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Symmetry-protected topological phases of one-dimensional spin systems have been classified using group
cohomology. In this paper, we revisit this problem for general spin chains which are invariant under a continuous
onsite symmetry group G. We evaluate the relevant cohomology groups and find that the topological phases are
in one-to-one correspondence with the elements of the fundamental group of G if G is compact, simple, and
connected and if no additional symmetries are imposed. For spin chains with symmetry PSU (N ) = SU (N )/ZN ,
our analysis implies the existence of N distinct topological phases. For symmetry groups of orthogonal,
symplectic, or exceptional type, we find up to four different phases. Our work suggests a natural generalization
of Haldane’s conjecture beyond SU (2).

DOI: 10.1103/PhysRevB.87.125145 PACS number(s): 03.65.Vf, 75.10.Pq, 03.65.Fd

I. INTRODUCTION

The integer quantum Hall effect is the best-known example
of a condensed matter system where a physical observable,
the electric conductance, can be expressed in terms of a
discrete, Z-valued topological invariant. The interest in such
topological phases of matter was renewed with the prediction
of a spin quantum Hall effect and an associated Z2 topological
invariant in graphene with time-reversal-invariant spin-orbit
interactions.1 Soon after, a generalization of the spin quantum
Hall effect to three dimensions was found.2 By now, a com-
prehensive classification of noninteracting fermionic systems
is available which describes various types of topological
insulators and superconductors.3–6 These results have been
motivated by the symmetry classification of quadratic random
Hamiltonians à la Altland and Zirnbauer.7,8

More recently, the focus shifted towards interacting sys-
tems. Due to strong correlations between the electrons, the
notion of a band structure ceases to be valid and alternative
methods to detect and to classify topological phases have to be
sought. The bulk-boundary correspondence, i.e., the prediction
of massless surface modes at the interface between two
topologically distinct bulk systems, serves as a useful guiding
principle. Evidence may also be gained from characteristic
entanglement spectra9,10 which contain information about
potential surface modes by introducing virtual interfaces into
the system or from single-particle Green’s functions.11 The
first systematic studies of topological phases of interacting
fermions have been concerned with Majorana chains.12–14 For
these chains, it was shown that the Z classification of the
corresponding noninteracting symmetry class is reduced to a
Z8 classification. Similar results for other systems have been
obtained in Refs. 15,16.

Topologically nontrivial phases are not confined to
fermionic systems but they also arise naturally in bosonic
models, e.g., in interacting spin systems. A specific defor-
mation of the SU (2)-invariant antiferromagnetic Heisenberg
spin chain with spin S = 1, the so-called Affleck-Kennedy-
Lieb-Tasaki (AKLT) spin chain,17,18 was probably the first
example of this type. This system exhibits the following
hallmarks of a topological phase: with periodic boundary
conditions there is a gap above a unique ground state,18

one has a bulk-boundary correspondence: open boundary

conditions imply massless edge modes carrying a topological
quantum number,19 the ground state leads to a characteristic
entanglement spectrum,20,21 and last but not least there exists
a nonlocal string order parameter.22

Various extensions of the AKLT setup to higher-rank
groups and supersymmetric systems have been considered
(see, e.g., Refs. 18,23–26). Other generalizations include q

deformations of the symmetry group which can be used to
describe anisotropic spin chains.27–29 In all these examples,
the matrix product (or valence bond) state formalism plays
a crucial role.30–33 Indeed, the latter is extremely useful
when classifying symmetry-protected topological phases of
one-dimensional spin systems since boundary and entan-
glement properties are almost trivial to access.34–36 In the
meantime, also proposals have been presented on how to
address fermionic systems in this framework and how to
lift the classification to higher-dimensional systems using
projective entangled pairs and, more generally, tensor network
states35,37,38 (see also Ref. 39 for a C∗-algebraic point of view).

In this paper, we are considering gapped antiferromagnetic
spin chains which are invariant under the action of an arbitrary
compact connected simply connected simple Lie group G. In
contrast, we do not impose any additional symmetries such as
time-reversal or inversion symmetry. Under these conditions,
the general classification predicts that the distinct topological
phases are labeled by the elements of a certain cohomology
group.34,35 Depending on the concrete system under study,
the relevant cohomology groups are H 2(G/�,U (1)) where
� ⊂ Z(G) denotes a central subgroup of G. Elements of
this cohomology label the distinct classes of projective
representations of G/�. The group � is determined by the
representations of G which are used to describe the physical
spins.

To our knowledge, so far explicit results on the co-
homology groups H 2(G/�,U (1)) have only appeared in
the condensed matter literature for the orthogonal groups
SO(N ) = Spin(N )/Z2 where two topological phases have
been found.40 In addition, the cohomologies for the classical
groups SU (N ) and SP (N ) (corresponding to � = {1}) have
been written in Ref. 37. However, the corresponding phases all
turn out to be topologically trivial, at least in one dimension. In
our paper, we will fill this gap and show that the cohomology
group H 2(G/�,U (1)) is isomorphic to �, which can also be
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interpreted as the fundamental group of G/� [see Eq. (11)].
Hence, there are |�| distinct topological phases. This number
becomes maximal for � = Z(G) in which case the resulting
group PG = G/Z(G) is called the projective group associated
with G. For PSU (N ), for instance, our result implies the
existence of N distinct topological phases.

Aside from stating an abstract classification result, we
also discuss how each nontrivial topological phase can be
engineered using matrix product states. For this purpose, we
state an explicit formula which determines the projective class
of a representation of G if it is interpreted as a projective
representation of PG [see Eq. (14)]. The topological phases
fall into different hierarchies with regard to different choices
of central subgroups � ⊂ Z(G). This information is sufficient
to determine the projective class with respect to any of the
quotients G/�. While, from a mathematical perspective, we
are merely summarizing well-known facts, we hope that
the explicitness of our presentation will be useful to the
practitioner.

Our paper ends with a discussion of physical implications.
We first reveal a physical interpretation for the hierarchy of
topological phases. More importantly, the mere existence of
such a hierarchy suggests a natural generalization of Haldane’s
conjecture41,42 to arbitrary symmetry groups. In particular, we
conjecture the existence of confined spinon phases in spin
chains with SO(2N ) symmetry and long-range interactions.
Even though spin chains with higher-rank symmetry groups
such as SU (N ) or SO(2N ) are unlikely to be found in
real materials, there is a chance that the corresponding
Hamiltonians can be engineered artificially using ultracold
atoms in optical lattices.43–46 Also, special points in the moduli
space of spin chains and spin ladders might exhibit an enhanced
symmetry. This for instance happens for SU (2) spin chains
which are known to possess an SU (3)-symmetric point for a
certain value of the couplings.47

The paper is organized as follows. In Sec. II, we present
a number of physical and mathematical prerequisites. From
a physical perspective, this includes a precise definition of
the setup, a brief review of the classification of topological
phases in terms of the second cohomology of the symmetry
group, and the general definition of matrix product states. The
mathematical part is concerned with the relation between a
Lie algebra g and its various associated compact connected
Lie groups, which can all be represented as a quotient G/� of
a simply connected universal covering group G. We introduce
the congruence class [λ] of an irreducible representation λ of
g. The value of [λ] measures whether the representation can be
lifted to a linear representation of PG or not. We also recall the
intimate connection between central extensions and covering
groups.

Section III contains the main result of the paper: We
identify the second cohomology of the groups G/� with
their fundamental group �, thereby giving a direct classi-
fication of topological phases. In a case-by-case study, we
afterwards determine the number of topological phases and
their characteristics for each compact connected simple Lie
group. Our presentation includes explicit formulas for the
congruence class of representations which may be used to
characterize gapless edge modes. In Sec. IV, we return to
the physical realization of topologically nontrivial phases

in spin chains. We give a physical interpretation for the
mathematical hierarchy of topological phases in terms of
a blocking procedure. Otherwise, the main focus centers
around a generalization of Haldane’s conjecture to spin chains
with arbitrary continuous symmetry. Section V features an
application of our formalism to SU (N ) spin chains that arise
in the context of cold-atom systems. Our results support the
observation of Ref. 46 that nontrivial topological phases should
be realizable in such systems. Finally, Sec. VI provides a
summary and concluding remarks. In particular, we briefly
sketch the modification of our classification when space-time
symmetries are enforced.

II. PHYSICAL AND MATHEMATICAL PREREQUISITES

The first half of this section is used to define one-
dimensional (1D) spin systems with continuous symmetries
and to briefly review the classification of topological phases
in such systems by means of cohomology groups. For later
convenience, we also recall the characterization of nontrivial
topological phases in terms of massless edge modes. In the
second half, we present some important facts on Lie algebras
and Lie groups which are well known in mathematics but
required for a self-contained presentation of our results. Our
main focus is the relation between Lie algebras and Lie groups.
We discuss which groups can be obtained by exponentiating
a given Lie algebra g and which representations of g lift to
which of these groups, possibly projectively. For this purpose,
we introduce congruence classes of g representations. Finally,
we discuss the relation between finite coverings of Lie groups
and their central extensions.

A. Physical setup

We base the definition of 1D spin chains on the following
data: A simple Lie algebra g of symmetries, a representation
Hk of g attached to each of the sites k, and a Hamiltonian
H ∈ Endg(H) which acts on the total Hilbert spaceH = H1 ⊗
. . . ⊗ HL of the system and which commutes with the action
of g. In addition, one might wish to impose specific boundary
conditions (open, periodic, . . .) which are compatible with the
action of g. For physical reasons, the Hamiltonian should be
local, i.e., one should be able to write it as a sum H = ∑

k Hk

where each summand Hk only affects a finite number of sites.
Since the quadratic Casimir is the only second-order invariant
of a simple Lie algebra, every Hamiltonian with two-body
interactions will be a function of the product �Sk · �Sl of the two
“spin operators” on the sites k and l.

Given this setup, it is important to note that g alone
does not (necessarily) determine the full symmetry of the
system. In particular, there might be discrete symmetries (e.g.,
translations but also onsite symmetries) which necessarily
need to be described by a group. They can not be captured
by the symmetry algebra g but may well be relevant for a
characterization and/or classification of topological phases.
Aside from the choice of g, also the choice of representations
Hk will play a crucial role in the discussion of discrete
symmetries. To give just one trivial example, translations by
one site only have a chance to be a symmetry of the system
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if all spaces Hk are chosen to be isomorphic and periodic
boundary conditions are imposed.

More important for the purpose of this paper, when lifting
the symmetry described in terms of the Lie algebra g to a
group symmetry G, one might have several choices and not all
of them will lead to a faithful representation of G on the spaces
Hk . A simple example is the S = 1 representation of SU (2)
which can not distinguish the two central elements ±1 ∈
SU (2) and hence only corresponds to a faithful representation
of SU (2)/Z2 = SO(3). In Secs. II E and II F and then in
Sec. III, we will discuss additional (and less familiar) examples
of this type. Being aware of subtle differences such as those
just mentioned is the key to the classification of topological
phases in the presence of continuous symmetries.

B. Classification of topological phases

A complete classification of one-dimensional gapped spin
systems has been obtained in Refs. 34–36. We use this and
the following section to review these results. In case one is
only interested in topological phases sharing the same onsite
symmetry group G, the classification is particularly simple:
Different topological classes are in one-to-one correspondence
with the cohomology group H 2(G,U (1)) [with trivial action
of G on U (1)]. If, in addition, space-time symmetries are taken
into account, the classification becomes more complicated.36

In this paper, we wish to keep the presentation simple, thus
neglecting potential space-time symmetries throughout the
main part of the text. Necessary modifications arising from the
presence of space-time symmetries will be briefly discussed
in the Conclusions.

Before we proceed, let us briefly recall the definition of
the cohomology group H 2(G,U (1)). For this purpose, let us
consider maps ω : G × G → U (1) which are solutions to the
cocycle equation

ω(g1,g2) ω(g1g2,g3) = ω(g2,g3) ω(g1,g2g3). (1)

The set of cocycles forms an Abelian group G under pointwise
multiplication. Furthermore, there are trivial solutions of the
cocycle condition which, for f : G → U (1), have the form

ω(g1,g2) = f (g1g2)/f (g1)f (g2). (2)

Solutions of this form are called coboundaries and they form
a subgroup K of G. The cohomology group above is defined
as the quotient H 2(G,U (1)) = G/K. In the cases of interest,
this is a finite Abelian group (Proposition 2.2 of Ref. 48).

Cocycles arise naturally from projective representations of
G, i.e., from maps D : G → U (N ) satisfying

D(g1)D(g2) = ω(g1,g2) D(g1g2). (3)

From this point of view, the cocycle condition (1) is just the
associativity condition for the multiplication law (3), while
the identification of coboundaries with the trivial cocycle
arises from the desire to trivialize the transformation D(g) →
f (g)D(g).

From a physical perspective, the relevance of the second
cohomology group H 2(G,U (1)) can be understood as follows:
Each element � ∈ H 2(G,U (1)) labels a different central
extension G̃(�) of G. If ω ∈ � is a representative of the class
�, this central extension G̃(�) is defined as the set G × U (1)

System with open BC

Symmetry GG̃(Ω) G̃(−Ω)

Reduced system

GG̃(Ω) G̃(−Ω)

FIG. 1. (Color online) Physical and virtual edge modes (red dots)
in topologically nontrivial spin chains. For simplicity of illustration,
the spin chain is depicted as a continuous system.

with group multiplication

(g,α) · (h,β) := [gh,αβ ω(g,h)/ω(1,1)]. (4)

One can check that cocycles ω belonging to the same class
� give rise to isomorphic central extensions. The choice
ω(g1,g2) = 1 corresponds to the trivial central extension
� = [0]. Now the important point is the following: While
the total system is invariant under the symmetry group G,
the system will exhibit gapless edge modes when considered
with open boundary conditions.34,35 The latter transform under
one of the enhanced symmetries G̃(�) if the system is in
a topologically nontrivial phase. If the system has periodic
boundary conditions, the same reasoning applies. However,
now the edge modes are not real but they rather appear virtually
in the bipartite entanglement spectrum after part of the system
has been traced out.20,21 The two possibilities are sketched in
Fig. 1.

So far, we have not discussed the class of functions that
we wish to allow for the cocycles ω : G × G → U (1) and
the functions f : G → U (1) entering Eqs. (1) and (2). For
the finite groups mostly used in Refs. 34–36 there is actually
no restriction. However, since our paper is concerned with
continuous groups, one should impose additional regularity
conditions. Demanding continuity turns out to be too restric-
tive. Indeed, all we need is that linear and projective representa-
tions are implemented in terms of continuous homomorphisms
R : G → U (N ) and D : G → PU (N ), respectively, where
PU (N ) = U (N )/U (1). In this formulation, any reference
to cocycles is missing altogether. In fact, in order to be
admissible, the cocycles only have to respect a Borel structure
on the relevant groups G and U (1), i.e., they have to
be measurable functions. Since a Borel structure is less
restrictive than a topology, this opens the possibility for
discontinuous jumps on sets of measure zero. Fortunately,
these rather technical aspects are not relevant for the further
presentation of the subject. For this reason, we refer interested
readers to the more detailed expositions available in the
original literature.48–50

C. Matrix product states

The previous statements can be motivated most easily in
the language of matrix product states (MPS).34,35 Since all
its characteristics should be visible at zero temperature, we
expect the topological phase of a system to be fully encoded in
its ground state |ψ〉. In this paper, we will throughout assume
the absence of spontaneous symmetry breaking such that the
ground state is unique (the more general case can be considered
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H1

BL H(1,R) H(2,L) H(2,R) H(3,L) BR

H2 H3

A[1] A[2] A[3]|I1〉 |I2〉

FIG. 2. (Color online) Sketch of a matrix product state for a
system with open boundary conditions. The states in the boundary
spaces BL and BR (red) correspond to massless edge modes.

along the lines of Refs. 35 and 36). It is also crucial to require an
energy gap between the ground state and the first excited state,
even in the thermodynamic limit, since otherwise long-range
correlations would exist which might spoil the existence of
a topological invariant altogether. We regard the requirement
of having a gap as being equivalent to demanding a finite
correlation length.

As is well known, any state, including the ground state |ψ〉,
on a periodic chain of length L can be represented as a matrix
product state of the form33

|ψ〉 =
∑

i1,...,iL

tr(A[1] i1 . . . A[L] iL) |i1 . . . iL〉, (5)

where the vectors |ik〉 constitute an orthonormal basis of the
Hilbert spaceHk . If the dimension of the matrices A[k] remains
bounded uniformly when L is sent to infinity, it makes sense
to speak about the thermodynamic limit of the state |ψ〉.
One can then specify very precise conditions under which
the state defines correlation functions with a finite correlation
length.32,33 At the same time, they ensure the existence of a
mass gap even in the thermodynamic limit. Throughout the
paper, we are only interested in situations where |ψ〉 is finitely
correlated and invariant under the action of G.

From a mathematical perspective, matrix product states
arise by associating two auxiliary sites (k,L) and (k,R) to each
physical site k which carry a Hilbert space H(k,L) and H(k,R).
Moreover, we demand that H(k,R) = H∗

(k+1,L). This guarantees
the existence of intertwiners Ik : C → H(k,R) ⊗ H(k+1,L). Al-
ternatively, one has a state Ik(1) = |Ik〉 ∈ H(k,R) ⊗ H(k+1,L),
a completely entangled pair, which is invariant under the
action of G. Under these prerequisites, the matrices A[k]

can be regarded as intertwiners from H(k,L) ⊗ H(k,R) to Hk .
The state |ψ〉 can then be viewed as the image of a product
|I 〉 = |I1〉 ⊗ . . . ⊗ |IL−1〉 of completely entangled pairs under
the map A[1] ⊗ . . . ⊗ A[L]. By construction, the state |ψ〉 is
invariant under the action of G. The construction of a matrix
product state is sketched in Fig. 2.

Let R[k] : G → U (Hk) be a unitary representation of G

on Hk and let, similarly, D[k] : G → U (H(k,L)) be a unitary
(potentially projective) representation on H(k,L). The inter-
twining property for the homomorphisms A[k] translates into
the equation (see also Ref. 51)

R[k](g) · A[k] = D[k](g)A[k]D[k+1](g)−1. (6)

In this equation, the maps A[k] are interpreted as homomor-
phisms from H(k,R) = H∗

(k+1,L) to H(k,L) with values in Hk . It
should be emphasized that the auxiliary space H(k,L) ⊗ H(k,R)

can always be regarded as a representation of G even when
the two auxiliary spaces H(k,L) and H(k,R) themselves are only
projective representations of G (as long as their projective

class sums up to the trivial one). This is due to the fact that
potential phase factors arising in the multiplication law (3) are
canceling out on the right-hand side of Eq. (6).

In a chain with open boundary conditions, the auxiliary
spaces BL = H(1,L) and BR = H(L,R) at the two boundaries
are associated with the massless edge modes and, as advertised
before, these are capable of carrying a projective representation
of G. This is equivalent to the statement that they carry a linear
representation of two centrally extended groups G̃(�) and
G̃(−�), respectively (if the system is not in a superposition of
topological phases). The situation is pictured in Fig. 1.

It was the remarkable insight of Refs. 34 and 35 that the
(discrete) projective class � is invariant under continuous
deformations of the physical system. For this reason, it can
be viewed as a quantitative measure for the topological phase
the system resides in. The continuity of the deformation
is equivalent to the preservation of a gap. Moreover, it is
important to emphasize that the previous classification only
holds as long as we restrict ourselves to deformations which
retain the full original symmetry group G.

If we view the same system from the angle of a different
symmetry G′ and if we allow for deformations which preserve
G′ instead of G, the classification of topological phases will
change. In particular, one and the same system can belong
to different topological classes, depending on the symmetry
group under consideration. It is thus incorrect to think about �

as being an inherent property of the physical system, without
specifying the precise symmetry group the classification refers
to. This basic but important observation will play a key role in
Sec. IV.52

It should finally be noted that the dimension of the spaces
BL and BR alone is not sufficient to discriminate between
topological phases.53–55 It really requires knowledge of the
full representation type � ∈ H 2(G,U (1)). In principle, the
latter should be measurable by a suitable nonlocal order
parameter.40,54,55 In contrast, it is not clear to us whether
this knowledge can be inferred unambiguously from (a
nonspecialized version of) the entanglement spectrum.

As we have just reviewed, the general principles leading
to the classification of symmetry protected topological phases
are well known. What is currently still missing is an explicit
evaluation of the cohomology groups H 2(G,U (1)) for general
continuous groups G. Moreover, for the purpose of construct-
ing nontrivial topological phases it will be important to have an
explicit map between the boundary representations BL and BR

and their associated projective classes � and −�. Section III
will provide a complete solution to both problems. However,
before we can state our results, we first need to recall some
facts about the structure of continuous groups.

D. Review of SU(2) spin chains: The difference between
SU(2) and SO(3)

In an SU (2) spin chain, the spin operators �Sk on each site
take values in the spin algebra su(2). The relevant irreducible
representations are labeled by the spin S ∈ {0,1/2,1,3/2, . . .}.
By definition, the spin chain possesses an SU (2) symmetry
if the total spin generator �S = ∑

k
�Sk commutes with the

Hamiltonian H .
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For the classification of topological phases, we need to
carefully consider which symmetry group G is entering
the cohomology group H 2(G,U (1)). If the physical spins
transform in half-integer spin representations, the group SU (2)
is acting faithfully and there is only one topological phase.
Indeed, it is well known that SU (2) only admits the trivial
central extension SU (2) × U (1).

The situation is different if the physical spins transform
in integer spin representations. In that case, SU (2) does
not act faithfully and the actual symmetry is only SO(3) =
SU (2)/Z2. However, the edge modes can transform in
projective representations of SO(3) and all of them can be
thought of as ordinary representations of SU (2). We now
thus find two different topological classes, corresponding to
edge modes transforming either in integer or in half-integer
representations of SU (2).34 The two central extensions [by
U (1)] corresponding to these two classes are SO(3) × U (1)
and U (2).56 It should be noted that the difference can already
be seen in the two central extensions of SO(3) by Z2, namely,
SO(3) × Z2 and SU (2).

In view of the envisaged generalization to spin chains based
on SU (N ) and other Lie groups, it is useful to understand
the difference between SU (2) and SO(3) more precisely
in topological terms. When viewed as geometric manifolds,
SU (2) and SO(3) look identical locally, i.e., they have the
same underlying Lie algebra su(2). However, they differ in
their global topology. While SU (2) is simply connected, the
group SO(3) is not simply connected, i.e., it admits nontrivial
loops which can not be contracted to a point. Phrased more
mathematically, SO(3) has fundamental group π1[SO(3)] =
Z2 while π1[SU (2)] = {1}. In other words, SU (2) can be
viewed as a twofold covering of the group SO(3). As we
will review in the following section, the close tie between
fundamental groups and covering groups extends to other
symmetry groups, e.g., to SU (N ).

E. From Lie algebras to Lie groups

Let us now consider a general spin chain whose spin
operators take values in a Lie algebra g.57 For convenience,
we will assume g to be simple. The rank of g will be denoted
by r . The finite-dimensional irreducible representations of
g are labeled by integrable weights λ, i.e., by r-tuples of
non-negative integers. Denote this set by P +. By relaxing the
positivity condition, one obtains the weight lattice P . The root
lattice will be denoted by Q. It is a sublattice of P and both
can be regarded as Abelian groups. In Sec. III, we shall show
that, under certain natural assumptions, the topological classes
of g-symmetric spin chains are in one-to-one correspondence
with the elements in the quotient P/Q.58

SU(2) λ1

FIG. 3. (Color online) Visualization of different congruence
classes for SU (2). The picture shows the weight lattice P (all spins) in
terms of colored dots. The root lattice Q (integer spins) corresponds
to the large black dots. Different colors indicate different congruence
classes. The shaded blue box is a possible representative of P/Q.

In the case g = su(2), the weight lattice59 is given by P =
Z, while the root lattice is given by Q = 2Z such that P/Q =
Z2 (see Fig. 3). This reproduces the classification we obtained
for the symmetry group SO(3) but not that for SU (2) even
though both are associated with the same Lie algebra su(2).
If at all, our assertion can thus only be true for a subset of
symmetry groups with Lie algebra g. In what follows, we
review the classification and construction of such Lie groups.
We also single out a Lie group PG which arises naturally from
a physical perspective and whose second cohomology group
coincides with the quotient P/Q.

Any simple Lie algebra g can be exponentiated to a compact
connected Lie group. However, as we have just seen in
Sec. II D, several distinct Lie groups might have the same
underlying Lie algebra g. The Lie groups associated with g all
look the same locally but they differ in their global topological
properties, more precisely in their fundamental group.60 To
obtain a description of all Lie groups belonging to g, we
start with the unique simply connected Lie group G. The Lie
group G serves as a universal cover, i.e., all other Lie groups
belonging to g can be obtained by taking quotients G� = G/�

where � ⊂ Z(G) is an arbitrary nontrivial subgroup of the
center of G. The groups G� have center Z(G�) = Z(G)/�

and fundamental group π1(G�) = �. It is custom to denote
the centerless Lie group with Lie algebra g by the symbol
PG = G/Z(G) and to call it the projective group belonging
to G.61 Among the Lie groups associated with g it has the
maximal fundamental group Z(G), i.e., its topology is the
most complicated. A list of all classical simple Lie algebras g

and the associated simply connected group G can be found in
Table I, together with the relevant data for P/Q and Z(G). For
readers not dealing with Lie theory every day, we should stress
that the simply connected double cover of SO(N ) is known as
Spin(N ).

F. Lifting representations

In the following paragraphs, we will compare the represen-
tation theory of the groups G and G� (especially PG) and
relate it to the representation theory of g. By considering in-
finitesimal group actions, it is clear that any finite-dimensional

TABLE I. Simple Lie algebras g and their associated compact connected simply connected Lie group G. The table also contains the
congruence group P/Q of g and the center Z(G) of G.

Lie algebra g An Bn Cn Dn E6 E7 E8 F4 G2

Other name su(n + 1) so(2n + 1) sp(2n) so(2n)
G SU (n + 1) Spin(2n + 1) Sp(2n) Spin(2n) E6 E7 E8 F4 G2

P/Q ∼= Z(G) Zn+1 Z2 Z2 Z4 (n odd) Z3 Z2 {1} {1} {1}
Z2 × Z2 (n even)
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representation of G, G� , or PG must also be a representation
of g. In contrast, the opposite conclusion only holds for the
simply connected Lie group G, the universal cover of all the
groups G� . This restriction arises from the fact that the center
Z(G) ⊂ G might act nontrivially on a representation, thus
preventing it from descending to the quotient G� = G/�.
Nevertheless, the latter can still be regarded as a projective
representation of G� .

In order to study this issue more systematically, let us
consider an irreducible representation Vλ of g (and hence G)
with highest weight λ ∈ P +. As a consequence of Schur’s
lemma, the elements of the center Z(G) are represented by
multiples of the identity operator. Put differently, Vλ can be
viewed as dim(Vλ) copies of one and the same one-dimensional
representation [λ] of the Abelian group Z(G).62 We call [λ]
the congruence class of λ. [λ] can be interpreted as an element
[λ] ∈ Hom(Z(G),U (1)) of the character group of Z(G). In
our situation, with Z(G) being finite, the character group
Hom

(
Z(G),U (1)

)
is isomorphic to the center Z(G) itself,

albeit the identification is not canonical.
We note that the algebraic structures on P + and on

Hom(Z(G),U (1)) (considered as an additive group) are
compatible with the embedding specified above in the sense
that [λ + μ] ≡ [λ] + [μ]. Indeed, the left-hand side of this
equation is determined by the action ofZ(G) on the irreducible
representation Vμ+λ. However, the latter can be realized as
an invariant subspace of the tensor product Vλ ⊗ Vμ on
which the two actions of Z(G) on the individual factors
just multiply trivially, leading to the class [λ] + [μ]. Since
the trivial representation of G is associated with the trivial
representation [0] of Z(G), the previous relation can be used
to extend the definition of [ · ] from P + to the full weight
lattice P . This is also consistent with the observation that if
λ+ denotes the representation conjugate to λ, one easily finds
[λ+] ≡ [λ]+ ≡ −[λ], as is implied by the existence of the
trivial representation inside of Vλ ⊗ V ∗

λ . Moreover, all groups
G� admit an action on g by conjugation which is insensitive
to the action of the center. Since the generators of g can be
interpreted as elements of Q, this means that the root lattice
Q is mapped to [0] and, in fact, one obtains a homomorphism
P/Q → Hom(Z(G),U (1)). A closer inspection shows that
the homomorphism just constructed is actually an isomor-
phism (Ref. 63, Theorem 8.30).64 Summarizing our previous
discussion, we obtain an isomorphism

P/Q ∼= Hom(Z(G),U (1)) ∼= Z(G). (7)

Any representation λ of G with [λ] ≡ [0] is a linear repre-
sentation of PG, while all the other ones are only projective
representations.

Similar considerations apply to any subgroup � ⊂ Z(G) of
the center. By the same arguments as above, we can define a
surjective homomorphism [ · ]� : P → Hom(�,U (1)). Since
all the groups involved are Abelian, one can regard the
character group Hom(�,U (1)) of � as a quotient of the
character group Hom(Z(G),U (1)) [see also Eq. (35)] and
hence as a sublattice of P/Q. If Q� denotes the kernel of
the map [ · ]� , we obviously obtain the isomorphisms

P/Q�
∼= Hom(�,U (1)) ∼= �. (8)

All linear representations λ of G� satisfy [λ]� ≡ [0]. If this
equation is not satisfied, λ is a projective representation of
G� . Note that any representation with [λ] ≡ [0] automatically
satisfies [λ]� ≡ [0] for all � ⊂ Z(G). More generally, the
relation [λ]� ≡ [0] implies [λ]�′ ≡ [0] for all �′ ⊂ � ⊂ Z(G).
Additional details on the relationship between the maps [ · ]�
and [ · ]�′ for different choices of � and �′ can be found
in Sec. IV. In the next section, we will argue that all the
groups appearing in Eq. (8) can also be identified with the
cohomology group H 2(G�,U (1)), thus relating our findings
to the classification of topological phases.

G. Central extensions of compact Lie groups

As discussed in Sec. II B, central extensions of an arbitrary
group K are classified by the cohomology group H 2(K,U (1)).
For a finite group K , the determination of the second coho-
mology group essentially reduces to a purely combinatorial
problem. The situation is very different for continuous groups
since now cocycles and coboundaries have to be measurable
functions of continuous variables, resulting in an infinite
number of constraints.

For concreteness, we assume all Lie groups to be finite
dimensional, compact, and connected in what follows. In
this case, the cohomology H 2(K,U (1)) receives contributions
from two sources: there might be local obstructions to the
trivialization of cocycles. These are classified by central
extensions of the Lie algebra belonging to K and they are
absent if K is semisimple. Moreover, there might be global
obstructions arising from the existence of noncontractible
loops in K , i.e., from a nontrivial fundamental group π1(K).65

Our previous statements can brought into a mathematically
precise form and they result in the following proposition (for
a proof, see e.g. Ref. 48, Proposition 2.1):

Proposition 1. Let K be a finite-dimensional compact
connected simple Lie group; then, there is a canonical
isomorphism

H 2(K,U (1)) ∼= Hom(π1(K),U (1)). (9)

Since π1(K) is finite and Abelian in the cases of interest,
the right-hand side actually consists of all representations of
π1(K) and can be identified with the group π1(K) itself (even
though not in a canonical way).

Let us now discuss the implications of the previous
proposition for simply connected simple Lie groups G. Since
the fundamental group is trivial, one immediately finds that
H 2(G,U (1)) is trivial as well. In other words, G neither
admits nontrivial central extensions nor nontrivial projective
representations. All finite-dimensional representations of the
underlying Lie algebra g lift to linear representations of G.

In the next step, we drop the simply connectedness, i.e., we
allow for noncontractible loops. As was recalled in Sec. II E,
every simple Lie group can be written as G� = G/� where
G is its simply connected universal cover and � ⊂ Z(G)
is a subgroup of the center of the latter. The fundamental
group of G� can be written as π1(G�) = �. In order to
illustrate the content of Proposition 1, we are now constructing
the central extensions of G� explicitly. Fix an element
� ∈ H 2(G�,U (1)) and interpret it as a representation
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� : � → U (1). The associated central extension is given by

G̃�(�) = [G × U (1)]/� , (10)

where the central subgroup � ⊂ Z(G) of G is embedded
diagonally into G × U (1) according to the prescription γ �→
[γ,�(γ )]. Our previous arguments also imply that the projec-
tive representations of G� are just the representations of G

(or g) themselves. Different projective classes correspond to
different actions of the subgroup �. Indeed, due to Schur’s
lemma, the center � can always be interpreted as being
embedded in U (1) (possibly not injectively) when acting on
an irreducible representation.

III. TOPOLOGICAL PHASES OF GAPPED SPIN CHAINS

In this section, we will give a classification of topological
phases in gapped spin chains whose spin operators belong
to an arbitrary simple Lie algebra g. This is achieved by
evaluating the cohomology groups H 2(G�,U (1)) explicitly
by relating them to the central subgroup � ⊂ Z(G) defining
G� . We also provide a dictionary that characterizes massless
boundary modes according to the congruence class of their
representation. We conclude with a detailed application of our
general result to each individual simple Lie group. Among
these, the symmetry group PSU (N ) is the most interesting
since the number of distinct topological phases turns out to
increase with N . Also, the symmetry groups PSO(2n) stand
out since their four topological phases are characterized by
either Z2 × Z2 or Z4, depending on whether n is even or odd.

A. Topological classes for spin chains with general
Lie group symmetry

In all that follows, we use the notation introduced in
Secs. II E and II F. We shall assume that the physical onsite
Hilbert spaces Hk can be regarded as linear representations of
the group G� . In particular, the central subgroup � ⊂ Z(G)
acts trivially on each Hk such that these spaces are associated
with the class [0] ∈ P/Q� .

We are now prepared to present the main result of the
paper. Combining the statements of Secs. II F and II G, the
classification of topological phases can be obtained from
the following chain of isomorphisms:

H 2(G�,U (1)) ∼= Hom(�,U (1)) ∼= � ∼= P/Q�. (11)

In other words, the different topological phases of a spin chain
with symmetry group G� are in one-to-one correspondence
with the elements of its fundamental group �. In particular,
the topological phases of a system with PG symmetry can
be identified with the center of G. In this case, the previous
equation reduces to

H 2(PG,U (1)) ∼= Hom(Z(G),U (1)) ∼= Z(G) ∼= P/Q.

(12)

The interpretation of the center as the quotient of the weight
lattice P of g modulo its root lattice Q is sometimes useful for
the concrete evaluation of Z(G), e.g., for exceptional groups
such as E6. More importantly, it provides the avenue for a
characterization of topological phases in terms of edge modes
as will be explained in Sec. III B. The relevant data for P/Q

[and hence Z(G)] for different choices of g can be found
in Table I. The important question as to how to determine
the relevant symmetry group G� entering Eq. (11) will be
addressed in Sec. IV. Let us just emphasize here that one can
be certain not to miss a possible phase if one employs Eq. (12)
instead. In this sense, the symmetry group PG can be regarded
as a kind of master symmetry.

B. Edge-mode representations as an indicator for the
topological phase

We will argue in Sec. IV that the topological phases of
systems with G� symmetry admit, in many cases, a natural
embedding into the topological phases of systems with PG

symmetry. Hence, we will restrict the following analysis to the
symmetry group PG.

Let us thus consider a PG-symmetric gapped spin chain
with a unique PG-invariant ground state which resides in
a well-defined topological class. According to our previous
discussions, this statement has three implications. First, all
irreducible representations λ appearing in the decomposition

Hk =
⊕

λ

Vλ (13)

of the physical onsite Hilbert spaces Hk should belong to the
trivial class [0] ∈ P/Q. Second, there should exist a unique
class � ∈ Hom(Z(G),U (1)) labeling the topological phase.66

Third, the edge modes (possibly virtual) on the left-hand
side and on the right-hand side of the (reduced) system
should transform in representations which correspond to the
projective classes � ∈ P/Q and −� ∈ P/Q, respectively.67

If we decompose the auxiliary Hilbert space BL = H(1,L) (or
BR = H(L,R)) at the boundary into irreducible representations
of g similar to Eq. (13), then all the λ should belong to the
same class � ∈ P/Q (or −� ∈ P/Q). The previous few lines
clearly exhibit the need for an efficient way of determining the
projective class of a given representation λ of g.

Fortunately, there exists an explicit formula which deter-
mines the congruence classes [λ] ∈ P/Q of any irreducible
representation λ of g.68 If λ = (λ1, . . . ,λr ) ∈ P + denotes the
associated integrable weight, one simply finds

[λ] ≡
r∑

i=1

λiνi mod M, (14)

where the congruence vectors ν are summarized in Table II.
In all cases but so(4n) (= D2n), the class [λ] is specified by a

TABLE II. Congruence vectors for simple Lie algebras (Ref. 68).

Lie algebra Congruence vector(s) ν Modulus M

An (1,2, . . . ,n) n + 1
Bn (0, . . . ,0,1) 2
Cn (1,0,1,0, . . .) 2
D2n+1 (0, . . . ,0,1,1) 2

(2,0,2, . . . ,2,2n − 1,2n + 1) 4
D2n (0, . . . ,0,1,1) 2

(2,0,2, . . . ,2,0,2n − 2,2n) 4
E6 (1, − 1,0,1, − 1,0) 3
E7 (0,0,0,1,0,1,1) 2
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single number. Only for so(4n) are there two choices of (ν,M)
one has to consider at the same time. In this case, the class is
given by a tuple [a,b] of two numbers. Since formula (14) is
pretty abstract, we will use the subsequent sections to evaluate
it in great detail for all relevant groups. We shall begin with
SU (N ) and continue with all the remaining simple simply
connected Lie groups, including Spin(N ) [the twofold cover
of SO(N )] and SP (2N ) as well as the exceptional groups E6

and E7. The remaining exceptional Lie groups E8, F4, and
G2 have a trivial center and hence do not allow for nontrivial
topological phases.

C. Topological classes for SU(N) spin chains

We assume that N � 2 since SU (1) is just the trivial group.
The group SU (N ) is simply connected and it has a center
ZN . When defined in matrix form, the center consists of the
matrices ωl11 with ω = exp(2πi/N) and l = 0, . . . ,N − 1.
The restriction of the prefactor to the N distinct N th roots
of unity is implied by the requirement that SU (N ) matrices
should have unit determinant.

The group SU (N ) serves as the universal cover of the
projective special unitary group PSU (N ) = SU (N )/ZN . Ac-
cording to our general result (12), topological phases of SU (N )
spin chains are classified by the cohomology group

H 2(PSU (N ),U (1)) ∼= ZN . (15)

In other words, there are N distinct topological phases. For
N = 2, this reproduces the familiar result for PSU (2) =
SO(3) (see also Sects. II D and III D).

Let us now describe which type of edge mode indicates
the presence of which topological phase. As explained in
Sec. III B, this requires knowledge about the congruence class
of all irreducible representations of SU (N ). Representations
of SU (N ) can be described in terms of integrable weights
λ = (λ1, . . . ,λN−1) as above or, alternatively, in terms of
Young tableaux λ = {l1; . . . ; lN−1}. In terms of the weight,
the partition of the associated Young tableau is specified by
the numbers

li =
N−1∑
k=i

λk. (16)

By definition, the number li determines the number of boxes
in the ith row of the tableau.

According to our general result (14) and Table II, the
projective class of a representation λ is given by

[λ] ≡
N−1∑
k=1

kλk mod N. (17)

This formula divides the weight lattice P into N sublattices,
each of them labeled by an element of P/Q. An illustration
of this fact is shown in Fig. 3 and in Fig. 4 for the particular
cases of SU (2) and SU (3), respectively.

We will now briefly recall in which way the N different
classes of SU (N ) representations correspond to the N different
representations of the center ZN ⊂ SU (N ). If ρ : SU (N ) →
U (Vλ) denotes the irreducible representation with highest
weight λ, the center will act as follows:

ρ(ωl11) = ωl[λ]11. (18)

SU(3)

λ1

λ2

SP (4)

λ1

λ2

FIG. 4. (Color online) Visualization of different congruence
classes for SU (3) and SP (4). The pictures show the respective weight
lattice P in terms of colored dots. The root lattice Q corresponds to
the large black dots. Different colors indicate different congruence
classes. The shaded blue boxes are possible representatives of P/Q.
We clearly see that, for SP (4), the topological class is independent
of λ2.

This equation is evident for the trivial representation and for the
fundamental representation λ = (1,0, . . . ,0) (which has [λ] ≡
1 and can thus be regarded as the generator ofZN ). The general
validity follows from linear extrapolation (i.e., from taking
multiple tensor products of the fundamental representation).

We wish to emphasize that formula (17) admits a nice
interpretation in terms of Young tableau: The projective class
of a representation λ just corresponds to the number of boxes
|λ| modulo N . Indeed, a simple rewriting of Eq. (17) using the
identity (16) yields

[λ] ≡
N−1∑
i=1

li mod N ≡ |λ| mod N. (19)

This result can also be understood as follows. The basic
representation of SU (N ) is the N -dimensional fundamental
representation. It is represented by a Young tableau with a
single box. Hence, it has [λ] ≡ 1 and can be regarded as
the generator of the group ZN . All the other representations
of SU (N ) can be found in iterated tensor product of the
fundamental representation with itself. By the Littlewood-
Richardson rule for calculating tensor products, the number
of boxes (and hence the projective class) increases by one unit
in each iteration until we eventually reach the N th power of the
tensor product. Here, the phase is reset to zero and the counting
starts anew. In the process of calculating tensor products, one
might need to delete columns with N boxes. However, deleting
N boxes does not have an effect if the number of boxes is only
counted modulo N anyway.

D. Topological classes for Spin(N) spin chains

Let us now look at the orthogonal symmetry groups
SO(N ). In what follows, we restrict our attention to N � 3
since SO(1) = Z2 is discrete and SO(2) = U (1) fails to be
simple. Since SO(N ) is not simply connected, it is more
appropriate for the purpose of our paper to speak about
the universal covering group Spin(N ) which is a twofold
cover of SO(N ). As usual, the covering implies the identity
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SO(N ) = Spin(N )/Z2. For N = 3, we recover the familiar
case Spin(3) = SU (2) with SO(3) = Spin(3)/Z2.

Surprisingly, the groups Spin(N ) fall into two (actually
three) separate families with rather different properties as can
be inferred from Table I. For odd N = 2n + 1 (n � 1), the
center is Z2, while for even N = 2n the center is Z4 for odd
values of n and Z2 × Z2 for even n. The cohomology groups
classifying the topological phases of Spin(N ) symmetric spin
chains are thus given by

H 2(SO(2n + 1),U (1)) ∼= Z2,

H 2(SO(2n)/Z2,U (1)) ∼=
{
Z4, n odd

Z2 ⊕ Z2, n even.
(20)

In particular, there are four phases if N is even and two
phases if N is odd. We will treat these two cases separately in
what follows. A partial classification, focusing on SO(N ), has
previously appeared in Ref. 40.

1. Case Spin(n + 1)

For odd N = 2n + 1 (n � 1), the center is Z2 and there
are two different classes of representations. They can be
distinguished by the last entry of the Dynkin label λ =
(λ1, . . . ,λn),

[λ] ≡ λn mod 2. (21)

If γ is the generator of Z2 ⊂ Spin(N ) and ρ : Spin(N ) →
U (Vλ) denotes the irreducible representation with highest
weight λ, the center is represented by

ρ(γ ) = (−1)[λ]11. (22)

Accordingly, the situation is very similar to that of SU (2).
Representations with [λ] ≡ 0 are linear representations of
Spin(N ) and of SO(N ). On the other hand, representations
with [λ] ≡ 1 are spinorial, i.e., they are linear representations
of Spin(N ) but only projective ones of SO(N ). Since the center
of SO(N ) is trivial for N = 2n + 1, this covers all possible
cases.

2. Case Spin(2n)

The treatment of SO(N ) with even N = 2n (n � 2)
becomes slightly more involved but also more interesting.
In this case, the center of Spin(N ) is Z2 × Z2 for even n

and Z4 for odd n.69 This observation in particular implies
that the groups SO(N ) = Spin(N )/Z2 have a center Z2

themselves such that one also needs to consider the group
PSO(2n) = SO(2n)/Z2.70 In order to determine the class of
a representation λ = (λ1, . . . ,λn), we have to calculate the
Z2 ⊕ Z4-valued quantity

[λ] =
[

[λ]1

[λ]2

]

≡
[

λn−1 + λn mod 2

2λ1 + 2λ3 + . . . + (n − 2)λn−1 + nλn mod 4

]
.

(23)

The first entry [λ]1 determines whether the representation
is a linear representation of SO(2n) ([λ]1 ≡ 0) or rather a
projective one ([λ]1 ≡ 1). The second entry [λ]2 is required

to produce the correct group structure of Z(Spin(2n)) and
it is relevant when it comes to determining whether λ is a
representation of PSO(2n). For simplicity of presentation,
we shall treat the cases n even and n odd separately.

We start with n even. Note that the second entry [λ]2 is
always even in this case. Moreover, both components of [λ]
are completely independent. Hence, precisely four of the eight
possibilities,

[0,0], [0,2], [1,0], [1,2], (24)

are realized and one can easily check that they satisfy an
addition law corresponding to Z2 ⊕ Z2 (considered as a
subgroup of Z2 ⊕ Z4). If γ = [1,0] and ε = [0,2] denote the
generators of these two central subgroupsZ2 ⊂ Spin(2n), their
action on an irreducible representation ρ : Spin(2n) → U (Vλ)
of highest weight λ is given by

ρ(γ ) = (−1)[λ]1 11 and ρ(ε) = e
iπ
2 [λ]2 11. (25)

Representations λ of Spin(2n) with [λ] = [0,0] are linear rep-
resentations of PSO(2n). All the remaining ones correspond
to projective representations of PSO(2n).

If we turn to n odd, the analysis becomes even simpler. Now,
the two entries [λ]1 and [λ]2 of [λ] are either both even or both
odd. Put differently, the first component [λ]1 is completely
determined by the second [λ]2 by taking its value modulo two.
This again realizes four of the eight possibilities,

[0,0], [1,1], [0,2], [1,3], (26)

but now with an addition law corresponding to Z4 (again
considered as a subgroup of Z2 ⊕ Z4), the generator being
η = [1,1]. On an irreducible representation ρ : Spin(2n) →
U (Vλ) of highest weight λ, the center acts as

ρ(η) = e
iπ
2 [λ]2 11. (27)

The generator η2 of the subgroup Z2 ⊂ Z4 ⊂ Spin(2n) which
needs to be used to descend from Spin(2n) to SO(2n) is
mapped to ±11 under ρ, depending on whether [λ]2 is even
or odd. We thus obtain the following three-level hierarchy:
representations of Spin(2n) with [λ]2 ≡ 0 are linear represen-
tations of SO(2n) and PSO(2n). If [λ]2 ≡ 2, one deals with
a linear representation of SO(2n) which is only a projective
representation of PSO(2n). And in the two remaining cases,
one has a projective representation of SO(2n) and PSO(2n).

We note that in both of the superordinate cases treated, even
and odd n, there exist modifications of formula (23) which give
the classification of topological phases in a more direct and
canonical way: in the first case one could divide the second
component by two and in the second case one could restrict the
attention to the second component from the very beginning.
We decided to present both cases on the same footing in order
to stay close to the original reference.68 It seems plausible that
our results also have a natural explanation in terms of Young
tableaux. However, in this paper we refrain from adopting this
perspective.

E. Topological classes for SP(2N) spin chains

The group SP (2N ) is simply connected and its center is
isomorphic to Z2. We should carefully note that there we are
talking about the compact symplectic group SP (2N ) of rank N
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(see below for a brief comment on the noncompact version). As
usual, the topological phases are classified by the cohomology
group

H 2(SP (2N )/Z2,U (1)) ∼= Z2. (28)

We thus have two distinct topological phases. Given any
weight λ = (λ1, . . . ,λN ), the associated congruence class is
determined by the number71

[λ] ≡ λ1 + λ3 mod 2. (29)

The two different values of [λ] divide the weight lattice P

into two sublattices. For SP (4), this is depicted in Fig. 4.
In an irreducible representation Vλ of highest weight λ, the
center Z2 ⊂ SP (2N ) is implemented in the same fashion as
in Eq. (22). Representations with [λ] ≡ 0 are representations
of SP (2N ) and SP (2N )/Z2 while [λ] ≡ 1 leads to linear rep-
resentations of SP (2N ) which are projective representations
of SP (2N )/Z2.

In order to prevent potential confusion, let us finally
comment on the (probably more familiar) noncompact group
SP (2N,R). This group arises as the symmetry group of a
symplectic form defined on a 2N -dimensional real vector
space. The fundamental group of SP (2N,R) is given by
π1(SP (2N,R)) = Z. In order to arrive at a simply connected
group, one thus needs to pass on to an infinite cover of
SP (2N,R). The group also has a well-known double cover, the
so-called metaplectic group. From a representation theoretic
point of view, the transition from the compact instance of
a group to a noncompact version requires one to replace
finite-dimensional representations with infinite-dimensional
ones, just alone for reasons of unitarity. The topological
classification of systems involving infinite-dimensional rep-
resentations is beyond the scope of this paper. However, our
example shows that one needs to be very precise about the real
form and the global structure of the symmetry group under
consideration.

F. Topological classes for E6 and E7 spin chains

Just for completeness, we also treat the two exceptional
cases in the E series. By abuse of notation, we also use the
symbols E6 and E7 for the simply connected groups associated
with the corresponding Lie algebras. From Table I we infer
that the respective centers of these groups are given by Z3 and
Z2. We immediately conclude that the cohomology groups
classifying the topological phases are given by

H 2(E6/Z3,U (1)) ∼= Z3,
(30)

H 2(E7/Z2,U (1)) ∼= Z2.

Hence, there are three topological phases of E6-invariant and
two phases of E7-invariant spin chains.

Let us discuss the E6 case first. The representations
(λ1, . . . ,λ6) of E6 fall into three different classes according
to the value of

[λ] ≡ λ1 − λ2 + λ4 − λ5 mod 3. (31)

If γ ∈ Z3 ⊂ E6 is the generator of the center, the action in an
irreducible representation ρ : E6 → U (Vλ) of highest weight

λ is determined by

ρ(γ ) = e
2πi

3 [λ]11. (32)

Representations with [λ] ≡ 0 are linear representations of the
projective group E6/Z3. The remaining two classes are only
linear representations of E6 but projective representations of
E6/Z3.

Let us now turn our attention to E7. The representations
(λ1, . . . ,λ7) of E7 fall into two different classes according to
the value of

[λ] ≡ λ4 + λ6 + λ7 mod 2. (33)

The action of the generator γ ∈ Z2 ⊂ E7 on an irreducible
representation of highest weight λ is specified by formula
(22). Representations with [λ] ≡ 0 are linear representations
of E7 and E7/Z2. In contrast, representations with [λ] ≡ 1 are
linear representations of E7 but only projective representations
of E7/Z2.

IV. PHYSICAL PERSPECTIVES

In Sec. III, we classified topological phases for all spin
chains whose spins belong to a simple Lie algebra g. The
classification was intimately related to a division of represen-
tations of g, thought of as becoming manifest in gapless edge
modes, into different classes of projective representations of a
Lie group G� associated with g. In this section, we will analyze
which of the possible Lie groups G� is actually the relevant
symmetry. We will also investigate the hierarchy of topological
phases that arises by considering one and the same system
from different perspectives, based on symmetries G� and G�′

where � and �′ are related by the inclusion �′ ⊂ � ⊂ Z(G).
Moreover, we point out an interesting connection of our
results with a natural generalization of Haldane’s conjecture
to arbitrary spin chains. In the final part of this section, we
illustrate our general considerations with two examples.

A. Identification of the symmetry group

In the following, we will consider a fixed gapped spin
system with spin operators in a simple Lie algebra g and a
Hamiltonian that commutes with all elements of g. Further-
more, we assume the action of g on the total Hilbert space to
be faithful and the existence of a unique and g-invariant ground
state. The precise symmetry group which is relevant for the
classification of potential topological phases [see Eq. (11)]
depends on the nature of the onsite Hilbert spaces Hk .72 The
simply connected Lie group G can always be regarded as a
symmetry of the system. However, its action on the Hilbert
spaces Hk might not be faithful, leading to the existence of
nontrivial kernels �k . Whenever g acts faithfully on the total
Hilbert space, this kernel will be a subgroup �k ⊂ Z(G) of the
center of G. Under these circumstances, the actual symmetry
group (neglecting symmetries not related to g) is GA = G/�A,
with �A = ∩k�k being the intersection of all kernels �k , and
it is this group which enters the calculation of the cohomology
group (11) that characterizes potential topological phases.
Note that the actual symmetry group as defined above might
(and will generally) differ from that obtained by identifying
� with the kernel of G that arises when acting on the total
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Hilbert spaceH = ⊗
k Hk .73 It is thus important to distinguish

between the overall symmetry and symmetries that are realized
locally, even in the absence of translation invariance.

Our previous statements can easily be connected to our
discussion of congruence classes of representations of G in
Sec. III. The system has symmetry G� = G/� if all physical
onsite Hilbert spaces Hk are linear representations of G� ,
i.e., if [Hk]� ≡ [0]. In contrast, it is not required that all
these representations are faithful. Instead, we are searching
for the “smallest” among the groups G� which is still linearly
represented on all spaces Hk . Inverting the logic, the actual
symmetry group GA = G/�A of the system is associated with
the maximal subgroup �A ⊂ Z(G) such that [Hk]�A

≡ [0].

B. Hierarchies of topological phases

As a physical system can be invariant under more than one
of the groups G� , it seems appropriate to discuss the relation
between the potential topological phases predicted for different
choices of � ⊂ Z(G) (keeping the system fixed). Let us thus
consider a central subgroup � which is contained in �A such
that � ⊂ �A ⊂ Z(G). In what follows, we wish to argue that
this inclusion of subgroups gives rise to a natural inclusion
of topological phases. For the two symmetries GA and G� , the
topological phases are described by

H 2(GA,U (1)) ∼= Hom(�A,U (1)),
(34)

H 2(G�,U (1)) ∼= Hom(�,U (1)).

We expect that GA provides a finer resolution of topological
phases than G� . In other words, from the perspective of
G� , some of the original topological phases can not be
distinguished and need to be identified. It turns out that this
identification is done via the Abelian group �A/� which
measures to which extent �A is larger than �. This suggests a
relation of the form H 2(G�,U (1)) ∼= H 2(GA,U (1))/(�A/�)
and indeed a simple calculation yields

Hom(�,U (1)) ∼= Hom(�A/(�A/�),U (1))
(35)∼= Hom(�A,U (1))/(�A/�).

By considering embedding chains of central subgroups, the
previous procedure yields a whole hierarchy of topological
phases.

In the previous example, it was straightforward to change
the perspective from GA to G� with � ⊂ �A and then back
from G� to GA. In many situations, however, it is even possible
to change the perspective from GA to a smaller group G�

right away. In this case, the latter is obtained from a central
subgroup � satisfying �A ⊂ � ⊂ Z(G). For instance, a fixed
system with symmetry G can (under certain circumstances)
be interpreted as a system with symmetry PG (or any of the
other groups G�). This requires no modification of the physical
system, but rather a reinterpretation of its underlying Hilbert
space by means of a blocking procedure in which several
sites are combined into one. Under blocking, certain tensor
products of GA representations indeed lift to a representation
of G� since the individual projective classes (with respect to
�) add up and might eventually give [0] ∈ H 2(G�,U (1)).

For the sake of concreteness, we explain the idea in a simple
example. Most antiferromagnetic spin chains are modeled

using a chain of onsite Hilbert spaces Hk which are alternating
between a representation space H and its dual H∗, both having
a well-defined congruence class with respect to the action of
Z(G). Let us assume that the actual symmetry group is GA,
with a specific central subgroup �A ⊂ Z(G). In this situation,
we can combine two neighboring sites H and H∗ into a
single site Hblock = H ⊗ H∗ which resides in the trivial class
[Hblock] ≡ [H] + [H∗] ≡ [0] with respect to PG. Blocking
thus allows us to move within the hierarchy of topological
phases. It might happen, e.g., in spin ladders, that the Hilbert
space H decomposes into several irreducible representations
of G which belong to distinct congruence classes. In this
situation, blocking does not give rise to a symmetry PG.
Examples for hierarchies of topological phases are presented
in Sec. IV D.

Parts of our discussion might look very academic at first
sight. However, there are also direct physical implications.
Imagine two spin chains with actual symmetry groups GA and
GB . If we couple the two chains, thus building a spin ladder,
the actual symmetry group of the complete system will be
determined by the intersection �A∪B = �A ∩ �B ⊂ Z(G). In
the case of SU (2) spin ladders involving a mixture of integer
and half-integer spin representations, the intersection is trivial,
thus confirming the observation of Ref. 74 that edge modes are
not topologically protected.

C. A generalization of Haldane’s conjecture to arbitrary groups

As we will now explain, our analysis hints towards a natural
generalization of Haldane’s conjecture. In its original formu-
lation for the thermodynamic limit of the antiferromagnetic
SU (2) Heisenberg Hamiltonian for spin S representations,
it consists of the following two statements:41,42 First of all,
there is a unique ground state which is translation invariant.
Second, there is a gap above the ground state if S is integer
and the chain is gapless if S is half-integer (i.e., if 2S is odd).
Manifold evidence has been found to support the conjecture.
In particular, it is well motivated in the semiclassical limit
where the spin S is large and where one can derive an effective
description in terms of nonlinear σ models with or without �

term.41,42 Also, the absence of a gap could be proved using the
nontrivial action of the center of SU (2) on representations
with half-integer spin.75,76 On the other hand, a rigorous
mathematical proof of the existence of a mass gap for integer
spins still seems to be open. The invention of the AKLT chain
(in which a mass gap can be proven18) was an attempt to cure
this unsatisfactory situation. In any case, the relevance of the
center of SU (2) and of its action on specific representations
already indicates a close relation to our present work.

Rather recently, the existence of Haldane gaps was revisited
for different types of SU (N )-invariant spin chains23,77 (see
Ref. 47 for some older work). In particular, the authors
of Refs. 23 and 77 claimed that SU (N ) chains with two-
site interactions possess a Haldane-type gap due to spinon
confinement if the physical sites are described by an irreducible
representation λ whose Young tableau possesses a number |λ|
of boxes which can be divided by N . In view of our discussion
in Sec. III C, this just corresponds to the statement that
[λ] ≡ [0], i.e., the representation of SU (N ) needs to descend
to a representation of PSU (N ). With PSU (N ) playing the
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same role as SO(3), this suggests an obvious generalization of
Haldane’s original conjecture to an arbitrary simply connected
symmetry group G: The center Z(G) should act trivially,
[λ] ≡ 0, in order to find a Haldane phase.

However, the authors of Refs. 23 and 77 noted something
even more interesting: A confinement similar to the one above
can also be observed whenever |λ| and N have a nontrivial
common divisor different than N . With an important difference
to the previous case, the ground state is degenerate now and
the interaction needs to encompass N/q + 1 sites where q =
gcd(|λ|,N ). Our discussion of the hierarchy of topological
phases immediately exhibits: Under the conditions specified,
the representation λ is a linear representation of the group
SU (N )/Zq . Since the second cohomology of this group is
isomorphic to Zq , this still gives potential edge modes the
chance to transform in a nontrivial projective representation,
thus providing a topological argument for the presence of a
Haldane gap. Proving the absence of a mass gap in systems
where |λ| and N do not have common divisors appears to be a
more challenging endeavor (see, however, Ref. 76 for two-site
interactions).

An extrapolation of our previous arguments suggests that
spinon confinement (for a suitable interaction range) exists if
and only if the physical system allows for a nontrivial way
of enhancing its symmetry at (virtual) edges. Equivalently,
the physical Hilbert spaces Hk have to belong to the trivial
congruence class [HK ]� ≡ [0] with respect to at least one
nontrivial central subgroup � ⊂ Z(G) such that the relevant
symmetry of the system is G� , a proper quotient of G. For
matrix product states, the existence or absence of a mass gap
(with respect to a specific model Hamiltonian) is intimately
related to the possibility of realizing it in an “injective”
way.33,51 Most likely, a suitable adaption of these arguments
provides the route for a proof of our statement.

A nontrivial test of our conjecture should be possible along
the lines of Refs. 23 and 77 for the groups Spin(4n) (see
Sec. III D). In this case, the center is given by Z2 × Z2 and it
admits three inequivalent embeddings Z2 ⊂ Z2 × Z2, either
into the left or right factor or diagonally. It turns out that among
the three quotients Spin(4n)/Z2, two are isomorphic, leading
to the so-called semispinor group SS(4n), while the remaining
one is isomorphic to SO(4n) [but not isomorphic to SS(4n)
as long as n �= 2].60 The resulting hierarchy of quotients is
displayed in Fig. 5. One can thus imagine to build spin chains
based on linear representations of SO(4n) or SS(4n) which
are only projective representations of PSO(4n). It is likely
that some of these chains would enjoy topological protection,
resulting in nontrivial edge modes transforming in a projective

PSO(4n)

SO(4n) SS(4n)

Spin(4n)
Z2 Z2

Z2 Z2

Z2×Z2

PSO(4n + 2)

SO(4n + 2)

Spin(4n + 2)

Z2

Z2

FIG. 5. The hierarchy of topological phases in Spin(2n) spin
chains.

representation of SO(4n) or SS(4n), respectively. A priori,
it is not clear whether gapped spin chains of this type can
be realized with two-site interactions. Block renormalization
and the experience with SU (N ), however, suggest that such
spin chains should exist if interactions across several sites are
permitted. Similar remarks apply to Spin(4n + 2) which has a
nontrivial central subgroup Z2 ⊂ Z4.

D. Two illustrative examples: SU(6) and SU(12) spin chains

In this section, we wish to focus on spin chains with SU (6)
symmetry. This example nicely illustrates the technical aspects
and the physical implications of our work. The group SU (6)
has center Z6. We have three different choices for nontrivial
subgroups �. Either we choose Z2, Z3, or the full group Z6

itself. Depending on the choice of physical Hilbert spaces Hk ,
one then ends up with one of four symmetry groups: SU (6),
PSU (6), SU (6)/Z2, or SU (6)/Z3.

The topologically richest systems are those with PSU (6)
symmetry. In this case, we expect six different topological
phases which manifest themselves in the congruence class
[B] ∈ Z6 of (virtual) edge modes. They are labeled by [B] ∈
{[0],[1],[2],[3],[4],[5]}. In systems with SU (6)/Z3 symmetry,
we still have three distinct topological phases, which are
labeled by [B]Z3 ∈ {[0],[1],[2]}. Since the center of SU (6)/Z3

is isomorphic to Z2 and the double quotient gives rise to[
SU (6)/Z3

]
/Z2 = PSU (6), the phases of PSU (6) can be

identified with the phases of SU (6)/Z3 up to the identi-
fications [0] ∼ [3], [1] ∼ [4], and [2] ∼ [5], thus [B]Z3 ≡
[B] mod 3. Conversely, if we have a topological phase
[B]Z3 , there is a chance (but no need) that it admits an interpre-
tation as a phase of type [B] or [B] + [3] in a PSU (6) chain.

Similarly, a system with SU (6)/Z2 has two distinct topo-
logical phases labeled by [B]Z2 ∈ {[0],[1]}. Now, we have
PSU (6) = [SU (6)/Z2]/Z3 and [B]Z2 ≡ [B] mod 2. The
whole hierarchy of topological phases for SU (6) is depicted in
Fig. 6. We can easily confirm that Haldane phases should
exist for representations with [B] ∈ {[0],[2],[3],[4]} albeit
they are protected by different symmetries. These numbers
are precisely those having nontrivial common divisors with
6 [the 6 of SU (6)], in accord with the results of Refs. 23
and 77. They are represented in black color in the lower line
of Fig. 6. For higher-rank groups, the hierarchies becomes
more involved, but they can be derived following the same
principles. In Fig. 7, the hierarchy for the group SU (12) is
depicted. The extra structure arises from the fact that Z12 has
subgroups, for example Z3 and Z4, that are not subgroups of
each other.

PSU(6)

SU(6)/Z3

SU(6)/Z2

SU(6)
Z3

Z2

Z2

Z3

{0, 1, 2, 3, 4, 5}={0, 1, 2, 3, 4, 5}

{0, 1, 2}
{0, 1}

{0}

FIG. 6. (Color online) The hierarchy of topological phases in
SU (6) spin chains.
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PSU(12)

SU(12)/Z6 SU(12)/Z4

SU(12)/Z3 SU(12)/Z2

SU(12)
Z3 Z2

Z2
Z3

Z2

Z2 Z3
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

{0, 1, 2, 3, 4, 5} {0, 1, 2, 3}

{0, 1, 2} {0, 1}

{0}

FIG. 7. The hierarchy of topological phases in SU (12) spin chains.

V. APPLICATION TO COLD-ATOM SYSTEMS

The final section of our paper is devoted to the application
of our general formalism to the study of quantum magnetism
in cold-atom systems. The continuous symmetries relevant in
this context are SP (4) [or, equivalently, Spin(5)] and SU (N ),
with even values of N up to N = 10.44–46 In what follows,
we shall focus on the series SU (N ). We first outline how
the Heisenberg Hamiltonian arises as a particular limit of a
Fermi-Hubbard model. Afterwards, we discuss how particular
examples fit into our general framework.

A. SU(N) Heisenberg model from cold atoms

The realization of an SU (N ) symmetry requires a large
number of degenerate energy levels. As was emphasized in
Ref. 44, the latter arise naturally in earth-alkaline atoms.
Since the nuclear spin I reaches values up to I = 9

2 (for
87Sr), one can easily achieve degeneracies up to 2I + 1 = 10.
The resulting states can be identified with the N -dimensional
fundamental representation of SU (N ), with N = 2I + 1.
Earth-alkaline systems exhibit an almost perfect decoupling
of nuclear and electronic spin degrees of freedom. In practice,
this means that the degeneracy is not lifted by interactions.
For this reason, the SU (N ) symmetry is still reflected in the
Hamiltonian describing the dynamics of the atoms in an optical
lattice. Effectively, one thus arrives at an SU (N )-symmetric
Fermi-Hubbard model. Similar to the familiar case of the
Mott insulator phase, there exists a certain parameter range
where the model can be approximated in terms of an SU (N )
antiferromagnetic Heisenberg spin chain.44,46

B. Realization of topologically nontrivial phases

For the physics of the system, it is essential to know the
SU (N ) representation on which the spin operators act. This
representation is determined by the occupation number per
site.44,46 The situation that will be of interest for us is the
two-orbital case at half-filling, i.e., with N atoms per site.
As was argued in Ref. 46, the relevant SU (N ) representation
λ is then specified by a Young tableau with two columns
and N/2 rows. Using the general formula (19), we find that
[λ] ≡ [0]. Accordingly, λ can not only be interpreted as a
representation of SU (N ) but it also descends to the quotient
group PSU (N ) = SU (N )/ZN . It is thus natural to ask which
of the N possible topological phases is actually realized by
the cold-atom system.

The authors of Ref. 46 argued that the system realizes a
topologically nontrivial phase. This claim was supported by the
existence of AKLT-type Hamiltonians which act on the same
physical Hilbert space and which are utilizing an auxiliary
representation B which is described by a Young tableau with

N/2 rows in a single column. With our formula (19), we easily
verify that [B] ≡ [N/2], i.e., the AKLT-type system indeed
corresponds to a nontrivial topological phase. Since the AKLT-
type Hamiltonian for N = 4 provides a close approximation
to the Heisenberg Hamiltonian, the same nontrivial topology
was conjectured for the cold-atom system in the relevant range
of parameters.46

At this moment of time, it is still an open question as
to whether the Heisenberg Hamiltonian and the AKLT-type
Hamiltonian really belong to the same topological phase.
On the other hand, it is known that the topological phase
can be extracted unambiguously from a suitable string order
parameter.55 Our current work thus provides an important step
towards settling this crucial issue. Moreover, it suggests the
existence of other topological phases of PSU (N ) spin chains
which might be realizable in cold-atom systems. A more
detailed discussion of these aspects will be reported elsewhere.

VI. CONCLUSIONS

In our paper, we revisited the classification of topological
phases in gapped spin chains with continuous symmetry
group. We identified and evaluated the relevant cohomology
groups H 2(G�,U (1)) and showed that they are isomorphic
to the central subgroup � ⊂ Z(G) defining G� = G/� as a
quotient of its simply connected cover G. For a number of
symmetries, among them PSU (N ) and PSO(2N ), we found
more than one topologically nontrivial phase. In particular, we
wish to emphasize the remarkable fact that for PSU (N ), the
number of topological phases is N and hence increases with
the rank of the symmetry group. For the projective groups
PG = G/Z(G), a complete summary of our classification
result can be read off from Table I. The cohomology groups
H 2

(
G�,U (1)

)
exhibit mathematical relations when consid-

ered for different choices of the subgroup � ⊂ Z(G). These
dependencies lead to a natural hierarchy of topological phases.
In Sec. IV, we managed to explain this hierarchy from a
physical perspective by considering blocking procedures and
the combination of spin chains into spin ladders.

Our classification of topological phases, and the distin-
guished role played by the central subgroups � ⊂ Z(G), led us
to propose a natural generalization of Haldane’s conjecture41,42

to arbitrary symmetry groups (see Sec. IV C). In our more
general setup, the original distinction between half-integer and
integer spin S of SU (2) is replaced by whether a representation
λ is a linear representation of any of the groups G� (i.e.,
[λ]� ≡ [0]) where � ⊂ Z(G) is a nontrivial central subgroup
of G. Our proposal is in complete accord with a recent analysis
of Haldane phases in SU (N ) spin chains by Greiter and
Rachel.23 We believe that their analysis can be carried over
to groups of type Spin(2N ), thus providing a nontrivial check
of our conjecture.

Let us briefly discuss the implications of our results for the
study of concrete physical systems, possibly from a numerical
point of view. In our opinion, it can not be overemphasized
that in many spin chains there are more than two distinct
topological phases. While it is a relatively simple task to
distinguish between a topologically trivial and a nontrivial
phase, e.g., using a suitable string order parameter22 (for a
general discussion, see Ref. 78), the definition of a quantity
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which can be calculated efficiently and which can discriminate
between all different topologically nontrivial phases is still
an open problem. Significant progress with regard to such
order parameters has recently been made in Refs. 40 and 54.
However, both papers focused on discrete symmetries and an
application of similar ideas to the cases at hand remains to
be worked out. In a companion paper,55 we will fill this gap
and provide an explicit expression for a string order parameter
for SU (N ) spin chains which can easily be evaluated once
the ground state is known. It will be proven that our order
parameter is sensitive to the projective class describing the
topological phase and that it allows us to discriminate all
N distinct phases of PSU (N ) spin chains. The string order
parameter may therefore be used to verify the claim of Ref. 46
that nontrivial topological phases of PSU (N ) spin chains can
be simulated in cold-atom systems (see also Sec. V).

Our analysis calls for extensions in several directions. First
of all, our classification was concerned with continuous onsite
symmetries only. Taking into account additional discrete sym-
metries such as translation symmetry, time-reversal symmetry,
or inversion symmetry will modify the classification.34,36 In
order to gain some intuition for the underlying reasons, let
us briefly discuss the effects of imposing either time-reversal
or inversion symmetry (or both), in addition to the onsite
symmetry G. According to Ref. 36, apart from the cohomology
groups H 2(G,U (1)), another important ingredient is the space
of one-dimensional representations of G. For simple Lie
groups G, the only one-dimensional representation is the trivial
representation. Hence, these data do not give rise to additional
topological phases in our situation.

On the other hand, it was observed that the projective class
[λ] describing the boundary modes has to satisfy 2[λ] ≡ 0 in
the presence of either inversion or time-reversal symmetry.
This leads to a possible reduction in the number of topological
phases. Actually, the constraint 2[λ] ≡ 0 can be understood
quite easily from the matrix product state construction re-
viewed in Sec. II C. It is obvious for instance that inversion
symmetry requires the auxiliary spaces to be self-conjugate,
λ = λ+, since they are exchanged under inversion. In view of
the general relation [λ+] = −[λ], this condition immediately
implies 2[λ] ≡ 0. Similar remarks apply to time reversal.

As we have just seen, enforcing the presence of additional
symmetries may drastically reduce the number of topological
phases which can exist in spin chains with continuous

symmetry. In particular, for PSU (N ), there are no nontrivial
inversion-symmetric topological phases if N is odd. Indeed,
the construction of the two nontrivial topological phases in
a PSU (3) spin chain that was presented in Ref. 55 explicitly
required to break inversion symmetry. On the other hand, there
is precisely one topologically nontrivial inversion-symmetric
phase if N is even. An explicit realization of this phase has been
constructed in Ref. 46. Using the results of Ref. 34 and our
own classification, it is a straightforward exercise to work out
all topological phases which are protected by a combination
of continuous onsite symmetries G and/or time-reversal or
inversion symmetry.

Another interesting open point concerns the interplay of
continuous symmetries with discrete internal symmetries,
arising e.g. in spin ladders. The presence of these additional
symmetries will lead to adjustments (see, e.g., Ref. 79) which
require a separate analysis, depending on the precise type
of model under consideration. We believe that the results
presented here will be helpful in accomplishing this task.

It seems feasible to generalize our results to supersymmetric
and q-deformed spin chains. We hope to report on this in the
near future. On the other hand, an extension to noncompact
groups appears to be more challenging from a technical point
of view. While the mathematical part of the story, the topology
of noncompact groups and the division of representations
into congruence classes, seems to be well understood, the
complications arise on the physical side. In particular, it is
evident that noncompact groups come hand in hand with
infinite-dimensional representations, together with all their
functional analytic intricacies. For example, it is not clear
to us at the moment whether in the infinite-dimensional setup
symmetry-preserving matrix product states can be constructed
which admit a parent Hamiltonian describing a gapped phase.
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