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We discuss electron spin resonance (ESR) shifts in spin-1 Heisenberg antiferromagnetic chains with a weak
single-ion anisotropy, based on several effective field theories: the O(3) nonlinear sigma model (NLSM) in
the Haldane phase, free-fermion theories around the lower and the upper critical fields. In the O(3) NLSM,
the single-ion anisotropy corresponds to a composite operator which creates two magnons at the same time and
position. Therefore, even inside a parameter range where free magnon approximation is valid for thermodynamics,
we have to take interactions among magnons into account in order to include the single-ion anisotropy as
a perturbation. Although the O(3) NLSM is only valid in the Haldane phase, an appropriate translation of
Faddeev-Zamolodchikov operators of the O(3) NLSM to fermion operators enables one to treat ESR shifts near
the lower critical field in a similar manner to discussions in the Haldane phase. Our theory gives quantitative
agreements with a numerical evaluation using quantum Monte Carlo simulation, and also with recent ESR
experimental results on a spin-1 chain compound Ni(C5H14N2)2N3(PF6).
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I. INTRODUCTION

Quantum phase transition has been studied for a long time.
In quantum magnetism, the magnetic field is the most familiar
parameter to cause quantum phase transitions. An S = 1
Heisenberg antiferromagnetic (HAF) chain and an S = 1

2
two-leg HAF ladder are typical examples of one-dimensional
quantum spin systems which show quantum phase transitions
induced by the magnetic field. These systems have the unique
ground state separated from excited states by a finite excitation
gap, at zero field. As the magnetic field is gradually applied,
the excitation gap is going to vanish.1,2 After the collapse
of the excitation gap, the system enters into a field-induced
critical phase. The field-induced critical phase lies in a range
Hc1 < H < Hc2. Here, Hc1 and Hc2 are called as a lower
and an upper critical field. For H < Hc1, the system is in the
gapped phase. And for Hc2 < H , the system is in another
gapped phase where the spins are fully polarized. Hc2 is also
called as a saturation field.

The quantum phase transitions at H = Hc1 and Hc2 bring
about reconstructions of the excitation spectrum. Especially,
dynamical properties of low-energy excitations are dramat-
ically changed. Recently, dynamics of electron spins in the
field-induced critical phases are actively investigated by var-
ious experimental techniques.3–5 Among these experimental
techniques, electron spin resonance (ESR) occupies a unique
position in its sensitivity to interactions between electron spins.
In fact, thanks to this advantage of ESR, many interesting
ESR experiments have been performed in one-dimensional
quantum spin systems under high magnetic field.4–6 These
recent precise ESR experiments highlight the necessity of
reliable quantitative theory of ESR in the field-induced critical
phase.

Despite the theoretical and experimental importance of the
field-induced critical phase, ESR in the field-induced critical
phase is less studied by theorists. This situation is in contrast to
the fact that S = 1

2 HAF critical chain whose low-temperature
ESR is well understood.7–10 Although ESR of the S = 1 HAF

chain has been studied in several works, they were mostly
concerned with ESR in gapped phases.11,12 It is the objective
of this paper to fill this gap by developing a theory of ESR
in the field-induced critical phase, especially around quantum
critical points, of one-dimensional quantum spin systems in an
organized manner.

In this paper, we consider an S = 1 HAF chain with a
general form of a single-ion anisotropy

H = J
∑

j

Sj · Sj+1 − geμBH
∑

j

Sz
j

+D
∑

j

(
S

p

j

)2 + E
∑

j

[(
S

q

j

)2 − (
Sr

j

)2]
(1)

in the whole range of the magnetic field, from zero field H =
0 to the saturation field H = Hc2. p, q, and r refer to the
principal axes of the single-ion anisotropy. ge and μB are Landé
g factor of electron spin and μB is the Bohr magneton. We put
h̄ = kB = geμB = 1 unless otherwise stated. In particular, we
focus on a shift of the resonance frequency (ESR shift) caused
by weakly anisotropic spin-spin interactions.

We reported, in our preceding Rapid Communication,13

that the ESR shift in the range H � Hc1 is well explained by
the so-called form factor perturbation theory14 (FFPT) around
an integrable field theory. In the case of S = 1 HAF chain,
the O(3) nonlinear sigma model (NLSM) plays the role of
the unperturbed integrable field theory in FFPT. In the Rapid
Communication,13 we applied the FFPT to the analysis of the
ESR shift in H ≈ 0 and Hc1, where we utilized a close relation
of effective field theories in two different regions H ≈ 0 and
Hc1. This paper is also intended to take a closer look at this
remarkable feature.

In the next section, we will briefly review a general
framework of perturbative treatments for the ESR shift. We
consider ESR shifts in three regions: the low-field gapped
region (Sec. IV); the region near the lower critical field
(Sec. V); and the region near the upper critical field (Sec. VI).
In each region, we introduce an effective field theory and
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apply it to the analysis of the ESR shift at low temperature.
Section VII is devoted to a comparison of our theory with
recent ESR experiments5 of the S = 1 HAF compound
NDMAP. In Appendix A, we discuss a qualitative difference
of the single-ion anisotropy and an exchange anisotropy from
the viewpoint of ESR shifts.

II. FRAMEWORK

Here, we briefly review the perturbation theory of the
ESR shift. ESR experiments measure an absorption of an
electromagnetic wave by electron spins, where a microwave is
typically applied. From the absorption spectrum, we are able to
extract information on dynamics of electron spins. Within the
linear response theory, the ESR spectrum I (ω) ∝ ωχ ′′

+−(ω,q)
is written in terms of the retarded Green’s function

χ ′′
+−(ω,q = 0) = Im

[
i

∫ ∞

0
dt eiωt 〈[S+(t),S−(0)]〉

]
. (2)

Here, S± = Sx ± iSy denote transverse components of the
total spin S = ∑

j Sj , which is the generator of the global
SU(2) symmetry. Thus, if the whole Hamiltonian preserves
the SU(2) symmetry in the spin space, Eq. (2) is trivially
constant. In the presence of the magnetic field, the symmetry
of the Hamiltonian is lowered to U(1) at most. If spin-spin
interactions preserve the SU(2) symmetry, Eq. (2) is still
simple despite the presence of interactions

χ ′′
+−(ω,q = 0) = 2π〈Sz〉δ(ω − H ). (3)

The resonance frequency ωr equals to the paramagnetic one
ωr = H at any temperature.

If spin-spin interactions do not preserve the SU(2) sym-
metry, the above discussion breaks down and the resonance
frequency is shifted from the paramagnetic one. Let us assume
that the Hamiltonian is composed of the three terms

H = H0 + HZ + H′, (4)

where H0 represents SU(2)-symmetric interactions, HZ is the
Zeeman term, and H′ represents anisotropic interactions. The
model (1) falls into the form of Eq. (4). If the anisotropic
interaction is weak, we are able to consider a perturbative
expansion of the resonance frequency in the anisotropy H′.

The first-order perturbative expansion of the resonance
frequency was proposed first by Kanamori and Tachiki15

and later applied to quantum spin systems by Nagata and
Tazuke.10,16,17 Reference 18 derived the ESR shift δω =
ωr − H from equal-time correlations at the lowest order in
a general formalism

δω = −〈[[H′,S+],S−]〉0

2〈Sz〉0
+ · · · . (5)

The average 〈. . .〉0 is taken with respect to the unperturbed
Hamiltonian H(0):

H(0) = H0 + HZ. (6)

While we thus far treated the ESR spectrum as a function
of the frequency ω with a fixed H in the above discussions,
this is often not the case in actual ESR experiments. The ESR
spectrum is usually obtained as a function of H with a fixed

ω. In this case, the ESR shift is defined as

δH = Hr − ω/geμB. (7)

Hr is the resonance field. Note that the g factor used in (7)
is determined at the high-temperature limit. By definition, (7)
approaches zero as T → +∞. At a low temperature T � J ,
it generally holds that δH 	= 0. According to Refs. 8 and 9,
within the first-order accuracy, the ESR shift (7) satisfies

geμBδH = 〈[[H′,S+],S−]〉0

2〈Sz〉0
. (8)

We should emphasize that Eq. (8) is equivalent to (5).
Therefore, as long as we are concerned with the first-order
perturbation theory around (6), it does not matter whether we
change ω or H .

We apply the formula (5) to our model (1), namely,

H(0) = J
∑

j

Sj · Sj+1 −
∑

j

H · Sj , (9)

H′ = D
∑

j

(
Sc

j

)2 + E
∑

j

[(
Sa

j

)2 − (
Sb

j

)2]
. (10)

The ESR shift (5) is, in this case, given by

δω = fD(z)YD(T ,H ), (11)

fD(z) = D
(
1 − 3zc

2
) − 3E

(
za

2 − zb
2
)
, (12)

YD(T ,H ) = 1

2〈Sz〉0

∑
j

[
3
〈(
Sz

j

)2〉
0 − 2

]
. (13)

The unit vector z ≡ H/H is parallel to the magnetic field.
z is represented as z = (za,zb,zc) in the principal (a,b,c)
coordinate in (1). fD(z) is a constant (independent of T and H )
if the orientation of the magnetic field is fixed. For simplicity,
we hereafter set H = Hẑ where ẑ is the unit vector along the
c axis, that is, ẑ = (0,0,1) in the principal axis coordinate. We
call YD(T ,H ) as a normalized ESR shift. The normalized ESR
shift is useful for our purpose because it can be applied to
systems with any value of D and E.

III. QMC RESULTS

We numerically evaluate the normalized ESR shift (13)
from quantum Monte Carlo (QMC) calculations. The QMC re-
sults of the H dependence of YD(T ,H ) are shown in Fig. 1. We
find several characteristics from Fig. 1. (i) The normalized shift
is approximately proportional to H in the ranges 0 < H < Hc1

and Hc1 < H < Hc2. The slope ∂HYD(T ,H ) is negative in the
former and positive in the latter range. (ii) The normalized
shift has a minimum around H = Hc1. The field which gives
the minimum increases as the temperature increases. (iii) The
normalized shift becomes zero at a certain value of H because
YD(T ,H = 0) = 0 and ∂HYD(T ,H )|H=0 < 0 hold at H = 0
and the saturating value YD(T ,H > Hc2) is positive. Note that
the field dependence in Fig. 1 is qualitatively different from
that of the S = 1

2 HAF two-leg ladder systems.19 In S = 1
2

HAF two-leg ladder systems, we fail to find the change of
the sign of the ESR shift. Namely, the normalized shift is
nonzero from the infinitely weak field to the saturation field
(see Fig. 1 in Ref. 19). The above three features suggest that
the magnetic field dependence of the normalized ESR shift
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Hc2
Hc1

FIG. 1. (Color online) Quantum Monte Carlo results of the
normalized ESR shift (13) induced by the single-ion anisotropy (10)
for temperatures T/J = 0.1–0.5. The system size is L = 40 sites. The
lower critical field Hc1 = 0.41J and the upper critical field Hc2 = 4J

are guided by the dotted and the dashed lines, respectively. There is
an extremum around H = Hc1 + T . This nonmonotonic behavior of
the ESR shift is understood by the finite-temperature crossover.

reflects the finite-temperature crossover. In the following, we
analyze the normalized shift (13) in the gapped, lower critical,
and upper critical regions.

IV. LOW-FIELD GAPPED PHASE

A. Effective field theory

First, we review the zero-field case, then we will extend the
argument to the low-field case. The unperturbed model (6) in
the absence of the magnetic field

H0 = J
∑

j

Sj · Sj+1 (14)

has an excitation gap �0 = 0.41J ,20 which is called as the
Haldane gap. Haldane proposed that HAF chains with an
integer quantum spin number S have an excitation gap �0

based on a semiclassical field theory, the O(3) nonlinear sigma
model (NLSM).21,22 The O(3) NLSM has a Lagrangian

L = 1

2g
∂μn · ∂μn + �

4π
n · ∂t n × ∂xn. (15)

The contraction ∂μn · ∂μn = (∂t n)2 − (∂xn)2 was taken. For
simplicity, we put the spin-wave velocity to unity. The field
n(t,x) represents an antiferromagnetic order:

Sx ∼
√

S(S + 1)(−1)xn(x) + L(x). (16)

The uniform component L = n × ∂t n/g is quadratic in n. The
coupling constant � = 2πS is equal to 0 or π mod 2π .

The O(3) NLSM is integrable when � ≡ 0,π (mod 2π ).
In the case � ≡ π , the O(3) NLSM is critical.23 On the
other hand, in the case � ≡ 0 of our interest, the O(3)
NLSM has massive triplet particles, which are called magnons,
as the lowest excitations. The triplet magnons are created
by na(t,x) ∝ (−1)xSa(t,x) (a = x,y,z). Thus, the field Sa

satisfies the relation

(−1)x〈0|Sa(t,x)|θ1,a1〉 = δaa1

√
Zeixμpμ . (17)

|0〉 is the ground state, |θ1,a1〉 is a one-magnon state with
the rapidity θ1 and the index a1 = x,y,z, and Z is the
renormalization factor which will be discussed later. The O(3)
NLSM is Lorentz invariant, and the triplet excitations obey a
dispersion relation p0 =

√
�0

2 + p1
2 parametrized by a single

parameter θ :

p0 = �0 cosh θ, p1 = �0 sinh θ. (18)

This parameter θ is called a rapidity, which uniquely de-
termines the energy p0 and the momentum p1 of magnons.
Therefore, the one-magnon state |θ1,a1〉 is fully characterized
by the rapidity θ1 and the index a1. We normalize the state
|θ,a〉 by

〈θ1,a1|θ2,a2〉 = 4πδa1a2δ(θ1 − θ2). (19)

n-magnon states |θ1,a1; . . . ; θn,an〉 are specified by a set
of rapidities {θ1, . . . ,θn} and indices {a1, . . . ,an}. They are
normalized as follows:

〈θ1,a1; . . . ; θn,an|θ ′
1,a

′
1; . . . ; θ ′

n,a
′
m〉

= δnm(4π )n
n∏

l=1

δala
′
l
δ(θl − θ ′

l ). (20)

A matrix element

FO(θ1,a1; . . . ; θn,an) = 〈0|O(0)|θ1,a1; . . . ; θn,an〉 (21)

is called an n-magnon form factor of a local operator O(t,x).
Here, O(0) is an abbreviation of O(0,0). A Lorentz boost of
the O(3) NLSM alters (21) to

〈0|O(t,x)|θ1,a1; . . . ; θn,an〉
= FO(θ1,a1; . . . ; θn,an)ei(tP0−xP1), (22)

where P0 and P1 denote the total energy and momentum:

P0 =
n∑

m=1

�0 cosh θm, P1 =
n∑

m=1

�0 sinh θm. (23)

For example, the relation (17) is equivalent to the one-
magnon form factor of Sa at the origin

FSa (θ1,a1) = (−1)r
√

Zδa,a1 . (24)

The relation (17) connects the low-energy effective field
theory and the physical operator Sa(t,x) in the original spin
model. The renormalization factor

√
Z inevitably depends on

short-distance, nonuniversal physics and can not be determined
within the effective field theory. Z is determined only by
numerical calculations. Z ≈ 1.26 is concluded from density
matrix renormalization group calculations.24,25 It is empha-
sized that Eq. (24) should not be interpreted as an identity
between the physical spin operator Sa and a creation operator
of magnons. The spin operator Sa also has nonvanishing
higher-order form factors. Thus, the form factor of the powers
of Sa is not solely determined by the one-magnon form
factor (24), even in the leading order.

Let us consider the traceless symmetric tensor


ab ≡ SaSb − 2
3δab. (25)
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ab has a two-magnon form factor

F
ab (θ1,a1; θ2,a2) = −iZ2δabδa1a2 (3δaa1 − 1)ψ2(θ1 − θ2).
(26)

In the case of O(N ) NLSM,26 ψ2(θ ) is given by an integral

ψ2(θ ) = sinh

(
θ

2

)
exp

[∫ ∞

0

dx

x
KN (x)

cosh[(π + iθ )x] − 1

sinh(πx)

]
,

(27)

KN (x) = e−πx + e−2πx/(N−2)

1 + e−πx
. (28)

We performed the integral and derived an explicit form of
ψ2(θ ) for the N = 3 case in our preceding paper13:

ψ2(θ ) = i

2
(θ − πi) tanh

(
θ

2

)
. (29)

The two-magnon form factor (26) is now determined except
for the nonuniversal factor Z2. We emphasize that Z2 is an
independent parameter from Z. We have determined Z2 ≈
0.24 by comparing the NLSM prediction with the correlation
function of (Sa)2 obtained numerically using the infinite time
evolving block decimation method.13

The basis {|θ1,a1; . . . ; θn,an〉} with n = 0,1,2, . . . is com-
plete and orthonormal. The identity 1̂ reads as

1̂ = |0〉〈0| +
∞∑

n=1

1

n!

∑
a1...an

∫ ∞

−∞

dθ1 . . . dθn

(4π )n

× |θ1,a1; . . . ; θn,an〉〈θ1,a1; . . . ; θn,an|. (30)

We note an important relation of form factors: the crossing
relation. In subsequent sections, we will encounter matrix
elements such as 〈θ2,a2|O(0)|θ1,a1〉. The crossing relation
allows one to relate this matrix element to form factors

〈θ2,a2|O(0)|θ1,a1〉 = 〈0|O(0)|θ1,a1; θ2 − πi,ā2〉
= FO(θ1,a1; θ2 − πi,ā2). (31)

The index ā represents an index of an antimagnon conjugate
to the magnon with the index a. If we employ the labeling
a = x,y,z, then ā = a holds. If, on the other hand, we
employ a labeling a = +,0,−, namely (n+,n0,n−) = [(nx +
iny)/

√
2,nz,(nx − iny)/

√
2], we have +̄ = −, 0̄ = 0, and

−̄ = +.
Under a weak magnetic field H < �0, the unperturbed

system (9) still has a finite gap �0 − H . Here, we have to
replace the dispersion relation (18) to

p0 = �0 cosh θ − aH, p1 = �0 sinh θ, (32)

where a = 0, + ,−. Namely, the triplet degeneracy is lifted by
the Zeeman splitting term. If the magnetic field is very weak
H  �0, then we may use the form factors evaluated for the
H = 0 case at the lowest order of H . For this purpose, in the
following, we use the labeling a = +,0,− of magnons, which
corresponds to energy eigenstates under the magnetic field.

B. ESR shift

In the limit H,T → 0, the density of magnons becomes
low. It should be reasonable in this dilute limit that we
ignore contributions of multimagnon states to thermodynamic

quantities, for instance, the magnetization and the normalized
shift (13). We multiply a projection operator

P1 =
∑

a=0,+,−

∫ ∞

−∞

dθ

4π
|θ,a〉〈θ,a|

to an operator O so that the multimagnon contributions to the
average 〈O〉 are projected out. Let us consider O = 
00(0,x).
Using the crossing relation (31) and the two-magnon form
factor (26), we obtain

P1

00(0,x)P1

= −iZ2

∫ ∞

−∞

dθ dθ ′

(4π )2
ψ2(θ ′ − θ + πi)eix[P1(θ ′)−P1(θ)]

× (2|θ,0〉〈θ,0| − |θ,+〉〈θ ′, + | − |θ,−〉〈θ ′, − |). (33)

Thus, in the dilute limit, the numerator
∑

j [3〈(Sz
j )2〉0 − 2] of

the normalized shift (13) is approximated as follows:
∑

j

[
3
〈(
Sz

j

)2〉
0 − 2

]

= 3
∫

dx 〈
00(0,x)〉0

∼ −6Z2

∫ ∞

−∞

v dθ

4πE(θ )
e−E(θ)/T sinh2

(
H

2T

)
. (34)

Here, E(θ ) = �0 cosh θ is the zero-field dispersion. Similarly,
the magnetization is given by

〈Sz〉0 ∼ 2 sinh

(
H

T

) ∫ ∞

−∞

dθ

4π
e−E(θ)/T . (35)

From (34) and (35), the normalized shift in the dilute limit
reads as

YD(T ,H ) = −3Z2

4
tanh

(
H

2T

)∫ ∞
−∞

v dθ
4πE(θ)e

−E(θ)/T

∫ ∞
−∞

dθ
4π

e−E(θ)/T
. (36)

Equation (36) correctly reproduces the features of the nor-
malized shift YD(T ,H ) ∝ H and ∂HYD(T ,H ) < 0 in the limit
H → 0. However, (36) can not explain the upturn of the nor-
malized shift around H = Hc1. In order to extend (36) to the re-
gion H ∼ Hc1, we must take into account multimagnon states.

V. NEAR LOWER CRITICAL FIELD

A. Effective field theory

At H = �0, the lowest magnon band specified by the
index a = + touches the ground state. The point Hc1 ≡ �0

corresponds to a quantum critical point. Above Hc1, gapless
excitations exist. Thus, H = Hc1 separates the low-field
gapped phase (called as the Haldane phase) and the high-field
gapless phase (the field-induced critical phase). We call Hc1

the lower critical field. The quantum phase transition occurs
only at T = 0. Nevertheless, at finite temperatures, in a range
of magnetic field H − Hc1 � T , which is called as “quantum
critical region,” properties of the system reflect the nature of
the quantum critical point.27

It is known that a free-fermion theory describes low-
energy behavior of S = 1 HAF chain in the quantum critical
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region.1,28–31 The free fermion has a dispersion relation

E(k) = k2

2�0
− μ. (37)

The chemical potential is μ = H − Hc1. As the chemical
potential of the free fermion increases, the number of the free
fermion also increases. In terms of spin systems, the number
of the free fermion is identical to the magnetization density
m+(T ,H ) ≡ 〈Sz〉0/L:

m+(T ,H ) =
√

�0

2π2

∫ ∞

0
dε D(ε)f (ε − μ)

= −
√

T �0

2π
Li1/2(−eμ/T ). (38)

L is the length of the spin chain, D(ε) = ε−1/2 is the density
of states, and f (ξ ) = (eξ/T + 1)−1 is the Fermi distribution
function. In the second line, the integral is performed explicitly,
with the result given in terms of the polylogarithm function

Lin(x) =
∞∑

m=1

xm

mn
. (39)

Above the quantum critical region H � Hc1, a gapless
excitation with a linear dispersion E(k) ∼ k dominates the
low-temperature physics of the S = 1 HAF chain. The excita-
tion is identified with the Tomonaga-Luttinger (TL) liquid.2,32

We do not go into detail on the TL liquid in the field-induced
critical phase.

B. ESR shift

In the previous section, we formulated the O(3) NLSM with
the multimagnon states |θ1,a1; . . . ; θn,an〉. Instead of these
multimagnon states, we may consider creation and annihilation
operators of magnons, which we denote Za(θ ) and Z

†
a(θ ),

respectively. Using them, we can create a one-magnon state
|θ,a〉 and its conjugate

|θ,a〉 = Z†
a(θ )|0〉, 〈θ,a| = 〈0|Za(θ ). (40)

Similarly, the n-magnon state and its conjugate are given by

|θ1,a1; . . . ; θn,an〉 = Z†
a1

(θ1) . . . Z†
an

(θn)|0〉,
〈θ1,a1; . . . ; θn,an| = 〈0|Zan

(θn) . . . Za1 (θ1).

These Za(θ ) and Z
†
a(θ ) are called Faddeev-Zamolodchikov

(FZ) operators and satisfy the following algebra:

Za1 (θ1)Za2 (θ2) = Sb1b2
a1a2

(θ1 − θ2)Zb2 (θ2)Zb1 (θ1), (41)

Z†
a1

(θ1)Z†
a2

(θ2) = Sb1b2
a1a2

(θ1 − θ2)Z†
b2

(θ2)Z†
b1

(θ1), (42)

Za1 (θ1)Z†
a2

(θ2) = 4πδa1a2δ(θ1 − θ2)

+ S
b2a1
a2b1

(θ1 − θ2)Z†
b2

(θ2)Zb1 (θ1). (43)

The factor Scd
ab (θ ) is an S matrix. The S matrix possesses

information of two-magnon scatterings. If the magnon created
by Z

†
a(θ ) were a free boson (a free fermion), the S matrix would

simply be Scd
ab (θ ) = δadδbc [Scd

ab (θ ) = −δadδbc]. In reality, the
magnon is neither free boson nor fermion. Thus, the S matrix

is a nontrivial function of the rapidity. Fortunately, the S matrix
of the O(3) NLSM is exactly known:

Scd
ab (θ ) = δabδcdσ1(θ ) + δacδbdσ2(θ ) + δadδbcσ3(θ ). (44)

σi(θ )’s (i = 1,2,3) are

σ1(θ ) = 2πiθ

(θ + πi)(θ − 2πi)
, (45)

σ2(θ ) = θ (θ − πi)

(θ + πi)(θ − 2πi)
, (46)

σ3(θ ) = 2πi(πi − θ )

(θ + πi)(θ − 2πi)
. (47)

As well as the set of multimagnon states
{|θ1,a1; . . . ; θn,an〉}, a set of FZ operators {Za(θ ),Z†

b(θ ′)}
is complete. In other words, we can expand the arbitrary
operator O(t,x) in the power of FZ operators. For instance,∫

dx 
aa(0,x) is expanded as
∫

dx 
aa(0,x)

= Z2

2

∫ ∞

−∞

v dθ

4πE(θ )
[2Z

†
0(θ )Z0(θ ) − Z

†
+(θ )Z+(θ )

−Z
†
−(θ )Z−(θ )] + (higher-order terms). (48)

The omitted higher-order terms contain, for instance, a
quartic term Z

†
a1 (θ1)Za2 (θ2)Z†

a3 (θ3)Za4 (θ4). The projection (33)
corresponds to an approximation which drops the higher-
order terms of (48) out. To improve the result (36), we
need to accurately evaluate the higher-order terms of the
expansion (48).

At low temperatures and around the lower critical field, we
can focus on the low-energy limit of NLSM. Here, the S matrix
of the O(3) NLSM actually simplifies as

Scd
ab (θ ) → −δadδbc, (49)

which is nothing but the S matrix of free fermions. This implies
that, in this limit, we can replace the FZ operators by the
fermion creation and annihilation operators as

Za(θ ) ∼
√

2E(θ )

v
ca(k), Z†

a(θ ) ∼
√

2E(θ )

v
c†a(k), (50)

with k = �0 sinh θ . The rule (50) correctly reproduces the
anticommutation relations

{ca(k),ca′(k′)} = 0, (51)

{c†a(k),c†a′(k′)} = 0, (52)

{ca(k),c†a′(k′)} = 2πδaa′δ(k − k′) (53)

from Eqs. (41), (42), and (43). This fermion has a dispersion
Ea(k) =

√
�0

2 + k2 − aH (a = 0, + ,−), and indeed corre-
sponds exactly to the free-fermion effective theory discussed
in Sec. V A. In other words, the free-fermion effective theory
for the quantum critical region is now derived systematically
as a low-energy limit of the O(3) NLSM under an applied field.
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FIG. 2. (Color online) Comparisons of QMC and analytic results
at (a) T/J = 0.1 and at (b) T/J = 0.2. Open symbols (circles
and triangles) represent QMC data. The solid curves denote the
normalized shift in the dilute limit (36). The dashed curves correspond
to (54).

The replacement (50) enables us to compute the normalized
shift explicitly:

YD(T ,H )

= 3Z2

2m(T ,H )

∫ ∞

−∞

v dk

4πE0(k)
[2f0(k) − f+(k) − f−(k)].

(54)

fa(k) = (e(
√

�0
2+k2−aH )/T + 1)−1 is the Fermi distribution

function and m(T ,H ) is the magnetization

m(T ,H ) =
∫ ∞

−∞

dk

2π
[f+(k) − f−(k)]. (55)

The analytic result (54) is compared with the QMC results
at T = 0.1J and 0.2J in Fig. 2. The free-fermion representa-
tion (54) reproduces the minimum of the normalized ESR shift
and, furthermore, agrees quantitatively with the QMC data. We
stress that the systematic derivation based on the exact form
factors of the O(3) NLSM is necessary to obtain Eq. (54)
correctly. In fact, it contains the nontrivial renormalization
factor Z2, which is independent of the standard renormaliza-
tion factor Z. A naive application of the free-fermion effective
theory would lead to a formula similar to Eq. (54) but with Z

appearing in the place of Z2. Clearly, it does not agree with the
QMC result, demonstrating the importance of the form-factor
approach.

VI. NEAR UPPER CRITICAL FIELD

A. Effective field theory

The field-induced critical phase ends at the upper critical
field H = Hc2 where Hc2 = 4J . Above the upper critical field,
the spins are fully polarized, where the gap opens again and
the low-energy excitation has a parabolic dispersion. Slightly
below the upper critical field (Hc2  H − Hc2 < 0), almost
all spins are polarized. Here, we may neglect the Sz

j = −1
component antiparallel to the magnetic field because it costs
huge amounts of energy. Thus, the S = 1 spin is effectively
described by an S = 1

2 spin:

Sz
j ∼ 1

2

(
1 + σ z

j

)
, S±

j ∼ 1√
2

(−1)j σ±
j . (56)

(σx
j ,σ

y

j ,σ z
j ) are the Pauli matrices and σ±

j ≡ (σx
j ± iσ

y

j )/2.
The unperturbed Hamiltonian (9) is transformed into an
effective S = 1

2 XXZ chain

H(0) ∼ J

2

∑
j

[
−(

σx
j σ x

j+1 + σ
y

j σ
y

j+1

) + 1

2
σ z

j σ z
j+1

]

− h

2

∑
j

σ z
j . (57)

This is effectively written in terms of a free fermion

H(0) ∼
∫ ∞

−∞

dk

2π
E(k)c†(k)c(k), (58)

with a quadratic dispersion

E(k) = k2

2m
− μ̃. (59)

Here, m = 1/2J and μ̃ = Hc2 − H are the mass of the
fermion and the chemical potential that the fermion feels.
Thus, the effective theories around the upper critical field field
and the lower critical field are isomorphic, while the mass
and the chemical potential of the fermions are different. It
should be also noted that the free fermion in each theory repre-
sents a different object with respect to the original spin system.

B. ESR shift

Using the mapping (56), one can represent the normalized
shift in the Pauli matrices

YD(T ,H ) = 1

2
− 1 − 〈

σ z
j

〉
0

1 + 〈
σ z

j

〉
0

. (60)

Here, the average 〈. . .〉0 is taken by the Hamiltonian (57) of the
effective S = 1

2 XXZ chain. A free-fermion theory with the
dynamical exponent z = 2 describes the low-energy physics
near the upper critical field Hc2. Similarly to Eq. (38), the
magnetization density 〈σ z

j 〉0 is given by the polylogarithm
function as

〈
σ z

j

〉
0 = 1 + 2

√
T

4πJ
Li1/2

(−e(Hc2−H )/T
)
. (61)

Substituting (61) into (60), we obtain the explicit represen-
tation of the normalized shift. We show the normalized ESR
shift computed by the free-fermion theory in Fig. 3. In order
to see the field dependence explicitly, we consider the T = 0
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FIG. 3. (Color online) The open circles denote the QMC data
obtained for 40-site chains at T/J = 0.1. The solid and dashed curves
are derived from the free-fermion theory near Hc2. The former is
T > 0 data and the latter is T = 0 data. The finite-temperature effect
is irrelevant in the lower-field range H � 3J .

case. The magnetization shows a singular dependence on the
magnetic field at T = 0:

〈
σ z

j

〉
0 = 1 − 2

π

√
Hc2 − H + O(Hc2 − H ). (62)

The normalized shift at T = 0 is shown by the dashed curve
in Fig. 3. The free-fermion theory (58) appears to work
well in the entire region of Fig. 3 in the limit of T → 0.
However, the numerical result in Fig. 1 shows a non-negligible
temperature dependence for H � 3J , while the free-fermion
theory shows little temperature dependence. This corresponds
to the breakdown of the present picture based on spin flips
from the saturated state, in the lower magnetic field.

VII. NDMAP

We apply our theory of ESR shifts to an S = 1 HAF chain
compound Ni(C5H14N2)2N3(PF6) [abbreviated to NDMAP
(Refs. 5,33–35)]. There are several S = 1 HAF chain com-
pounds, for instance, Ni(C2H8N2)2(NO2)ClO4 [abbreviated
to NENP (Ref. 36)], Ni(C9H24N4)(NO2)ClO4 [abbreviated to
NTENP (Ref. 37)], and Ni(C5H14N2)2N3(ClO4) [abbreviated
to NDMAZ (Ref. 38)]. Among these S = 1 HAF chain
compounds, NDMAP is most suitable to our purpose because
NENP has an effective staggered magnetic field h

∑
j (−1)j Sx

j

and NTENP has a bond alternation δ
∑

j (−1)j Sj · Sj+1. The
staggered magnetization mixes the singlet ground state |g〉 and
the triplet excited states |e〉: 〈e|∑j (−1)j Sx

j |g〉 	= 0.12 This
mixing changes the selection rule of ESR. Such an interaction
is uncovered by our theory. Although the bond alternation does
not induce the mixing, when H = 0, NTENP has a different
ground state from that of (9).39 Recently, NTENP has been
field theoretically analyzed by using a sine-Gordon model.40

The compound NDMAZ has very similar crystal structure to
NDMAP. In fact, our theory is applicable to NDMAZ. But,
NDMAZ has stronger exchange interaction J ≈ 70.6 K than
NDMAP. The large J makes the experimental investigation
of the field-induced critical phase difficult because of the
large Hc1.

FIG. 4. (Color online) Comparison of the free-fermion the-
ory (54) with the experimental data on NDMAP at a temperature
T = 0.05J (Ref. 5). The solid curve is the free-fermion result (54)
near Hc1 and the solid circles denote the experimental data. We
used the parameters J = 30.0 K, D/J = 0.25, and ge = 2.10. The
magnetic field is applied along the c axis, which corresponds to zp =
1, zq = zr = 0. The dashed curve is high-temperature paramagnetic
resonance frequency ω = geμBH .

Parameters of NDMAP are estimated as follows34:

J ≈ 30.0 K, D/J ≈ 0.25. (63)

The parameter E is much smaller than D. Here, we consider the
field orientation perpendicular to the easy plane (zp,zq,zr ) =
(1,0,0). Thus, the normalized shift is independent of the
anisotropy E:

ωr = geμBH − 2DYD(T ,H ). (64)

The Landé g factor is ge = 2.11.5 We substitute the free-
fermion theory near the lower critical field (54) into (64) and
compare it with experimental data by Ref. 5 (Fig. 4). They
show semiquantitative agreement. Our theory gives a concrete
support to the estimation (63).

Note that there is a zero point H = H0(T ) where the ESR
shift vanishes,

YD(T ,H0(T )) = 0. (65)

In addition to the trivial solution H0 = 0, at T = 0.1J , one
can find a zero point H0 ∼ 3J in Fig. 5. We show several
cases D/J = 0.1, 0.2, and −0.1 with the fixed J . One will be
able to experimentally observe the zero point H = H0 if an
S = 1 HAF chain compound with smaller J � 15 K is found.
In general, the zero point H0(T ) depends on the temperature
T . The nontrivial solution H0(T ) of (65) exists in a wide range
of the temperature because YD(T ,H ) is negative in H  Hc1

and positive in H ∼ Hc2. In contrast, as we will discuss in the
Appendix, for the exchange anisotropy

H′ =
∑

j

∑
a=p,q,r

J ′
aS

a
j Sa

j+1, (66)

we find that the ESR shift in the first order of the anisotropy
does not change its sign in the entire range of H .

By measuring the zero-field excitation gaps, the symmetry
of the Hamiltonian (4) can be identified experimentally. Let us
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H0

FIG. 5. (Color online) QMC data of the resonance frequency (64)
at T = 0.1J . The g factor is set to geμB = 1 for simplicity. The
dashed line ω = H corresponds to the paramagnetic resonance
frequency. Several cases D/J = 0.1, 0.2, and −0.1 are shown. Note
that there is a zero point H0 ∼ 3J where the shift (5) vanishes.

suppose that the Hamiltonian has a uniaxial, U(1) symmetry,
broken from the rotational SU(2) symmetry. This is consistent
with a presence of either the single-ion anisotropy (10) or the
exchange anisotropy (66). It is usually difficult to distinguish
these two kinds of anisotropic interactions because they often
lead to qualitatively the same consequences in observables.
However, the presence or absence of the zero point H0(T ) of
the shift at T ∼ Hc1 is a clear signature which distinguishes
the two cases. This may provide a new application of ESR,
which possesses a high sensitivity to anisotropy unavailable in
other types of measurements.

VIII. SUMMARY

We theoretically investigated the ESR shift caused by a
weak single-ion anisotropy in the S = 1 HAF chain. We
applied the Kanamori-Tachiki theory (5) to this system, and
analyzed it both analytically and numerically. The formula (5)
is factorized to δω = fD(z)YD(T ,H ), which is composed of
the T , H -independent geometrical factor fD(z) and the T ,
H -dependent factor YD(T ,H ). In this paper, we call YD(T ,H )
as the normalized ESR shift because the factor fD(z) can
be regarded as a constant if we fix the field orientation z.
In contrast, the normalized shift YD(T ,H ) does not depend on
the field orientation. Thus, this factorization allows the general
analysis of the ESR shift without specifying the parameters D

and E.
Quantum Monte Carlo calculations revealed nonmonotonic

magnetic field dependence of the normalized shift YD(T ,H ).
The field dependence reflects the finite-temperature crossover
of the S = 1 HAF chain, the low-field gapped phase (H <

Hc1), the field-induced critical phase (Hc1 < H < Hc2), and
the fully polarized phase (Hc2 < H ). We employed several
effective field theories to explain the field dependence of
YD(T ,H ) in each phase. We used the exact form factors to
compute YD(T ,H ) in the dilute limit H,T → 0. We extend
the result in the low-field limit to the finite-field region H ∼
Hc1 by replacing the FZ operators of the lowest excitations

to the fermionic creation and annihilation operators. This
replacement is reasonable in H � Hc1 and it works quite well
(Fig. 2). Above Hc1, the system is regarded as the TL liquid.
Although we did not go into detail of the ESR shift of the TL
liquid in the field-induced critical phase, it can be extracted
from the analyses around Hc1 and Hc2. Near the upper critical
field Hc2, the free-fermion analysis is again effective (Fig. 3).

Our analysis is found to agree semiquantitatively with the
experimental data of NDMAP in Ref. 5. Our theory correctly
reproduces the approaching of the resonance frequency to the
paramagnetic resonance frequency ω = geμBH . Furthermore,
we predicted the existence of the special value H0 of
the magnetic field where the ESR shift vanishes δω = 0.
Such a sign change is absent in the case of an exchange
anisotropy.

As a final remark, we point out that one can experimentally
determine the field dependence of nontrivial quantities such
as 〈(Sz

j )2〉 and 〈Sz
jS

z
j+1〉 from the ESR shifts (13) and (A3).

The quantity 〈(Sz
j )2〉 is a nontrivial function of H and T :

in an isotropic chain, it takes 2
3 at H = 0, decreases first

as H is increased, but increases asymptotically towards the
saturation value 1 in the limit H → +∞. This nonmonotonic
dependence is reflected in the shift (13).
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APPENDIX: EXCHANGE ANISOTROPY

We have so far considered the single-ion anisotropy as a
resource of anisotropic interactions. In this appendix, we treat
a perturbative exchange anisotropy instead of the single-ion
anisotropy (10). The ESR shift caused by the exchange
anisotropy (66) is also factorized just like (11):

δω = fJ ′ (z)YJ ′(T ,H ), (A1)

fJ ′ (z) =
∑

a=p,q,r

J ′
a

(
1 − 3za

2
)
, (A2)

YJ ′(T ,H ) = 1

2〈Sz〉0

∑
j

∑
a=x,y,z

(3δaz − 1)
〈
Sa

j Sa
j+1

〉
0. (A3)

We compute the normalized shift (A3) by QMC in the same
manner as (13). Figure 6 shows QMC results of the normalized
shift (A3) at temperatures T/J = 0.1–0.5. The normalized
shift YJ ′(T ,H ) behaves similarly to YD(T ,H ) in a region where
T < 0.3J and H < J hold. On the other hand, in a higher-field
region H > J , the normalized shift quickly saturates to 1.

First, we consider the zero-field case. The effective field
theory O(3) NLSM works well at H = 0. When we move on
to the continuum limit, we approximate the product Sa

j Sa
j+1 by

the composite operator [Sa(x)]2:

Sa
j Sa

j+1 ∼ −C[Sa(x)]2. (A4)
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FIG. 6. (Color online) Quantum Monte Carlo results of the
normalized ESR shift (A3) induced by the exchange anisotropy (66)
for temperatures T/J = 0.1–0.5. The system size is L = 40 sites.
The maximum around H = Hc1 + T is also found in this case.
The field dependence of YJ ′ (T ,H ) in a lower field region H < J

at low temperatures T < 0.3J looks similar to that of YD(T ,H )
except the overall sign YJ ′ (T ,H ) ∝ −YD(T ,H ). In a relatively higher
temperature T > 0.4J , the nonmonotonic behavior of the normalized
shift vanishes.

The coefficient C is a nonuniversal constant. When keep-
ing only the most relevant term Sa(x)Sa(x + a0) ∼ −S(S +
1)na(x)na(x + a0), we may assume C > 0 because the field
n(x) is smoothly varying on x. Here, a0 is the lattice spacing
and set to unity. The replacement (A4) immediately leads
to YJ ′ (T ,H ) ∝ −YD(T ,H ) in the infinitesimal field region
H  Hc1. This relation is consistent with numerical results
(Figs. 1 and 6).

Next, we extend our discussion to the finite-field region
H ∼ Hc1 in the exactly same manner with Sec. V. We assume
that the replacement (A4) is also valid under not so weak
magnetic field H ∼ Hc1. Then, the normalized shift YJ ′ (T ,H )

FIG. 7. (Color online) Comparisons of QMC and (A5) at T/J =
0.1 and 0.2. The open circles (T/J = 0.1) and triangles (T/J = 0.2)
denote the QMC results. The solid (dashed) curve represents (A5)
with Z′

2 = 0.41 at T/J = 0.1 (T/J = 0.2).

near H = Hc1 is given by

YJ ′ (T ,H ) = − 3Z′
2

2m(T ,H )

∫ ∞

−∞

dk

2π
[2f0(k) − f+(k) − f−(k)].

(A5)

We determine the phenomenological parameter Z′
2 by fit-

ting (A5) with QMC data at T/J = 0.1. The fitting leads to
Z′

2 ≈ 0.41. Figure 7 shows the comparison of (A5) and QMC
data for T/J = 0.1 and 0.2. The formula (A5) reproduces
the QMC data well. But, their agreement rapidly becomes
worse as the temperature rises. This discrepancy stems from
the saturation value YJ ′ (T ,H ) → 1 in the limit H → +∞.
While YD(T ,H ) is negative in the low-field region H  Hc1,
YJ ′ (T ,H ) is positive there. Thus, the sign change of the
normalized shift does not occur for YJ ′ (T ,H ). As we have
discussed in Sec. VII, this is in contrast to the behavior of
YD(T ,H ), which universally shows a sign change.
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A. Weiße, Phys. Rev. B 85, 134438 (2012).

10Y. Maeda, K. Sakai, and M. Oshikawa, Phys. Rev. Lett. 95, 037602
(2005).

11I. Affleck, Phys. Rev. B 46, 9002 (1992).
12T. Sakai and H. Shiba, J. Phys. Soc. Jpn. 63, 867 (1994).
13S. C. Furuya, T. Suzuki, S. Takayoshi, Y. Maeda, and M. Oshikawa,

Phys. Rev. B 84, 180410 (2011).
14D. Controzzi and G. Mussardo, Phys. Rev. Lett. 92, 021601

(2004).
15J. Kanamori and M. Tachiki, J. Phys. Soc. Jpn. 17, 1384 (1962).
16K. Nagata and Y. Tazuke, J. Phys. Soc. Jpn. 32, 337 (1972).
17K. Nagata, J. Phys. Soc. Jpn. 40, 1209 (1976).
18Y. Maeda and M. Oshikawa, J. Phys. Soc. Jpn. 74, 283 (2005).
19S. C. Furuya, P. Bouillot, C. Kollath, M. Oshikawa, and

T. Giamarchi, Phys. Rev. Lett. 108, 037204 (2012).
20S. Todo and K. Kato, Phys. Rev. Lett. 87, 047203 (2001).
21F. D. M. Haldane, Phys. Rev. Lett. 50, 1153 (1983).
22F. Haldane, Phys. Lett. A 93, 464 (1983).
23I. Affleck and F. D. M. Haldane, Phys. Rev. B 36, 5291 (1987).
24E. S. Sørensen and I. Affleck, Phys. Rev. B 49, 13235 (1994).
25E. S. Sørensen and I. Affleck, Phys. Rev. B 49, 15771 (1994).
26J. Balog and P. Weisz, Nucl. Phys. B 778, 259 (2007).

125122-9

http://dx.doi.org/10.1103/PhysRevB.43.3215
http://dx.doi.org/10.1103/PhysRevB.55.5816
http://dx.doi.org/10.1103/PhysRevLett.101.137207
http://dx.doi.org/10.1103/PhysRevB.82.054431
http://dx.doi.org/10.1103/PhysRevB.79.024403
http://dx.doi.org/10.1103/PhysRevB.82.184406
http://dx.doi.org/10.1103/PhysRevB.82.184406
http://dx.doi.org/10.1103/PhysRevB.65.134410
http://dx.doi.org/10.1103/PhysRevLett.107.017202
http://dx.doi.org/10.1103/PhysRevB.85.134438
http://dx.doi.org/10.1103/PhysRevLett.95.037602
http://dx.doi.org/10.1103/PhysRevLett.95.037602
http://dx.doi.org/10.1103/PhysRevB.46.9002
http://dx.doi.org/10.1143/JPSJ.63.867
http://dx.doi.org/10.1103/PhysRevB.84.180410
http://dx.doi.org/10.1103/PhysRevLett.92.021601
http://dx.doi.org/10.1103/PhysRevLett.92.021601
http://dx.doi.org/10.1143/JPSJ.17.1384
http://dx.doi.org/10.1143/JPSJ.32.337
http://dx.doi.org/10.1143/JPSJ.40.1209
http://dx.doi.org/10.1143/JPSJ.74.283
http://dx.doi.org/10.1103/PhysRevLett.108.037204
http://dx.doi.org/10.1103/PhysRevLett.87.047203
http://dx.doi.org/10.1103/PhysRevLett.50.1153
http://dx.doi.org/10.1016/0375-9601(83)90631-X
http://dx.doi.org/10.1103/PhysRevB.36.5291
http://dx.doi.org/10.1103/PhysRevB.49.13235
http://dx.doi.org/10.1103/PhysRevB.49.15771
http://dx.doi.org/10.1016/j.nuclphysb.2007.03.038


FURUYA, MAEDA, AND OSHIKAWA PHYSICAL REVIEW B 87, 125122 (2013)
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