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Resistor model for the electrical transport in quasi-one-dimensional organic (TMTSF)2PF6

superconductors under pressure
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1Institut für Theoretische Physik III, Ruhr-Universität Bochum, 44780 Bochum, Germany
2IPhT, CEA-Saclay, L’Orme des Merisiers, 91191 Gif-sur-Yvette, France

3Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, UMR 8502, 91405 Orsay, France
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We investigate the metallic transport in the organic superconductor (TMTSF)2PF6 under pressure within the
framework of the spin density wave theory in the proximity of a Peierls quantum critical point (QCP). We
use a simple transport model of hot and cold regions around the Fermi surface, driven by the proximity to
the QCP in order to provide a template to fit the experimental results. Successful agreement with the data
comforts the interpretation of extended criticality around the antiferromagnetic QCP in the normal phase of
quasi-one-dimensional organic superconductors.
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I. INTRODUCTION

Anomalous transport properties have been reported in the
normal phase of the organic superconductors (TMTSF)2PF6

and (TMTSF)2ClO4, also called Bechgaard salts,1,2 as a
function of temperature and applied pressure. These quasi-
one-dimensional materials are remarkable in many respects,
the least of all being the striking similarity of their temperature-
pressure (T -P ) phase diagram3 with other exotic superconduc-
tors; namely, the iron-based superconductors.4,5 At ambient
pressure, (TMTSF)2PF6 undergoes a magnetic phase transition
of spin density wave (SDW) character, where the Fermi
surface is destabilized by the onset of a spin density wave
of the itinerant conduction electrons.6–8 Under application of
high pressure, the compound becomes superconducting with a
maximum critical temperature Tc ≈ 1.2 K.1 Superconductivity
coexists with the SDW order until the pressure reaches a
critical value Pc above which the SDW order is no longer
observed,9 indicating the existence of a SDW quantum critical
point (QCP). At larger pressure, superconductivity shows a
smooth decrease of Tc with pressure. The similarity with
pnictide superconductors is not only seen in the (T -P ) phase
diagram, showing the simultaneous occurrence of SDW order
and superconductivity, but also in the properties of the normal
phase.4 Indeed, the electrical resistivity ρ shows a striking
linear temperature dependence, ρ − ρ0 ∝ T , at 11.8 kbar
and larger pressure in (TMTSF)2PF6, suggesting an unusual
scattering mechanism that is possibly similar to the one present
in the pnictides (and cuprates).

Extensive theoretical investigation has been carried out,
based on a one-loop renormalization group (RG) formalism10

especially suitable for one-dimensional systems.11 These stud-
ies have been reported to reproduce many of the most striking
features observed experimentally.10,12 Of special importance
is the interplay between itinerant antiferromagnetism (SDW)
and superconductivity, which controls the magnitude of the
coupling constants in the vicinity of the QCP. An extensive
regime of criticality has been uncovered, for which linear-in-T
resistivity is obtained down to lowest temperatures (within the
one-dimensional framework) on a finite range of pressure.
Furthermore, the T -linear behavior disappears above an upper
scale T0 where the quadratic law is recovered. Above Pc,

the system is thought to be homogeneous, and although
the quantum phase transition is reported to be weakly first
order,9 it is believed that considerable quantum fluctuations
are present to cause anomalous regimes, in both transport and
thermodynamics.

In this paper, we build upon the RG insight and suggest
an explicit model based on a Peierls instability in a quasi-
one-dimensional system driven to zero temperature by the
presence of warping on the Fermi surface. The idea of driving
a finite-temperature Peierls transition towards a QCP end point
through increasing the warping has been used in past studies
of chromium,13,14 a system showing almost perfect nesting
between Fermi pockets via translation of the SDW wave
vector. Here, we shall employ a model of the same type, where
the SDW transition is driven to zero temperature through the
increase of the unnested part of the electronic dispersion.15–17

The family of organic superconductors provides a suitable
model system to check our theoretical investigation of a
Peierls-type QCP driven by curvature effects.

II. MODEL FOR A NESTING QUANTUM CRITICAL POINT

In the Bechgaard salts, the kinetic electronic spectrum is
suitably modeled by the orthorhombic dispersion relation,

ε(p) = v0(|px | − pF ) − tb cos(bpy) − t ′b cos(2bpy). (1)

The corresponding Fermi surface is shown in Fig. 1(a).
Generally t ′b � tb � v0pF and the t ′b-unnesting term drives
the system into criticality. For t ′b = 0, the Fermi surface is
perfectly nested with the nesting vector Q = (2pF ,π/b) and
at sufficiently low temperature the system is found to be in the
SDW phase. For finite yet still small t ′b, nesting is no longer
perfect but still very good in the proximity of the inflection
points—the hot spots—of the Fermi surface. Eventually, as
t ′b is increased further (by applying greater external pressure)
beyond a critical value, nesting will be ineffective and the SDW
order is destroyed. Nesting of finite parts of the Fermi surface
at high temperature is now reduced to the four inflection
points P1−4 at T = 0 as depicted in Fig. 1(a). This picture
survives down to zero-temperature, implying a quantum phase
transition at a critical value of the coupling constant t ′b. Using
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FIG. 1. (Color online) (a) Brillouin zone with the Fermi surface
and the nesting vector Q connecting two inflection points P1 and
P3. Inset shows unit vectors e‖ and e⊥ parallel and perpendicular to
the Fermi velocity at P3 that define the coordinates k = (k‖,k⊥).
(b) Polarization bubble for the paramagnon mode. (c) Fermion
self-energy. The wavy line represents the effective paramagnon from
Eq. (5).

the parameters of Ref. 10, we have tb ∼ 200 K, and the critical
coupling t ′b ≈ 25.4 K.

In order to study the physics around the hot spots, we expand
the spectrum (1) in their vicinity. Around P3 and in leading
order in t ′b,

ε(P3 + k) 	 vk‖ − b3k
3
⊥ − b4k

4
⊥. (2)

Herein, k‖ and k⊥ are the momentum components parallel and
perpendicular, respectively, to the Fermi velocity at P3; cf. the
inset of Fig. 1(a). The parameters in the reduced spectrum (2)
are v = v0/γ , b3 = b3γ 3tb/6, and b4 = −b4γ 4t ′b/2 with
γ −1 =

√
1 + (btb/v)2. Close to the “nesting partner” P1, the

spectrum is similarly approximated as

ε(P1 + k) = ε(P3 − k) 	 −vk‖ + b3k
3
⊥ − b4k

4
⊥. (3)

Note that we have expanded the spectrum up to the term of
forth order in k⊥. Had we kept only terms until order k3

⊥,
the reduced hot-spot spectra (2) and (3) would not contain
any mechanism to violate perfect nesting. Indeed, the simple
coordinate transformation k‖ 
→ k‖ + v−1b3k

3
⊥ illustrates that

there would effectively be no curvature effects in the resulting
physics so that, inevitably, we would find a finite-temperature
Peierls instability towards SDW for any externally applied
pressure. In contrast, the quartic-order term clearly breaks
nesting and, since b4 ∝ t ′b, is an immediate consequence of
the presence of the pressure-driven t ′b-warping term in Eq. (1).
With the range of transverse momenta k⊥ approximately
between −π/(2b) and π/(2b), we find that the forth-order
term becomes important as soon as t ′b/tb ∼ 2/(3π ), which
is fairly compatible with the critical value for t ′b given
in Ref. 10. Increasing t ′b beyond its critical value reduces
the Fermi surface region for which the reduced spectra (2)
and (3) are valid and thus sets a limit to the volume of the
hot spots.

Looking for nontrivial effects such as the observed QCP,
we need to enrich the model of noninteracting fermions by a
proper model for the two-particle interaction. Previous works
established that there are three relevant interaction channels in
the Bechgaard salts: backward scattering (with the coupling
constant g1), forward scattering (g2), and Umklapp scattering
(g3).10 The RG studies have shown that the superconducting
fluctuations lead to a drastic decrease of the coupling constants
g1 and g2, due to the interplay of Cooper and SDW fluctua-
tions at the nesting points, whereas the Umklapp coupling
constant g3 remains essentially unaffected. For the following
QCP study, we represent the fermion-fermion interaction as
mediated by a bosonic mode that becomes critical at the QCP.
Following the insight of Ref. 10, we retain only the coupling
constant g3 as medium for the electron-paramagnon interac-
tion. Our approach allows us to analyze both thermodynamic
and transport properties, but considering that g3 is related to
the Umklapp processes enables us to focus mainly on the
resistivity behavior. We perform calculations neglecting vertex
corrections to the one-loop self-energies—an approximation
that we may expect to yield at least qualitatively the correct
physical picture.

In a phenomenological low-energy picture, we may assume
that after integrating out all high-energy degrees of freedom,
the effective interaction is mediated by long-wave paramagnon
modes. Here, we consider such a bosonic mode that transfers
a momentum of order Q; cf. Fig. 1(a). The coupling of the
bosonic modes to the electrons generates a self-energy term
�ω,q in the boson propagator χ (iω,Q + q). In the one-loop
approximation, �ω,q is given by the polarization bubble [see
Fig. 1(b)], whose relevant nonanalytic part is

�ω,q = g3|q⊥|
4π2v

ln

{
(2b4q

4
⊥)2

ω2 + ξ 2
q

}
, (4)

with ξq = vq‖ − b3q
3
⊥ + b4q

4
⊥. Formula (4) for the bosonic

self-energy is valid for t ′b larger than the critical value ≈25.4 K,
ensuring that that the unnesting terms b4k

4
⊥ in Eqs. (2) and (3)

are active. It is important to note that the presence of the
k4
⊥ term prevents the polarization from producing mass terms

containing logarithms in temperature and thus establishes
the existence of a QCP—for subcritical values t ′b � 25.4 K,
the effective absence of forth-order k4

⊥ terms does lead to
logarithmic ln T terms in the bosonic mass so that the phase
transition towards a SDW state sets in at a finite temperature
>0. As the remaining analytic part of the bosonic spectrum
is generically an analytic function of ξ 2

q , we thus write the
effective propagator for the paramagnons as

χ (iω,Q + q) = 1

μ + α(ξq/v)2 + �ω,q
, (5)

with α ∼ 1. The bosonic mass μ (in this work, we consider
μ > 0) measures the distance to the QCP and, close to it, we
should consider the limit μ → 0. The logarithm present in the
paramagnon propagator (5) is characteristic of a Peierls phase
transition and all the anomalous behavior shall ultimately be
due to this nonanalyticity.
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III. CONDUCTIVITY

Using the effective model for the hot-spot electrons coupled
to critical paramagnons, we are in a position to investigate
their transport properties. The relevant quantity is the retarded
electron self-energy �R(ε), which within the precision of
the one-loop approximation is represented by the Feynman
diagram in Fig. 1(c). In the standard way for an itinerant
electron QCP, the momentum dependence of the self-energy
is negligible compared to the energy dependence and the
Matsubara self-energy is thus given by

�(iε) = −g3T
∑
iω

∫
dξq

2πv

χ̄(iω,ξq)

i(ε + ω) − ξq
, (6)

with χ̄ (iω,ξq) = ∫
(dq⊥/2π ) χ (iω,Q + q)|ξq=const. Perform-

ing the analytical continuation to real-time frequencies ε, we
obtain in the limit ε → 0 for the imaginary part of the retarded
self-energy in the electronic Green’s functions the formula

Im �R(ε) 	 πT
ln

(
p−2

F μ + ε2/ε2
F

)
ln

(
ε2/ε2

F

) . (7)

It shows that, at criticality, μ = 0, the self-energy of hot-spot
electrons is linear in temperature, Im�R

QCP(ε → 0) = πT and
is independent of the coupling constants. As a straightforward
consequence, the resistivity of the hot-spot electrons in the
compound would at arbitrarily low temperatures be linear in
T as well. Away from the QCP, the finite bosonic mass μ

suppresses for frequencies |ε| � v
√

μ the quantity Im�R(ε),
which for ε → 0 tends logarithmically to zero. As a result,
since for the conductivity essential frequencies ε are of order
T , a linear law for the temperature dependence of the hot-spot
resistivity appears only above the critical temperature:

TS ∼ v
√

μ. (8)

At the QCP, clearly, TS = 0. Note that, since the limit T  TS

is essentially equivalent to the limit μ → 0, the coefficient in
front of T in the resistivity effectively does not depend on the
value of the bosonic mass μ, i.e., on the applied pressure that
determines μ.

We turn now towards a dichotomic description of the
transport properties18 of the compound in terms of hot-spot
and cold-spot regions on the Fermi surface, hereby providing
a simple model upon which to test the experimental data
of (TMTSF)2PF6 from Ref. 4. The conductivity σ (T ) is the
sum of contributions from the entire Fermi surface. Treating
separately the contributions from the hot spots (with the Fermi
surface volume fraction vh) and those due to the cold regions
(volume 1 − vh), we write σ (T ) as the sum

σ (T ) = vh

ρ0 + ρhot(T )
+ 1 − vh

ρ0 + ρcold(T )
. (9)

In circuit language (see the inset of Fig. 2) this formula
corresponds to the parallel arrangement of the resistances due
to the hot and cold regions of the Fermi surface while each
of the two resistances is viewed as a series of the residual
resistance and a specific temperature-dependent one. The
residual resistivity ρ0 is experimentally given by the T → 0
limit and is the result of elastic scattering processes. Guided
by the preceding theoretical considerations, we specify in the
following the form of the temperature-dependent resistivities

FIG. 2. (Color online) Pressure dependence of the model pa-
rameters obtained from the fit: 10B (diamonds, in μ cm/K2), C

(squares, in μ cm/K2), and vh (circles) compared to the temperature
of the superconducting transition Tc (triangles, in K) from Ref. 4.
Inset shows “equivalent circuit” for the dichotomic conductivity
model [Eq. (9)].

ρhot(T ) and ρcold(T ) and their underlying scattering processes
in the hot and cold regions.

For the cold regions, we may for all temperatures assume
the quadratic law ρcold(T ) = BT 2 accounting for the electron-
electron scattering processes typical of the metallic behavior.
At a sufficiently high temperature T > T0, the notion of cold
and hot regions is irrelevant so that we may expect the same
law also in the hot regions, ρhot(T ) = BT 2. Lowering the
temperature, we encounter at a temperature T0 the crossover
into the quantum critical regime. Here, (Umklapp) scattering
of hot conduction electrons through the quantum critical
paramagnons leads according to the preceding analysis to a
linear law ρhot(T ) = AT ; cf. Eq. (7). Below a second crossover
temperature TS [Eq. (8)], the linear resistivity is suppressed
and one should again expect a Fermi-liquid-like behavior,
ρhot(T ) = CT 2, although with an effective quasiparticle mass
heavily renormalized by the interaction with paramagnons
close to criticality. At the QCP, TS = 0 so that the linear law for
ρhot(T ) prevails down to zero temperature while at very high
pressure, the differentiation between hot and cold regions is no
longer valid so that we expect C → B and the critical window
between TS and T0 to shrink to zero. Table I summarizes the
temperature laws for the three regimes.

IV. COMPARISON WITH EXPERIMENTS

Our dichotomic conductivity model suggests a three-step
analysis of the transport data on (TMTSF)2PF6:4 In the
first step, the coefficient B is fixed from the quadratic
resistivity law ρ0 + BT 2 at high temperatures (∼30 K). For
the residual resistivity ρ0, the zero-temperature extrapolation

TABLE I. Temperature dependencies of the resistivities of hot
and cold electrons.

Temperature region ρhot(T ) ρcold(T )

T > T0 BT 2 BT 2

TS < T < T0 AT BT 2

T < TS CT 2 BT 2
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FIG. 3. (Color online) Pressure-temperature phase diagram of
(TMTSF)2PF6 displaying the crossover temperatures TS and T0 from
this analysis as well as the long-range-order phases. The lines
are guides to the eye. The transition temperatures towards SDW
(triangles) and SC (circles) are those from Ref. 4.

of the experimental data, we have used the same values as
in Ref. 4. Then, we extract in the second step the critical
regime at intermediate temperatures where a significant linear
temperature contribution is observed. Fitting here the data to
the formula (9) written for temperatures TS < T < T0, we
find the coefficient A and the hot-spot volume fraction vh.
Note that B has already been fixed and thus is not a free
fitting parameter. At the same time, our theory predicts that
A is pressure independent. Thus once A is determined for
one pressure; e.g., the one at which the linearity in T prevails
down to lowest temperatures, the only remaining free fitting
parameter is vh. In the final third step, we similarly use the
low-temperature (T < TS) form of Eq. (9) to determine the
coefficient C. Within the philosophy of the resistor model,
A and C are constants as a function of temperature inside
the temperature regime they appear in. This ensures that
the regimes are properly defined according to Eq. (9) and
Table I. Theoretically, we may expect logarithmic corrections,
see Eq. (7), but when comparing with experiments, these are
fairly approximated by constants. Finally, we determine the
crossover temperatures TS and T0 as the intersections of the
fits found for each regime.19

Figure 2 shows the pressure dependence of B, C, and vh as
a result of the analysis of σ (T ) between 0.15 and 34 K at seven
different pressures according to the three-step fitting procedure
discussed above. The analysis confirms that the contribution
linear in T is indeed well described by a pressure-independent
coefficient A that if treated as a free fitting parameter mildly
jitters around A = 0.38 μ cm/K. The coefficient B is related
to the effective mass in the cold regions, B ∼ m2

‖. Its slight
decrease under pressure in Fig. 2 can be ascribed to the increase
of the intermolecular in-chain overlap, possibly enhanced by
correlations. The data are also in agreement with the pressure
dependence of the spin susceptibility measured by NMR
experiments.20 The coefficient C describing the increase of
the effective electron mass at hot spots is roughly constant but

its size is ten times larger than the order of magnitude of B.
The fact that such an enhancement does not fade away under
pressure indicates that even under 21.8 kbar the scattering off
antiferromagnetic spin fluctuations is still very strong. Under
a pressure of 11.8 kbar, corresponding to the point closest
to the QCP, no quadratic law could be observed down to the
lowest temperature after superconductivity had been removed
by the application of a small magnetic field along c�. This
suggests that the quantum critical regime of linear resistivity
extends down to temperatures very close to zero at this point.
The hot-spot volume vh, which close to the QCP is vh ≈ 0.97,
is decreasing under pressure (vh ≈ 0.30 at 21.8 kbar). This
is in accordance with the intuitive physical picture that the
distance from the QCP enhances unnesting and thus reduces
the effective size of the hot spots. Its value remarkably follows
Tc, in agreement with earlier findings.4

Both crossovers T0 and TS are plotted versus pressure in
Fig. 3. The crossover TS is strongly suppressed in the vicinity
of the QCP, in fair agreement with Eq. (8). It is to be noted that,
while the hot-spot contribution to conductivity is dominant at
the pressure of 11.8 kbar close to the QCP, the presence of the
cold regions is crucial to explain the pressure decrease of the
resistivity at a fixed temperature. Indeed, as discussed above,
increasing the distance to the QCP induces a decrease of vh,
thus favoring the conduction through the cold regions at larger
pressures. In the language of the equivalent circuit (see inset
of Fig. 2), the less-resistive cold regions short circuit the larger
and for TS < T < T0 linear in T hot-spot resistance.

V. CONCLUSION

In conclusion, we present a theory of a QCP associated
with the Peierls-type singularity. This theory is nontrivial as
the role of the curvature is preponderant in stabilizing the
logarithmic divergences and yields strong influence on the
form of the crossovers. The organic Bechgaard salts constitute
an almost perfect model system with the simplicity of their
band structure allowing us to test the curvature effects. Within
a hot-spot - cold-spot dichotomic conductivity model for the
itinerant electron QCP, we confront the critical theory with
the experimental data obtained in transport measurements for
(TMTSF)2PF6, showing good agreement. At the hot spots, the
physics of the Bechgaard salts shows strong similarity with
the physics in heavy-fermion systems.
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