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Quantum criticality and first-order transitions in the extended periodic Anderson model
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We investigate the behavior of the periodic Anderson model in the presence of d–f Coulomb interaction
(Udf ) using mean-field theory, variational calculation, and exact diagonalization of finite chains. The variational
approach based on the Gutzwiller trial wave function gives a critical value of Udf and two quantum critical points
(QCPs), where the valence susceptibility diverges. We derive the critical exponent for the valence susceptibility
and investigate how the position of the QCP depends on the other parameters of the Hamiltonian. For larger
values of Udf , the Kondo regime is bounded by two first-order transitions. These first-order transitions merge
into a triple point at a certain value of Udf . For even larger Udf valence skipping occurs. Although the other
methods do not give a critical point, they support this scenario.
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I. INTRODUCTION

Heavy-fermion compounds often show remarkable phe-
nomena like unconventional superconductivity or an unusual
Fermi-liquid state. It turned out that in those compounds,
for instance, CeIn3,1 whose superconducting state is uncon-
ventional, the pairing between electrons is mediated by an-
tiferromagnetic spin fluctuations. The superconducting phase
is formed near the antiferromagnetic quantum critical point
(QCP)2 as the pressure or, in other cases, the concentration
of a component is varied. However, this theory seems to be
insufficient to explain the temperature-pressure phase diagram
of CeCu2Ge2 or CeCu2Si2, where a superconducting dome
with enhanced transition temperature is located far away from
the antiferromagnetic critical point. Since this discovery, these
compounds have drawn much attention both experimentally
and theoretically. It has been argued that this phenomenon is
related to the critical valence fluctuations of Ce ions,3–14 that
is, to the existence of a second QCP.

The simplest model of heavy-fermion compounds is the
periodic Anderson model (PAM).15 It is known, however, that
the mixed-valence regime appears always in this model as
a smooth crossover, and valence fluctuations do not become
critical for any choice of the parameters. A local Coulomb
interaction between the conduction and localized electrons is
needed for the appearance of a sharp transition and critical
valence fluctuations.4,11 The Hamiltonian of this extended
periodic Anderson model can be written using standard
notations in the following form:

H =
∑
k,σ

εd (k)d̂†
kσ d̂kσ − V

∑
j ,σ

(f̂ †
jσ d̂ jσ + d̂

†
jσ f̂ jσ )

+ εf

∑
j ,σ

n̂
f

jσ + Uf

∑
j

n̂
f

j↑n̂
f

j↓ + Udf

∑
j ,σ,σ ′

n̂
f

jσ n̂d
jσ ′ .

(1)

After Onishi and Miyake’s pioneering work,4 recently, this
model has been investigated by several modern techniques,
including density matrix renormalization group,9 dynamical
mean field,16–18 variational calculations,4,19 projector-based

renormalization approach,20 and fluctuation exchange
approximation.21 It has been found that a first-order valence
transition and a QCP may appear due to Udf .

Previous calculations4,16,19 focused on the properties at
infinite or large Uf . Mainly the existence of a QCP and
the possibility of first-order transition was addressed. Our
main goal here is to study the critical behavior for arbitrary
values of Uf . We investigate how the QCP and the εf –Udf

phase diagram depend on the parameters of the model in
the half-filled case. In our previous paper22 we have shown
that the Gutzwiller’s variational method gives reliable results
concerning the valence; therefore, it is worth studying the
valence transition by use of this method.

It is worth noting that a first-order transition from Mott
insulator to Kondo insulator has been found23 in a model with
a more general Hamiltonian, too, including Hund’s coupling
and interaction between d electrons. We do not consider
the Hund’s coupling here since the appearance of critical
valence fluctuations was attributed to the direct Coulomb
interaction between d and f electrons.4,11 The exchange
coupling between them probably plays a minor role in this
respect.

Note that in a previous paper of ours24 a variational
approach was formulated for another kind of extended periodic
Anderson model, where a different form was chosen for the
d–f interaction, a spin-dependent four-body term. Neither a
QCP, nor a first-order valence transition has been found in that
model.

The setup of the paper is as follows. In Sec. II, we perform
a mean-field calculation to demonstrate in the simplest way
how Udf affects the intermediate valence regime. In Sec. III,
the variational approach is introduced, which is based on the
Gutzwiller wave function. We analyze the quantum critical
behavior and the disappearance of the Kondo regime at a triple
point. Moreover, we construct the εf –Udf phase diagram. In
Sec. IV, we carry out exact diagonalization to investigate the
model in one dimension and compare the results with that
of mean-field theory and the Gutzwiller approach. Finally, in
Sec. V, our conclusions are presented.
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II. MEAN-FIELD CALCULATION

First, we will study the problem by mean-field methods.
In this approach some kind of order has to be assumed.
We performed calculations by assuming two possibilities:
(a) the system is paramagnetic; (b) it possesses a spatially
oscillating magnetic order with a total magnetization zero.
The state with lowest energy is accepted as the ground state.
According to our calculations, the mean-field equations always
have a paramagnetic solution, but in the Kondo regime, where
localized moments are present, ordering of the moments leads
to the lowering of the energy. We assume a simple cubic lattice
in the following calculations, which can be partitioned into two
sublattices (A and B). We expect that in the broken symmetry
phase the electrons are ordered on the two sublattices in an
alternating fashion, that is,〈

n̂
f

jσ

〉 = 1
2 [nf + σmf eiq0·Rj ], (2)

where mf is the magnetization of the sublattice and q0 =
π/a(1,1,1), so q0 Rj = 2πn on sublattice A and q0 Rj =
(2n + 1)π on sublattice B (n is an integer), and nf is the
average number of f electrons per site. The values of nf

and mf need to be determined self-consistently. A similar
oscillation can be assumed for the d electrons,〈

n̂d
jσ

〉 = 1
2 [nd + σmde

iq0·Rj ], (3)

although md will not appear explicitly in the calculations. The
mean-field Hamiltonian is

Hm
AF =

∑
k,σ

[εd (k) + Udf nf ]d̂†
kσ d̂kσ

+
∑
j ,σ

[
εf + Uf

2
(nf − σeiq0·Rj mf ) + Udf nd

]
n̂

f

jσ

+V
∑
j ,σ

(f̂ †
jσ d̂ jσ + d̂

†
jσ f̂ jσ )

− NUf

4

(
n2

f − m2
f

) − NUdf nf nd, (4)

where the k sum extends over the whole Brillouin zone of the
simple cubic lattice and N is the number of sites. Due to the
assumed magnetic ordering, the size of the Brillouin zone is
reduced to half of its original size. In order to restrict the k
sum to the magnetic Brillouin zone, we split the original sum
into two parts by introducing the operators d̂

†
k+q0σ

and f̂
†
k+q0σ

.
We suppose that the dispersion relation possesses the nesting
property

εd (k + q0) = −εd (k), (5)

which is valid in a tight-binding model with nearest-neighbor
hopping. This fixes the zero of the energy scale. The mean-field
Hamiltonian then can be rewritten in Bloch representation,

Hm
AF =

∑
k,σ

′

⎛
⎜⎜⎜⎝

d̂kσ

d̂k+q0σ

f̂kσ

f̂k+q0σ

⎞
⎟⎟⎟⎠

†

H(k,σ )

⎛
⎜⎜⎜⎝

d̂kσ

d̂k+q0σ

f̂kσ

f̂k+q0σ

⎞
⎟⎟⎟⎠

− NUf

4

(
n2

f − m2
f

) − NUdf nf nd, (6)

where the prime denotes that the summation is carried out over
the magnetic Brillouin zone, and

H(k,σ ) =

⎛
⎜⎜⎜⎝

ξd (k) 0 V 0

0 ξ̃d (k) 0 V

V 0 ξf −Uf σmf /2

0 V −Uf σmf /2 ξf

⎞
⎟⎟⎟⎠ ,

(7)

where ξf = εf + Uf nf /2 + Udf nd , ξd (k) = εd (k) + Udf nf

and ξ̃d (k) = −εd (k) + Udf nf . This Hamiltonian can be diag-
onalized by the unitary transformation T (kσ ), which is a real
matrix in our case, leading to

Hm
AF =

∑
k,σ

′[Ea(k)Â†
kσ Âkσ + Eb(k)B̂†

kσ B̂kσ

+Ec(k)Ĉ†
kσ Ĉkσ + Ed (k)D̂†

kσ D̂kσ

]
− NUf

4

(
n2

f − m2
f

) − NUdf nf nd, (8)

where

( Â
†
kσ B̂

†
kσ Ĉ

†
kσ D̂

†
kσ

) = ( d̂
†
kσ d̂

†
k+q0σ

f̂
†
kσ f̂

†
k+q0σ

)T †(kσ ).

(9)

The diagonalization is done numerically for each
k value and we sort the eigenvalues in increasing order
[Ea(k) � Eb(k) � Ec(k) � Ed (k)]. Moreover, the eigenval-
ues have to be determined iteratively, since nf , mf , and
nd appearing in H(k,σ ) have to satisfy a self-consistency
condition. This condition can easily be formulated in the
half-filled case, where—as it will be discussed below—the
two lower bands with dispersion Ea(k) and Eb(k) are fully
occupied and the two higher lying bands are empty. The
conditions of self-consistency for nf and mf are

nf = 1

N

∑
k,σ

′[T 2
31(kσ ) + T 2

32(kσ ) + T 2
41(kσ ) + T 2

42(kσ )
]
,

(10)

mf = 4

N

∑
k

′[T31(k↑)T41(k↑) + T32(k↑)T42(k↑)
]
,

(11)

and the total energy is

EAF
g =

∑
k,σ

′[Ea(k) + Eb(k)]

− NUf

4

(
n2

f − m2
f

) − NUdf nf nd. (12)

Before evaluating the self-consistency equations, we return
to the problem of the eigenvalue equations. Analytic expres-
sions can be given at the symmetric point, and the obtained
four bands for Udf = 0 become simply

Eα(k) = ± 1√
2

[
ε2
d (k) + U 2

f m2
f + 2V 2

±
√(

ε2
d (k) − U 2

f m2
f

)
2 + 4V 2

(
ε2
d (k) + U 2

f m2
f

)] 1
2 .

(13)

125146-2



QUANTUM CRITICALITY AND FIRST-ORDER . . . PHYSICAL REVIEW B 87, 125146 (2013)

E
(k

)/
W

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

ka
-1.5 -1 -0.5 0 0.5 1 1.5

FIG. 1. The dispersion curves of the states diagonalizing the
mean-field Hamiltonian for Uf /W = 0.5, Udf /W = 0, εf /W =
−0.1, V/W = 0.1.

The band structure is displayed in Fig. 1 for the one-
dimensional tight-binding case for a special, but nonsym-
metric, choice of the parameters. In higher dimensions, the
system does not necessary remain insulating if the gap opens
at different energies in different points of the zone boundary.

The self-consistency equations always have a paramagnetic
solution, mf = 0, and in certain cases they have a magnetic
solution, |mf | > 0. We compare the energies of both solutions
and accept that one, which has lower energy. It is worth noting
that the polarization of the d electrons, md , is also nonzero and
its sign is opposite to mf in the magnetic solution (though its
value is smaller than mf by an order of magnitude).

In the actual calculations we do not work in k space. The
summations over k are carried out by assuming a constant den-
sity of states ρ(ε) = 1/W in the interval ε ∈ [−W/2,W/2].
The same ρ(ε) will be used in the variational calculation, too.
The numerical results for nf are shown in Fig. 2 for different
values of Udf . As long as the f level is nearly fully occupied
or empty, the paramagnetic solution is favorable, while when
the occupancy is nearly 1, the magnetic solution has lower
energy. For Udf /W = 0, the f level occupancy is continuous,
although there is a discontinuity in its derivative at the point
where the paramagnetic solution switches to magnetic or vice
versa. This happens in Fig. 2 at εf /W ≈ −3.45 and 0.45.

n
f

0

0.5

1

1.5

2

εf/W
-4 -3 -2 -1 0 1

FIG. 2. The f -level occupancy as a function of εf obtained
by mean-field theory. The solid, dashed, and dotted lines belong
to Udf /W = 0, 0.4, 1, respectively, V/W = 0.1, Uf /W = 3 in all
cases.

For increasing Udf values, first, the mixed-valence regime
narrows, and then a jump, a first-order transition, appears in the
f -level occupancy between the paramagnetic and the magnetic
solution and the Kondo regime shrinks rapidly. This first-order
transition has already been found by other calculations.16,19

As is seen here, this simple mean-field approach can also
account for it. The mean-field theory gives a critical value of
U c

df /W ≈ 0.26 for V/W = 0.1, Uf /W = 3.
At a certain value of Udf above U c

df the magnetic solution
is stable in a single point, εf = −Uf /2. In this point the
paramagnetic solutions with nf ≈ 2 and nf ≈ 0, and the
magnetic solution with nf = 1 have the same energy, that is,
three states coexist. This is a triple point, since three first-order
transition lines meet here. For larger Udf values, beyond the
triple point, a so-called valence skipping occurs, that is, the
valence state nf ≈ 1 is missing, since a direct first-order
transition takes place from nf ≈ 2 to nf ≈ 0. It is interesting
to note that so far the valence skipping (which was observed in
several compounds, for example, BaBiO3) has been attributed
to the presence of a negative Uf .25 As it is demonstrated here,
large-enough Udf can also lead to valence skipping, even if
Uf > 0. The mean-field theory gives U

triple
df /W ≈ 1.75 for

V/W = 0.1, Uf /W = 3. Note that this is in good agreement
with the result U

triple
df ≈ Uf /2 + W/4 that will be obtained by

use of the Gutzwiller method.
This picture remains valid even when Uf is small, but

finite, compared to the bandwidth. Although no plateau with
nf ≈ 1 is formed, that is, there is no Kondo regime, a
stable magnetic solution is found near the symmetric point,
and this regime is bounded by first-order transitions above
a finite U c

df . Note that for Uf /W = 0 there is no triple
point due to the lack of magnetic solution. However, a direct
first-order transition appears between the paramagnetic states
with solution between nf ≈ 2 and nf ≈ 0 above a certain
value of Udf .

Although this theory gives a qualitatively good description
of the first-order transition, there are several problems with
it. First, we had to assume a magnetic order of spin-density-
wave type, while no long-range order is expected in the Kondo
regime. Second, the valence susceptibility, which is defined by

χV = −dnf

dεf

, (14)

is not a continuous function, as is mentioned above, even below
Uc

df /W , where nf is continuous. The mean-field approach
does not provide us with a critical point, where χV would
diverge. In order to find a QCP and to investigate its properties,
we need a more accurate calculation. This is done in the next
section by use of the variational method.

III. VARIATIONAL CALCULATION

In what follows we generalize the variational approach used
in Refs. 22 and 26 and summarize briefly the main steps of the
calculation. We restrict ourselves to the paramagnetic case,
that is, the number of up-spin and down-spin electrons are
assumed to be equal locally, too. As it will be pointed out,
the quantum criticality and the first-order transition appear
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without any further assumptions, in contrast to the mean-field
calculation. The trial state is expressed in terms of Gutzwiller
projectors,

|	〉 = P̂ (f 1d2)P̂ (f 1d1)P̂ (f 2d2)P̂ (f 2d1)P̂ (f 2)|	0〉, (15)

where

|	0〉 =
∏
σ

∏
k

[u(k)f̂ †
k,σ + v(k)d̂†

k,σ ]|0〉 (16)

contains the mixing amplitudes u(k) and v(k) as variational
parameters, and the sum over k extends over the whole Bril-
louin zone. The Gutzwiller projectors P̂ (f αdβ), where α and
β denote the f - and d-electron numbers, respectively, act on
the on-site electron configurations defined by their arguments,
making that configuration less probable. For example,

P̂ (f 2) =
∏

g

[
1 − (1 − η(f 2))n̂f

g↑n̂
f

g↓
]

(17)

is the standard Gutzwiller projector for two f electrons on
the same site. The other ones take into account correlations
between d and f electrons, for example,

P̂ (f 1d2) =
∏

g

{
1 − (1 − η(f 1d2))

[
n̂

f

g↑
(
1 − n̂

f

g↓
)

+ n̂
f

g↓
(
1 − n̂

f

g↑
)]

n̂d
g↑n̂d

g↓
}
, (18)

P̂ (f 2d2) =
∏

g

{
1 − (1 − η(f 2d2))n̂f

g↑n̂
f

g↓n̂d
g↑n̂d

g↓
}
. (19)

The remaining projectors are defined straightforwardly.
Besides the mixing amplitudes, we have five variational
parameters, η(f 2d2), η(f 2d1), η(f 1d2), η(f 1d1), and
η(f 2), controlled by Udf and Uf . The tedious procedure of
optimization is omitted here. Performing the optimization
with respect to the mixing amplitudes using the Gutzwiller
approximation, we obtain

E = 1

N

∑
k

[
qdεd (k) + ε̃f −

√
[qdεd (k) − ε̃f ]2 + 4Ṽ 2

]

+ (εf − ε̃f )nf +Uf ν(f 2) + Udf

[
4ν(f 2d2)

+ 2(ν(f 2d1) + ν(f 1d2)) + ν(f 1d1)
]

(20)

for the ground-state energy density, where ν(f 2) is the
density of doubly occupied f sites. The other ν(f αdβ)
quantities denote the corresponding densities of the f αdβ

configurations, e.g.,

ν(f 1d2) = 1

N

〈[
n̂

f

g↑
(
1 − n̂

f

g↓
) + n̂

f

g↓
(
1 − n̂

f

g↑
)]

n̂d
g↑n̂d

g↓
〉
,

ν(f 2d2) = 1

N

〈
n̂

f

g↑n̂
f

g↓n̂d
g↑n̂d

g↓
〉
, (21)

where Ṽ = V
√

qf qd is the renormalized hybridization and
qf and qd are the kinetic energy renormalization factors for
the f and d electrons, respectively. Their analytic forms are
now much longer than in our previous paper,22 and after a
tedious algebra we arrive at the following complete square
forms:

qf = 1

(nf /2)[1 − (nf /2)]

[√
ν(f 2d2)ν(f 1d2) + 2

√
ν(f 2d1)ν(f 1d1) +

√
ν(f 2d0)ν(f 1d0)

+
√

ν(f 1d2)ν(f 0d2) + 2
√

ν(f 1d1)ν(f 0d1) +
√

ν(f 1d0)ν(f 0d0)
]2

, (22)

qd = 1

[(n/2) − (nf /2)][1 − (n/2 + nf /2)]

[√
ν(f 2d2)ν(f 2d1) + 2

√
ν(f 1d2)ν(f 1d1)

+
√

ν(f 0d2)ν(f 0d1) +
√

ν(f 2d1)ν(f 2d0) + 2
√

ν(f 1d1)ν(f 1d0) +
√

ν(f 0d1)ν(f 0d0)
]2

, (23)

where n is the band filling, which is 2 in our case. It is
remarkable that the renormalized hybridization can still be
written as the square root of qf and qd in the presence of
Udf , too. Furthermore, ε̃f , the quasiparticle energy level of
f electrons, has the same form as in Ref. 22. It provides
a self-consistency equation for nf . The summation over k
in Eq. (20) is carried out with a constant density of states,
ρ(ε) = 1/W , in the interval ε ∈ [−W/2,W/2]. During the
optimization process, the η(f αdβ) variational parameters are
expressed as functions of the quantities ν(f αdβ ); therefore,
the actual optimization can be done with respect to these
parameters. All in all, the energy density given in (20) has to
be optimized for nf and ν(f 2), ν(f 2d1), ν(f 2d2), ν(f 1d1),
and ν(f 1d2); the other quantities appearing in Eqs. (22) and
(23) can be expressed using these due to the conservation
of the number of particles. The evaluation of the variational
equations could be done only numerically.

We first address what happens in the mixed-valence regime.
As Udf is switched on, the mixed-valence regimes tend to

be sharper and sharper. This can be characterized by the
valence susceptibility defined in Eq. (14) and displayed in
Fig. 3 for different values of Udf . Note that in the half-filled
case, this function is symmetric to the point εf = −Uf /2;
therefore, it is sufficient to investigate the critical behavior
in the regime 0 < nf < 1. In what follows, we focus on this
regime, if not mentioned otherwise. It is found, in agreement
with other calculations,16,19 that χV diverges for a certain
value of U c

df and two values of εc
f related by the symmetry

with respect to −Uf /2. These two points are identified
as the QCPs. Following the maximum values of χV , the
position of the QCP can be determined. We found that χV

diverges as

χV |εf =εc
f

∼ 1∣∣Udf − U c
df

∣∣ , (24)

χV |Udf =U c
df

∼ 1∣∣εf − εc
f

∣∣ . (25)
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FIG. 3. The valence susceptibility as a function of the f -level
energy for Uf /W = 3 and V/W = 0.1. The solid, dashed, and dotted
lines correspond to Udf /W = 0, 0.3, and 0.4, respectively.

This power-law behavior is valid for every choice of the
parameters we used in our calculations, indicating universality.

Our Gutzwiller calculation makes it possible to investigate
how the position of the QCP depends on Uf and V . In Fig. 4
the critical U c

df and εc
f (for the QCP in the 0 < nf < 1 regime)

are shown as a function of Uf for a fixed V . We found that
(i) even for Uf = 0 there exists a critical point, (ii) U c

df and
εc
f vary monotonically as Uf increases, and (iii) both of them

saturate as Uf reaches the value above which there exists a
stable Kondo regime (see Fig. 3 in Ref. 22). On the contrary,
their dependence on V is remarkable. These values are shown
in Fig. 5. First, we mention that, for V/W → 0, U c

df tends to
a nonzero value (U c

df /W ≈ 0.17), which indicates that there
has to be a finite value of Udf even for weak hybridizations to

εc f
/W

-0.25

-0.2

-0.15

-0.1

-0.05

0
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(b)

U
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(a)

FIG. 4. Panel (a) shows the critical value of Udf where the QCP
appears as a function of Uf . Panel (b) shows the critical value of εf ,
V/W = 0.1 in all cases.

U
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0.6

0.8

1

V/W
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(a)

εc f
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n
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FIG. 5. (Color online) Panel (a) shows the critical value of Udf

(•) where the QCP appears as a function of the hybridization. The
red dotted and blue dashed lines are linear fits to the beginning and to
the end of the data, respectively. Panels (b) and (c) show the critical
values of εf and nf , respectively; Uf /W = 3 in all cases.

obtain a valence transition. The critical position of the f level
decreases linearly with increasing hybridization. The critical
value of the occupancy of the f level increases from nc

f = 0
at V = 0 and saturates as soon as εc

f reaches the bottom of the
conduction band. Roughly at the same mixing V , the slope of
the U c

df –V curve shows a substantial change.
For larger values of Udf , two subsequent first-order

transitions—from nf ≈ 2 to nf ≈ 1 (Kondo regime) and from
nf ≈ 1 to nf ≈ 0—take place as εf is varied. Their positions
are symmetric with respect to −Uf /2. This is confirmed by
the fact that near the transition a hysteresis is observed, that
is, there is a narrow range of εf , where two solutions of the
variational equations coexist. Therefore, the transition line is
identified from the ground-state energy, where the energies of
the different configurations are equal.

For even larger values of Udf , the width of Kondo regime
decreases and at U

triple
df it ends in a triple point. At the triple

point, the energy of the Kondo-like state becomes equal to the
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FIG. 6. (Color online) The upper panel shows the εf –Udf phase
diagram for Uf /W = 3 and V/W = 0.1, while the lower one shows
that for Uf /W = 3 and V/W = 0.2. The solid white lines denote
the first-order transition lines. The QCPs are marked by red squares.
The point where the white lines meet is the triple point (see the
text).

energy of the states with nf ≈ 2 and nf ≈ 0; therefore, here
three different states coexist. We found that the triple point is
located at ε

triple
f = −Uf /2 and U

triple
df ≈ Uf /2 + W/4, if there

is a Kondo plateau. For small Uf (including Uf = 0), when
there is no Kondo plateau, the numerical results can be fitted to
U

triple
df ≈ Uf /2 + W/3. In Ref. 16, using dynamical mean-field

theory, it was found that the Kondo regime is stable for Udf �
Uf /2. Our result is in agreement with this. The mean-field
theory gives similar results except for Uf = 0, where the triple
point does not exist. Now we can draw the εf –Udf phase
diagram. The results are shown in Fig. 6, using a color code, for
two different values of the hybridization and demonstrates our
statements described above. The figure demonstrates that the
interval of εf , where first-order transition occurs, is shortened
for larger values of the hybridization.

IV. COMPARISON WITH THE MEAN-FIELD APPROACH
AND EXACT DIAGONALIZATION

The mean-field theory and the Gutzwiller approach yield
surprisingly close results for Udf /W = 0 and 1, which is
shown in Fig. 7 for a special choice of the parameters. However,
the mean-field results show a jump in the f -level occupancy
at such small values of Udf , where the Gutzwiller method

n
f

0

0.5

1

1.5

2

εf/W
-4 -3 -2 -1 0 1

FIG. 7. The f -level occupancy as a function of εf . The black
curves are obtained from the Gutzwiller method, while the gray ones
are calculated from exact diagonalization and the symbols are the
results of the mean-field calculation. The solid, dashed, and dotted
lines (and the symbols •, �, �) belong to Udf /W = 0, 0.4, 1,
respectively; V/W = 0.1 and Uf /W = 3 in all cases.

still gives a continuous change of nf . The estimated critical
value (U c

df ) from mean-field theory is significantly smaller
than that from the Gutzwiller method. It is worth emphasizing
that the jump in the mean-field results is due to a level crossing
between a paramagnetic and a magnetically ordered state.
In contrast, the Gutzwiller method gives a valence transition
between paramagnetic states. Both methods result in a triple
point for a certain value of Udf , and we found that both of
them gives U

triple
df ≈ Uf /2 + W/4. For small values of Uf

the scenario is the same in both methods as in the large Uf

case; however, the values of U
triple
df and U c

df somewhat differ.
The only exception is Uf = 0, where there is no triple point
in the mean-field calculation due to the missing of a stable
magnetic solution. Here a direct first-order transition takes
place between the nearly fully occupied and nearly empty f

levels.
As a further check of our results, we performed exact

diagonalization on a one-dimensional chain. Due to the
limitation to relatively short chains containing six sites, we do
not expect to find critical behavior in this calculation. However,
some other features of the effect of Udf might be observable.
The comparison is shown in Fig. 7. The width of the Kondo
plateau is the same using all the three methods; therefore,
its shrinking due to Udf is not an artifact of the Gutzwiller
approximation or the mean-field treatment. Furthermore, by
increasing Udf , the intermediate valence regime becomes
narrower in the exact diagonalization, too, although there is
naturally no sharp valence transition.

V. CONCLUSIONS

We have performed mean-field calculation, variational
calculation using the Gutzwiller method, and exact diago-
nalization for the extended PAM, where an additional local
Coulomb interaction between the d and f electrons has been
included. Earlier calculations found a sharp, first-order valence
transition and a critical point at some value of Udf for large
or infinite Uf couplings. We have generalized the Gutzwiller
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method for arbitrary Uf in order to study the small Uf regime
and to analyze how the QCP depend on Uf and V .

Both the mean-field theory and the Gutzwiller method have
resulted in two subsequent first-order valence transitions as
the position of the f level is varied above a critical value of
Udf , and two QCPs appear in the εf –Udf plane. We have
analyzed variationally the critical behavior as a function of
hybridization, the bare f -level energy, and Uf , and have
drawn the εf –Udf phase diagram. It has been pointed out
that the Kondo regime shrinks by increasing Udf , and ends in
a triple point, which obviously cannot be seen in the infinite
Uf case. For even larger values of Udf a direct first-order

valence transition takes place from nf ≈ 2 to nf ≈ 0. This
can be interpreted as valence skipping, which so far has been
attributed to the presence of a negative Uf . We find it for
Uf > 0, when Udf is large enough. The shrinking of the Kondo
regime and the narrowing of the intermediate valence regime
have been confirmed by exact diagonalization, although
naturally, no sharp valence transition is found in finite chains.
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