ ∞

−∞

dερ(ε)ε

ζ − ε
, (B11)∫ ∞

−∞

dερ(ε)ε

ζ − ε
= −1 + ζ

∫ ∞

−∞

dερ(ε)

ζ − ε
, (B12)

we obtain the self-consistency relations (25) and (26).
Equations (21), (25), and (26) form a closed set of

equations: SDMFT
eff , once solved, yields �loc and �loc, which

gives updated G and U which can in turn be used to solve the
effective local problem again until convergence is reached.

APPENDIX C: HAMILTONIAN FORMULATION OF THE
IMPURITY PROBLEM

Some properties of action (24) are more easily understood
in terms of its Hamiltonian representation. The first two terms
correspond to an Anderson impurity model

HAIM =
∑

p

εpa†
pap +

∑
p

(
V σ

p a†
pσ cσ + H.c.

)
+Un↑n↓ − μn, (C1)

describing an impurity (c, c†) coupled to a bath of nonin-
teracting fermionic levels (ap, a

†
p, energy εp). Here, nσ =

c†σ cσ and n = n↑ + n↓. The connection between Eqs. (24)
and (C1) is given by G−1(iωm) = iωm + μ − �(iωm) and the

hybridization function �(iωm) = ∑
p

|V σ
p |2

iωm−εp
. On the other

hand, the retarded effective interaction can be generated by
coupling the impurity to a bath of bosonic modes described by
the Hamiltonian

Hboson =
∑

p

ωpb†pbp +
∑

p

λp√
2
n(bp + b†p)

=
∑

p

ωp

2

(
φ2

p + �2
p

) +
∑

p

λpn0φp, (C2)

with φp ≡ 1√
2
(bp + b

†
p) and �p ≡ 1

i
√

2
(bp − b

†
p).

Using the identity �2
p(τ ) = −[∂τφp(τ )]2/ω2

p, this can be
written in an action formulation as

Sboson = 1

β

∑
m,p

φp(iνm)

(−(iνm)2 + ω2
p

2ωp

)
φp(−iνm)

+ λpφp(iνm)n(−iνm). (C3)

Integrating out the bosonic degrees of freedom leads to

Sboson = 1

β

∑
m

n(iνm)

{
−

∑
p

λ2
p

2ωp

(iνm)2 − ω2
p

}
n(−iνm).

(C4)

Defining D(iνm) = ∫
dω
π

ImD(ω) 2ω
(iνm)2−ω2 with

ImD(ω) ≡ −π
∑

p

λ2
pδ(ω − ωp) (C5)

and Fourier transformingD(iνn) yields the retarded interaction
in Eq. (24).

The retarded interaction may thus be regarded as stemming
from the coupling to a bath of harmonic oscillators labeled by
the index p, with frequency ωp and coupling strength λp (as
already emphasized in Ref. 11). The effective interaction medi-
ated by these auxiliary degrees of freedom is proportional to the
squared coupling strength λ2

p times the free-phonon Green’s

function79 D0
p(iνn) ≡ − ∫ β

0 dτeiτνn〈φp(τ )φp(0)〉 = 2ωp

(iνn)2−ω2
p
.

Note that in complete analogy to the fermionic hybridization
function �(ω), the frequency-dependent interaction D(ω) is
determined self-consistently.

APPENDIX D: SCREENING FREQUENCY FROM
LINEARIZED DMFT

The U -dependence of the screening frequency may be
traced back to the form of the one-particle local spectrum.
As can be seen from Eq. (39), for V = 0,80 the frequency
dependence of Wloc (and thus the value of ω0) is inherited
from the charge-charge correlation function χloc. An analytical
estimate for the poles of this function can be calculated by
means of a simple approximation named linearized DMFT.65

In this method, the impurity problem is approximated by the
coupling of the correlated impurity to a single uncorrelated
bath level describing the hybridization of the impurity to the
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FIG. 16. (Color online) Imχl-DMFT
loc in the (ω,U ) plane for V = 0.

The poles have been artificially broadened by an imaginary factor
η = 0.01. Black line: EDMFT result for 〈ω〉 as a function of U (for
V = 0).

lattice degrees of freedom. This simplified version of the
impurity problem allows for the explicit calculation of the
local Green’s function81:

Gl-DMFT
loc (ω) =

2∑
i=1

ai

{
1

ω − ε̄i

+ 1

ω + ε̄i

}
(D1)

with

ε̄1,2 = 1

4

(√
U 2 + 64V 2

hyb ∓
√

U 2 + 16V 2
hyb

)
, (D2)

a1 = 1

4

⎛
⎝1 − U 2 − 32V 2

hyb√
U 2 + 64V 2

hyb

√
U 2 + 16V 2

hyb

⎞
⎠ , (D3)

as well as a2 = 1
2 − a1. The hybridization strength’s depen-

dence on U is given by Vhyb = t
√

z
√

1 − U 2/U 2
c (see Ref. 65

for details). Uc denotes the critical U for the Mott transition.
In the estimate below, we will use the value computed within
EDMFT, Uc = 2.5.

-D 0 D

weak correlations

-U/2 -ZD 0 Z D U/2

correlated metal

-U/2 0 U/2

Mott insulator

FIG. 17. (Color online) Sketch of transitions in generic spectra
for the Hubbard model at various interaction strengths.

In the absence of vertex corrections, the corresponding
charge-charge correlation function can be computed as χloc =
−2GlocGloc, leading to the expression

χloc(ω) = −2

{
2a2

1ε1

ω2 − ε2
1

+ 2a2
2ε2

ω2 − ε2
2

+ 4a1a2ε3

ω2 − ε2
3

}
. (D4)

The six (3 × 2) poles are defined as ε1 = 2ε̄1, ε2 = 2ε̄2, and
ε3 = ε̄1 + ε̄2.

These poles, displayed in Fig. 16, correspond to the transi-
tions allowed in the various correlation regimes, namely, in the
low-correlation limit, only transitions within the quasiparticle
peak are possible (see Fig. 17). As correlations increase, the
appearance of Hubbard bands enable additional transitions
from the lower Hubbard band to the unoccupied states of
the quasiparticle peak, and from the occupied states of the
quasiparticle peak to the upper Hubbard band. In the strong
correlation regime, finally, the only possible transitions are
those between the lower and the upper Hubbard bands.
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