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Linear systems approach to describing and classifying Fano resonances
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We show that a generalized asymmetric resonant line shape derived elsewhere from rigorous electromagnetic
calculations [Gallinet and Martin, Phys. Rev. B 83, 235427 (2011)] and from the two-oscillators model [Joe et al.,
Phys. Scr. 74. 259 (2006)] can also be obtained using a very general assumption that the spectral dependence
of the scattering amplitudes is given by the transfer function of a linear system. We reformulate the line shape
equation and show that in the case of a first-order transfer function all possible line shapes can be presented by
a weighted sum of the original Fano and Lorentzian line shapes. We propose a new two-parameter classification
scheme for asymmetric resonances with one parameter δ being the asymmetry factor of the Fano component
and the other parameter η quantifying the relative weight of the Fano and Lorentzian components of the line
shape. The proposed formula is used to fit experimental spectra of a silicon photonic crystal cavity nanobeam
interrogated using a fiber taper probe.
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I. INTRODUCTION

Asymmetric spectral line shapes were first explained by
Fano in studies of the absorption spectra of Rydberg atoms of
noble gases1 and in inelastic scattering of electrons by helium
atoms.2 It has been pointed out that in a system described by a
Hamiltonian Ĥ , coupling VE′ = 〈ψE′ |Ĥ |ϕ〉 of a discrete state
|ϕ〉 with energy Eϕ = 〈ϕ||Ĥ |ϕ〉 to a continuum of states |ψE′ 〉
with energies E′ in the range that includes Eϕ , leads to the
formation of a perturbed state

|φ〉 = |ϕ〉 + p.v.

∫
VE

′ |ψE
′ 〉

Eϕ − E′ dE′, (1)

where p.v. indicates the principal value of the integral.
Probability of transitions involving such states, normalized by
the probability of transitions for nonperturbed states, is then
given by the Fano formula

F (ε) = (q + ε)2

1 + ε2
, (2)

where q is the asymmetry factor and ε represents the scale of
reduced energies such that the resonant transitions appear at
ε = 0 and nonperturbed transitions have unit half-width.

The asymmetric Fano-like line shape appears in various
physical systems described in terms of oscillations and waves,3

including scattering of particles in quantum mechanics,4

quantum transport phenomena,5 and electron-phonon coupling
in superconductors.6 In photonics, the asymmetric line shape
emerges when scattering (transmission, reflection, etc.) of a
lightwave involves two channels, one of which is nonresonant
broadband and the other mediated by a narrowband resonant
excitation. Even if the Fano line shape may not be referred
to explicitly, the scattering spectra reveals distinctive asym-
metric features. Examples include waveguide gratings,7–10

photonic crystals,11–15 (nano)cavities,16,17 quantum confined
structures,18,19 and resonant plasmonic structures.20–24

These systems are usually complex enough that simula-
tion of the scattering spectra must rely upon sophisticated

numerical calculations. The Fano resonances then appear as
a result of heavy computations. Various analytical theories
would then be developed to interpret the numerical simulations
by identifying and quantifying the resonant and nonresonant
scattering channels whose interference produces asymmetric
spectral features.

Rigorous calculations such as in Ref. 23 revealed that the
asymmetric resonant line shape may be given by a more
general formula than the original Fano equation (2):

F (ε) = (q + ε)2 + γ 2

1 + ε2
, (3)

with an additional line shape parameter γ . Likewise, the
exactly solvable two-oscillators model in Ref. 25, when
considering only a narrow spectral interval around the resonant
frequency and with some additional assumptions, can be
reduced to (3).

In this paper we show that the line shape (3) can be
obtained using a very general assumption that the scattering
amplitudes are given by the transfer function of a first-order
linear system. Despite all the differences between the studied
structures, the asymmetric photonic resonances are strikingly
similar in shape. As long as the derivation proposed here is
general enough, it opens up the possibility for classification of
asymmetric resonances that would be applicable to various
physical systems. To accomplish this, we reformulate (3)
into a weighted sum of the original Fano (2) and Lorentzian
line shapes. The asymmetry parameter in the original Fano
equation and the relative weight of Fano and Lorentzian com-
ponents becomes the basis for a two-parameter classification
scheme of asymmetric resonances.

II. RESONANT RESPONSE OF A FIRST-ORDER
LINEAR SYSTEM

Leaving aside the specifics of a particular system, in the
case of a narrow, isolated single resonance, all feasible line
shapes can be easily found by considering light scattering as a
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first-order linear process. In a narrow vicinity of the resonance,
the distributed nature of the photonic system becomes less
important and its response—the scattering amplitudes—is then
given by a transfer function of a linear system. It is generally
assumed (see, e.g., Ref. 26) that in the time domain (t) the
response f (t) of a linear system of order n to the input signal
g(t) is defined by a linear differential equation Q(n)(D̂)f (t) =
P (n)(D̂)g(t), where D̂ = d/dt is the differential operator and
P (n)(D̂) and Q(n)(D̂) are formal polynomials representing
linear differential operators of order n. Then, in the frequency
domain ω, the transfer function of the linear system is given by
the ratio of polynomials P (n)(ω)/Q(n)(ω). In particular, in the
case of a single resonance (n = 1), the transfer function must
be well approximated by a ratio of first-order polynomials
P (1)(ω) and Q(1)(ω), so that

t(ω) = P (1)(ω)

Q(1)(ω)
= P

ω − ωz

ω − ωp

. (4)

Here t(ω) is the scattering amplitude (say, amplitude trans-
mission coefficient), ω is the radian frequency, P = p exp(iφ)
is the scattering amplitude far from the resonance, with p

and φ being the magnitude and phase of P , ωp = ωR
p − iγp

and ωz = ωR
z − iγz are the complex-valued pole and zero

of the transfer function, with ωR
p and γp referred to as the

resonant frequency and damping rate. Choice of the negative
sign in the expressions for ωp and ωz is due to the convention
that a wave propagating along a wave vector k oscillates as
∼ exp[i(kr − ωt)]. The pole ωp of the transfer function (4)
with negative imaginary part − γp then corresponds to a de-
caying eigenmode ∼exp(−iωpt) = exp(−iωR

p t) exp(−γpt).
In the most general case, we should assume no limitation on
how large or small the real and imaginary parts of ωp and ωz

may be.
As an illustration, consider a classical analogy to Fano

resonances in Ref. 25. This exactly solvable model is based
upon coupled harmonic oscillators driven by an external
force. To mimic the resonant and nonresonant channels of
Fano scattering, one of the oscillators is set to have a large
damping rate (wide “nonresonant” channel), while the other
one is nearly lossless (resonant channel). With each oscillator
described by a second-order linear differential equation, the
system response is given by a rational function with, generally
speaking, fourth-order polynomials. However, in a narrow
vicinity of the resonant frequency, one can present the transfer
function in the form of (4) and trace how the system parameters
define ωp and ωz.

Equation (4) can further be modified by placing the
beginning of the frequency scale at ωR

p and normalizing the
frequency shift by γp, that is, by introducing the normalized
frequency scale ε = (ω − ωR

p )/γp. The scattering intensity
spectrum is then found as the absolute value squared of the
scattering amplitude T (ε) = |t(ε)|2:

T (ε) = p2 (δ + ε)2 + γ 2

1 + ε2
, (5)

where δ = (ωR
p − ωR

z )/γp is the Fano asymmetry factor
and γ = γz/γp is another line shape factor. Equation (5) is
essentially equivalent to (3) derived elsewhere,23,25 however,
the analysis based on the linear systems approach clearly shows

the connection between the line shape parameters δ and γ on
one hand and zeros and poles of the transfer function on the
other hand.

Equation (5) turns into the original Fano formula (2) when
γ = 0. The second line shape factor γ did not appear in the
original Fano analysis due to the specifics of the considered
problem. An expression equivalent to (5) may be obtained by
extending the Fano formula (2) to include complex values of
q: T (ε) = p2|q + ε|2/(1 + ε2). A complex asymmetry factor
was linked to decoherence in quantum systems.27 Also, the
coupled oscillators model25 yields complex q parameter in
case of an oscillator with nonzero losses. It is worth noting that
expression (5) here is derived from a very general assumption
(4), and thus line shape (5) must be a property of all linear
systems whose transfer function in the frequency range of
interest could be reduced to a first-order expression with a
single pole and single zero.

Significance of the second line shape factor γ , or, equiva-
lently, complex values of q, is emphasized by the following:
The ratio of scattering intensity at the resonance to that well
beyond the resonance Tε=0/Tε�1 = δ2 + γ 2 depends on both
δ and γ . In the original Fano treatment, the absolute value
of the symmetry parameter δ (denoted as real quantity q) is
a measure of the relative strength of the resonant scattering
amplitude compared to the nonresonant [to be exact, the ratio
of transition probabilities in Ref. 2 is (π/2)q2]. With γ �=
0, one should use

√
δ2 + γ 2 instead. This might be quite an

essential correction, especially when γ 2 � δ2.
Another important observation is that with γ �= 0, the

scattering intensity (5) never turns into zero, as noted in
Ref. 23. The asymmetric resonances in photonics are often
seen to be like that, which justifies using the two-parameter
(δ and γ ) formula (5) instead of the original Fano formula (2)
with real q, which yields zero intensity at ε = − q.

In many technical papers, to fit a line shape that does not
go through zero, the original Fano formula (2) is modified.
Besides a scaling factor F0, a constant shift A0 is added (see,
e.g., Ref. 11):

F (ε) = A0 + F0
(q + ε)2

1 + ε2
. (6)

A simple mathematical transformation such as vertical
shift and scaling appears to have a significant effect upon
the physical meaning of the fitting parameters. The model
function (6) can be converted into a form equivalent to (5)
with p2 = A0 + F0, δ = qF0/p

2, γ 2 = (q − δ)(1 + δq)/q,
and thus it is equally suitable for fitting the experimental
or numerically simulated data. However, physical sense of
the constants becomes quite convoluted which may lead to
some misinterpretation of fitting results. In particular, the q

parameter in (6) can no longer be used as a measure of relative
contribution of the resonant and nonresonant channels to the
total scattering amplitude. Indeed, the nonresonant (|ε| � 1)
intensity according to (6) is A0 + F0, and it can be changed
independently of q. Because of no immediate physical sense,
the factors A0 and F0 practically never appear in the analysis
of data fitting and the fitting parameter q in (6), instead of
the proper quantity

√
δ2 + γ 2 =

√
(A0 + F0q

2)/(A0 + F0),
might be misleadingly assumed to be a measure of how strong

125118-2



LINEAR SYSTEMS APPROACH TO DESCRIBING AND . . . PHYSICAL REVIEW B 87, 125118 (2013)

the resonant component of the scattering is compared to the
nonresonant.

III. TWO-PARAMETER CLASSIFICATION OF
FIRST-ORDER ASYMMETRIC RESONANCES

For the sake of convenience of classifying the asymmetric
line shapes, it is useful to introduce another unitless parameter
η = 1/(1 + γ 2) mapping the entire range of γ 2 values 0 �
γ 2 < ∞ into 0 � η � 1 with the value of η = 0 corresponding
to the limit γ 2 → ∞ and η = 1 corresponding to γ 2 = 0. The
line shape equation (5) then takes a convenient form of the
weighted sum of Fano and Lorentz line shapes with weight
factors η and (1 − η), respectively,

T (ε) = A

[
η (δ + ε)2

1 + ε2
+ 1 − η

1 + ε2

]
, (7)

and the overall magnitude factor A = p2/η = p2(1 + γ 2).
This generalized asymmetric line shape will be referred to as
a weighted Fano-Lorentz line shape. To be specific, the term
Fano line shape will be attributed to spectral features that are
described by the original Fano formula (2), or, equivalently,
(7) with η = 1, or (5) with γ = 0. Equation (7) allows for a
convenient description of a line shape in terms such as pure
(100%) Fano, pure (100%) Lorentz, or Fano-Lorentz mixed in
a proportion of η to (1 − η).

When fitting the experimental data, besides A, δ, and η, one
still needs an explicit reference to the resonant frequency ωR

p

and damping rate γp:

T (ω) = A

[
η

(
ω − ωR

p + δγp

)2

(
ω − ωR

p

)2 + γ 2
p

+ (1 − η) γ 2
p(

ω − ωR
p

)2 + γ 2
p

]
. (8)

The asymmetry factor δ and the second line shape factor
η quantitatively define the shape of the spectral features. The
parameter η indicates relative weight of Fano and Lorentzian
components in the first-order asymmetric line shape. The
numerical fit with (8) is also an instrument to locate the
resonant frequency ωR

p , which, generally speaking, no longer
coincides with spectral locations of either maximum or
minimum of T (ω), and damping rate γp of the resonant
excitation channel. The corresponding resonance quality factor
then is Q = ωR

p /2γp.
In (7), the case of η = 0 corresponds to a pure Lorentzian

peak and the case of η = 1 to a pure original Fano line shape.
Note that the Fano line shape (2) is not normalized and may
take on values (much) larger than unity. Instead, it is scaled
in such a way that out-of-resonance values asymptotically
approach unity. At sufficiently large values of |δ|, the case
of η = 1 allows for the highest possible asymmetry with T (ε)
vanishing at some frequency ε = − δ and reaching values as
large as (1 + δ2) at ε = 1/δ. With δ = 0, the Fano line shape
degenerates into a symmetric dip. By adding the two terms in
(7) one then gets T (ε)|δ=0 = A[η + (1 − 2η)/(1 + ε2)], which
may turn out to be a constant [T (ε) = A/2 when η = 1/2]
with no resonant features visible at all, or it could look like
a Lorentzian peak (η< 1/2) or a symmetric dip (η > 1/2)
with a nonzero background. Note that with δ = 0 and η ≈
1/2, when resonant features are barely visible (e.g., excitation
of a low-loss ring resonator), the relative contribution of the
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FIG. 1. Examples of photonic systems showing first-order reso-
nances. From top to bottom: Fabry-Perot cavity (F-P), ring resonator
(Ring), and waveguide grating (WG).

resonant channel compared to the nonresonant one is not
close to zero as one might conclude using the fit (6) with
q = 0. Instead, the right conclusion is that these channels
provide about equal contribution:

√
δ2 + γ 2 = √

(1 − η)/η ≈
1. And indeed, sharp variation of the phase of the scattered
(transmitted) wave at frequencies close to the resonance is an
indication that the resonant channel certainly has a significant
nonzero amplitude.

Some trivial examples of first-order line shapes are follow-
ing (Fig. 1).

An isolated peak in the transmission spectrum of a Fabry-
Perot resonator has close to zero background and, thus, its
first-order approximation (7) becomes a Lorentzian peak (η =
0). The out-of-resonance reflection by a Fabry-Perot cavity is
close to 100%, leaving no room for higher values; using the
first-order linear systems approximation then requires δ = 0.
Though symmetric, this is one of the Fano line shapes (2). A
reflection dip appears in (7) when η > 1/2, and it may reach
zero if η = 1. It may also turn into a resonant reflection peak
with some nonzero background (η < 1/2) if the medium inside
the Fabry-Perot cavity provides optical amplification (but not
lasing yet).

Flat intensity transmission response (δ = 0, η = 1/2) is
observed in a system with a channel waveguide coupled to a
lossless ring cavity. Excitation of the cavity mode in this case
leads to a pure phase response with transmission always kept
at 100%. If the cavity has losses, a resonant dip appears (δ =
0, η > 1/2).

Resonant reflection by a lossless waveguide grating reaches
Rmax = 100% (anomalous reflection), while the out-of reso-
nance reflection is rather low (say, close to Rb ∼ 4% for
a glass-based waveguide). The line shape is not necessarily
pure Fano (reflection does not necessarily go through zero
in the vicinity of the resonance), but if it does, then η = 1
and δ is found from 1 + δ2 = Rmax/Rb = 1/Rb, with positive
(negative) δ corresponding to the reflection peak appearing
at frequencies higher (lower) than the frequency of the
reflection dip.
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FIG. 2. (Color online) First-order resonant line shapes. Horizontal axis in all graphs shows normalized frequency ε. Vertical axis shows
scattering intensity T (ε) calculated according to (6) without normalization (A = 1). The graphs are arranged as follows: from left to right, η =
0 (Lorentz), 1/4, 1/2, 3/4, 1 (Fano); from top to bottom, δ = 0, 1/2, 1, 2. Line shapes for negative values of δ can be obtained by flipping the
axis of normalized frequency: T (ε,η, − δ) = T ( − ε,η,δ).

Representative line shapes calculated using (7) are shown
in Fig. 2.

With η = 0 the line shape is Lorentzian regardless of δ.
All the graphs in the first column are essentially identical.
With η = 1 various Fano line shapes appear, starting from a
symmetric dip at δ = 0 at the top to highly asymmetric shapes
with increasing δ. Note that the Fano line shapes always touch
zero at some frequency (ε = − δ). When the asymmetry factor
is further increased so that |δ| � 1 (not shown in Fig. 2),
the asymmetry is preserved, but the zero-intensity frequency
ε = − δ becomes shifted away from the resonance, while at
frequencies close to the resonance the line shape resembles
a Lorentzian. Generalized asymmetric line shape (7), except
when η = 1, never goes to zero. Deviation of the scattering
intensity from its out-of-resonance value may be quite small
if η ≈ 1/2 and |δ| � 1.

Experimental observations and numerical simulations may
lead to some other resonant line shapes substantially deviating
from (7), such as in the case of the reflection spectrum
of a Bragg grating. This essentially means that the single
resonance (single zero, single pole) approximation neglecting
the distributed nature of the photonic system is no longer
valid. Other cases when (7) may not be quite accurate include
systems with multiple overlapping resonances such that the
rational function (4) with one zero and one pole no longer
provides a good approximation for the transfer function.

However, the vast majority of practically important cases
are perfectly described by the weighted Fano-Lorentz line
shape (7) derived from a very general form of the rational
function (4).

A particular nanocavity system that exhibits the resonance
described by (7) is a 1D silicon photonic crystal cavity
nanobeam, shown in the inset of Fig. 3, coupled to a fiber taper
probe. Experimental details of such a system can be found in
Refs. 28 and 29. Tuning the polarization of the light coupled
to the nanobeam from the fiber taper changes the resonant line
shape from a Fano-Lorentz line shape to pure Lorentzian line
shape. Further work is in development that will describe this
experimental system in more detail, show that it displays a
variety of the line shapes shown in Fig. 1 with different input
polarizations, and equate it to a simple solvable model. In Fig. 3
a Fano-Lorentz line shape (7) with η = 0.506 and δ = 0.055,
showing a nearly 50/50 contribution of a Fano line shape and
a Lorentzian line shape, is fitted to the fiber transmission data
for a particular polarization state. For the fit, A in (7) was
taken to be a linear function of ω to take into account the
slope of the data. As proposed above, these values would
lead to a ratio between resonant and nonresonant scattering√

δ2 + γ 2 of 0.99. Fitting with (6) the conventional scattering
ratio parameter q is 0.84, leading to ∼18% difference.

Work done in Ref. 30 shows simulations of plasmonic
structures and their resonant modes. It is shown that the
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FIG. 3. (Color) Fiber taper transmission spectra of a 1D silicon
photonic crystal nanobeam coupled to a fiber taper displaying a typical
asymmetric line shape spectra (black) and a Fano-Lorentz fit (red).
Inset: SEM of the photonic crystal cavity nanobeam. Length of the
nanobeam is 10 μm.

resonant modes fit well to an equation from Ref. 22 which
is equivalent to (7). If the standard Fano equation is used
[Eq. (6)] the asymmetry terms in Table 1 of Ref. 30 would
be significantly different. Another example of a system
where the difference in asymmetry term is important comes
about in Ref. 31 where a resonant mode of a plasmonic
metamaterial is tuned to the vibrational mode of a biomolecule.
Knowing the characteristics of the metamaterial and how
those characteristics affect the asymmetry of the resonance
can allow for better overlap between the resonant mode of

the plasmonic metamaterial and the vibrational mode of a
biomolecule, leading to a stronger field enhancement. These
two cases are examples where analyzing data with (7) instead
of (6) proves to be beneficial.

IV. CONCLUSIONS

We have shown that asymmetric resonant line shapes de-
rived elsewhere from rigorous electromagnetic calculations23

and from the two-oscillators model25 can also be obtained by
treating the photonic resonance as a response of a first-order
linear system. We have reformulated the line shape equation
into a weighted sum of the Fano and Lorentzian line shapes
and proposed a two-parameter classification scheme with one
parameter being the asymmetry factor in the original Fano
formula and the other one being the relative weight of the
Fano and Lorentzian line shapes. The proposed line shape
equation has been applied to the experimental spectra of
one particular nanocavity system where the scattering ratios
between resonant and nonresonant contributions are shown
to be significantly different between the conventional Fano
formula (6) and the Fano-Lorentz formula (7).
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