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We propose a discrete model—the twisted quantum double model—of 2D topological phases based on a finite
group G and a 3-cocycle α over G. The detailed properties of the ground states are studied, and we find that the
ground-state subspace can be characterized in terms of the twisted quantum double Dα(G) of G. When α is the
trivial 3-cocycle, the model becomes Kitaev’s quantum double model based on the finite group G, in which the
elementary excitations are known to be classified by the quantum double D(G) of G. Our model can be viewed
as a Hamiltonian extension of the Dijkgraaf-Witten topological gauge theories to the discrete graph case with
gauge group being a finite group. We also demonstrate a duality between a large class of Levin-Wen string-net
models and certain twisted quantum double models, by mapping the string-net 6j symbols to the corresponding
3-cocycles.
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I. INTRODUCTION

The study of possible phases of matter has gone beyond
Landau’s paradigm of symmetry breaking for decades, which
leads to the discovery of topological phases of matter. Among
all possible topological phases, there are a class of them that
are believed to bear intrinsic topological order,1 in which
they display features such as robust ground-state degenera-
cies, Abelian or non-Abelian braiding (anyonic) statistics of
quasiparticle excitations, and in many cases protected edge
excitations. The classic examples of these phases include
the (fractional) quantum Hall states, Z2 spin liquids, chiral
spin liquids, and p + ip superconductors.2–10 The physical
characteristics of topological phases urge the search of the
mathematical structures that classify the topological phases. It
is then natural to resort to certain theoretical models that can
yield various topological phases.

There is a very general framework—the string-net
models,11 also known as the Levin-Wen models—supplying
exactly soluble models that incorporate a large class of
intrinsically topological phases, notably those preserving time-
reversal symmetry. Although it is believed that tensor category
theory is the mathematical framework that underlies these
models, a general classification of these models—in particular
of the topological phases they describe—is yet to be found.

The intrinsically, topologically ordered systems are roughly
speaking those gapped quantum phases of matter that in-
volve long-range entanglement (LRE). In contrast, there are
gapped quantum phases of matter that involve short-range
entanglement (SRE), which, when symmetry is unbroken,
give rise to nontrivial phases, called symmetry-protected
topological (SPT) phases,12,13 such as the Haldane phase on
one-dimensional spin chain14 and topological insulators.15–20

Characteristic properties of these phases are usually nondegen-
erate ground states and, if the system has a boundary, nontrivial
edge excitations.

Very recently, however, it was discovered that a specific SPT
phase, namely an Ising spin model with a gaugedZ2 symmetry,
admits a dual LRE phase described by a string net model.21

This remarkable duality is then conjectured21 to exist between
a general SPT phase with discrete, gauged symmetry G and a
string net model with fusion rules also given by the product
rule of G. Soon after, this conjecture is confirmed in Ref.
22, which henceforth implies that the classification of a large
class of SPT phases provided by group cohomology in 2+1
dimensions via H 3[G,U (1)] described in Ref. 23 (we remark
that Ref. 25 offers a field theoretic approach that obtains the
same classification) indirectly provide classifications of the
corresponding string net models.

This classification of string-net models seems feasible,
as the building blocks of these models, namely the 6j

symbols may fall into equivalence classes that are related
to the 3-cocycles in the cohomology group H 3[G,U (1)]
of the symmetry group G of the model.22 Nevertheless, in
the string-net models that have been studied so far, the 6j

symbols are assumed to respect the full tetrahedral symmetry,
which may be too restrictive for a description of topological
phases. Namely, as pointed out in Ref. 22, the topological
phases described by the Levin-Wen model with tetrahedral
symmetry may not account for all topological phases classified
by H 3[G,U (1)].

This has motivated us to propose a new class of discrete
models for 2D topological phases, called the twisted quantum
double model for reasons to be clear later, whose construction
involves a 3-cocycle, an element in the cohomology group
H 3[G,U (1)]. More precisely, we consider a model on a planar
graph of triangles, each edge of which is graced with a group
element of a finite group G. The Hamiltonian of the model
has matrix elements constructed by a 3-cocycle α belonging
to the cohomology group H 3[G,U (1)] of G. We require that
α satisfies only the 3-cocycle condition δα = 1, where δ is
the coboundary operator, which under the circumstance of
this paper is actually the pentagon identity in disguise. Owing
to the absence of extra conditions put in by hand on α, all
solutions to the 3-cocycle condition but one—namely the
trivial 3-cocycle—do not respect the tetrahedral symmetry. In
other words, any element of H 3[G,U (1)] defines an instance
of our model.
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We study our model in detail by placing it on a torus. In
terms of 3-cocycles, we construct, for the ground states of our
model, explicitly three topological observables, namely, the
ground-state degeneracy (GSD), the S and T operators that
are a representation of the generators of the modular group
SL(2,Z). This construction is a new result of ours, purely based
on our model and in terms of the 3-cocycles of G, without using
group representation theory. These topological observables
on the ground states lead to a set of topological numbers,
respectively, formed by the GSD, elements of S matrix, and
topological spin. We show that these topological numbers
depend on the cohomology classes [α] ∈ H 3[G,U (1)]. More-
over, equivalent 3-cocycles define equivalent twisted quantum
double models, in the sense that their Hamiltonians can be
continuously deformed into each other. We present a few
characteristic properties of the topological numbers, which
may help to resolve this open question in future work. On top
of these abstract constructions, we work out a few concrete
examples for certain finite groups, Abelian and non-Abelian.

We also discourse on how our model relates to topological
field theories and models of topological phases. It turns out
that our model is a reasonable Hamiltonian extension of
the Dijkgraaf-Witten theory26–28 of topological Chern-Simons
gauge theory in three dimensions, as we can identify the
ground states of our model defined by an [α] ∈ H 3[G,U (1)]
on the boundary of a three-manifold with the gauge-invariant
boundary states of the Dijkgraaf-Witten theory defined by
the same [α] in the bulk, which then equates the GSD of
our model with the partition function of the corresponding
Dijkgraaf-Witten theory. Since three-dimensional topological
Chern-Simons theory corresponds to two-dimensional rational
conformal field theory (RCFT),27 a connection between our
model and RCFT is thus established. In particular, the GSD of
our model with group G agrees with the number of primary
fields in the RCFT that an orbifold by the symmetry group G

of a holomorphic CFT.
We demonstrate that our twisted quantum double model

reduces precisely to Kitaev’s quantum double model in the
special case where the defining 3-cocycle is trivial. The
nontrivial 3-cocycles in our model may twist the usual group
algebra C[G] into a twisted group algebra, which mainly
motivates the name of our model.

As our model is motivated by the Levin-Wen model, we
demonstrate a duality between a large class of Levin-Wen
string-net models and certain twisted quantum double models,
by mapping the string-net 6j symbols to the corresponding
3-cocycles.

We would like to insert as an aside here that we minimized
the complexity of the mathematics in this paper without
sacrificing the preciseness and comprehensibility of our
presentation. For instance, although group cohomology is a
key term of this paper, we assume zero prior knowledge of
it, because we define and present the n-cocycles as merely
U (1) functions that satisfy an algebraic condition. As such,
we believe the paper is accessible to a wide range of physicists
and mathematicians.

Our paper is organized as follows. In Sec. II, we construct
our new model of topological phases. Section III is devoted to
the general setting for the topological observables. In Sect. IV,
we compute the ground-state degeneracy (GSD) on a torus

and study the corresponding topological degrees of freedom.
Section V furnishes the construction of two more topological
observables that give rise to fractional topological numbers.
We present a classification of the topological numbers in our
model in Sec. VI. Section VII offers concrete examples of
our model for a number of finite groups. Sections VIII, IX,
and X relate our model, respectively, to Kitaev’s quantum
double model, Dijkgraaf-Witten topological gauge theory, and
the Levin-Wen string-net model. Section XI concludes with
remarks and outlook. Appendix A introduces, very briefly, the
group cohomology of finite groups, while the other appendices
collect proofs of various statements in the paper.

II. THE MODEL

In this section, we shall construct our model in (2 + 1)-
dimension, as an exactly soluble Hamiltonian on the Hilbert
space spanned by planar graphs consisting of triangles whose
edges are graced with group elements in certain finite group.

A. Basic ingredients

The model is defined on a two-dimensional graph � consist-
ing of triangles only (Fig. 1). Such a graph does not have any
open edge and may be thought of as a simplicial triangulation
of a certain two-dimensional Riemannian surface, e.g., a
sphere; however, in this model, we shall take the graph as
abstract without referring to its topological background, except
when we compare the model with other models, such as
Dijkgraaf-Witten discrete topological gauge theories. Note
that Fig. 1 is a crop of one such graph, so the open edges
in the figure are not really open. We enumerate the vertices
of � by any ordered set of labels. The enumerations of the
vertices we choose is irrelevant as long as their relative order
remains consistent during the calculation.

The model is characterized by a triple (H,G,α), which
can be denoted by HG,α for short. The first in the triple is the
Hamiltonian H . The second ingredient G is a finite group. Each
edge of � is graced with a group element of G. The Hilbert
space is spanned by the configurations of group elements on
the edges of �. Each edge (see Fig. 1) carries an arrow that goes
from the vertex with a larger label to the one with a smaller
label. To each edge e of the graph �, we assign a group element
ge ∈ G, and all possible assignments form the basis vectors of

FIG. 1. A portion of a graph that represent the basis vectors in
the Hilbert space. Each edge carries an arrow and is assigned a group
element denoted by [ab] with a < b.
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the Hilbert space,

{g1,g2,...,gE} , (1)

where E is the total number of edges in �.
It is convenient to denote both an edge and the group

element on the edge by simply [ab], with a < b the two
boundary vertices of the edge. It is understood that [ba] =
[ab]−1. The inner product of the Hilbert space is the obvious
one:

= δ[ab][a′b′]δ[bc][b′c′]δ[ac][a′c′]

. . . , (2)

where only one triangle in � is drawn, and the “. . . ” omits
the δ functions on all other triangles that are not shown. Note
that three group elements on the three sides of a triangle, e.g.,
the [ab],[bc], and [ac] on the right-hand side of Eq. (2), are
independent of each other in general, i.e., [ab] · [bc] �= [ac].
From now on, we shall neglect the group elements on the edges
but keep only the vertex labels when we draw a basis vector.

The third element is a normalized 3-cocycle α ∈
H 3[G,U (1)], i.e., a function α : G3 → U (1) that satisfies the
3-cocycle condition

α(g1,g2,g3)α(g0 · g1,g2,g3)−1α(g0,g1 · g2,g3)

×α(g0,g1,g2 · g3)−1α(g0,g1,g2) = 1, (3)

for all gi ∈ G, and satisfies the normalization condition

α(1,g,h) = α(g,1,h) = α(g,h,1) = 1, (4)

whenever g,h ∈ G are arbitrary. A basic and brief introduction
to cohomology groups Hn[G,U (1)] of finite groups is found in
Appendix A. We emphasize that this normalization condition
is not an ad hoc condition we imposed as an extra on the
3-cocycles; rather, it is a natural condition that any group
3-cocycle can satisfy for the following reason. A 3-cocycle α

is in fact an equivalence class of the 3-cocycles that can be
scaled into each other by merely a 3-coboundary δβ, where β

is a 2-cochain. It can be shown that for any equivalence class of
3-cocycles, there always exists a representative that meets the
normalization condition in Eq. (4), which is in turn justified.

Note that every group has a trivial 3-cocycle α0 ≡ 1 on
the entire G. One can define a 3-cocycle on any subgraph
composed of three triangles, which share a vertex and any two
of which share an edge. Consider Fig. 2(a) as an example: The
four vertices are in the order v1 < v2 < v3 < v4; we define the
3-cocycle for this subgraph by taking its three variables from

v1 v3

v2

v4

(a)
v1 v2

v3

v4

(b)

FIG. 2. (a) The defining graph of the 3-cocycle
α([v1v2],[v2v3],[v3v4]). (b) For α([v1v2],[v2v3],[v3v4])−1.

left to right to be the three group elements, [v1v2], [v2v3], and
[v3v4], which are along the path from the least vertex v1 to
the greatest vertex v4 passing v2 and v3 in order; hence, the
3-cocycle reads α([v1v2],[v2v3],[v3v4]). If one lifts the vertex
v2 in Fig. 2(a) above the paper plane, the three triangles turn
out to be on the surface of a tetrahedron. In this sense, one
can think of the 3-cocycle as associated with a tetrahedron as
well, which is useful when the graph is really interpreted as
the triangulation of a Riemannian surface.

On the other hand, if one switches the vertices v2 and v3

in Fig. 2(a), one obtains Fig. 2(b), which defines the inverse
3-cocycle α([v1v2],[v2v3],[v3v4])−1. Whether a graph defines
a 3-cocycle α or the inverse α−1 depends on the orientation of
the four vertices in the graph by the following rule. One first
reads off a list of the three vertices counterclockwise from any
of the three triangles of the defining graph of the 3-cocycle,
e.g., (v2,v3,v4) from Fig. 2(a) and (v3,v2,v4) from Fig. 2(b).
One then appends the remaining vertex to the beginning of the
list, e.g., (v1,v2,v3,v4) from Fig. 2(a) and (v1,v3,v2,v4) from
Fig. 2(b). If the list can be turned into ascending order by even
permutations, such as (v1,v2,v3,v4) from Fig. 2(a), one has an
α but an α−1 otherwise, as by (v1,v3,v2,v4) from Fig. 2(b).

We would like to warn the reader of some abuse of language
in the rest of the paper. For example, when we say “a 3-
cocycle,” we may refer to a class [α], a representative α, or
the evaluation of α on a tetrahedron. For another example,
although there is abstractly only one 3-cocycle condition as
in Eq. (3), we may sometimes mean 3-cocycle conditions by
the evaluation of the condition on different tetrahedra. But this
should not cause any confusion contextually.

B. The Hamiltonian

The 3-cocycles will appear in the matrix elements of the
model’s Hamilton defined as follows:

H = −
∑

v

Av −
∑
f

Bf , (5)

where Bf is the face operator defined at each triangular face
f , and Av is the vertex operator defined on each vertex
v. As we shall see later, this Hamiltonian is formally the
same as and generalizes that of the Kitaev model,30,31 where
operator Av behaves as a gauge transformation on the group
elements, respectively, on the edges meeting at v, and a Bf

detects whether the flux through face f is zero. This kind of
Hamiltonian generically features ground states that are gauge
invariant and bear zero flux everywhere. We now elaborate
more on these operators.

The action of Bf on a basis vector is

Bf = δ[v1v2]·[v2v3]·[v3v1] . (6)

The discrete δ function δ[v1v2]·[v2v3]·[v3v1] is unity if
[v1v2] · [v2v3] · [v3v1] = 1, where 1 is the identity element
in G, and 0 otherwise. Note again that here, the ordering
of v1,v2, and v3 does not matter because of the identities
δ[v1v2]·[v2v3]·[v3v1] = δ[v3v1]·[v1v2]·[v2v3] and δ[v1v2]·[v2v3]·[v3v1] =
δ{[v1v2]·[v2v3]·[v3v1]}−1 = δ[v3v1]−1·[v2v3]−1·[v1v2]−1 = δ[v1v3]·[v3v2]·[v2v1].
In other words, in any state on which Bf = 1 on a triangular
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face f , the three group degrees of freedom around v is related
by a chain rule:

[v1v3] = [v1v2] · [v2v3], (7)

for any enumeration v1,v2,v3 of the three vertices of the
face f .

The operator Av is a summation

Av = 1

|G|
∑

[vv′]=g∈G

Ag
v, (8)

which deserves explanation. The value |G| is the order of the
group G. The operator A

g
v acts on a vertex v with a group

element g ∈ G by replacing v by a new enumeration v′ that is
less than v but greater than all the enumerations that are less
than v in the original set of enumerations before the action
of the operator, such that [v′v] = g. A

g
v does not affect any

vertex other than v but introduces a U (1) phase, composed
of 3-cocycles determined by v′ and all the vertices adjacent
to v before the action, to the resulted state. In a dynamical
language, v′ is understood as on the next “time” slice, and there
is an edge [v′v] ∈ G in the (2 + 1) dimensional “spacetime”
picture. Consider a trivalent vertex as an example [see Eq. (9)].
Without loss of generality, we assume that the enumerations of
the four vertices are in the order v1 < v2 < v3 < v4. The basis
vector on the left-hand side of Eq. (9) is specified by six group
elements, [v1v3], [v2v3], [v3v4], [v1v4], [v2v1], and [v2v4]. The
action of A

g
v3 on this state reads

Ag
v3

= δ[v′
3v3],gα

(
[v1v2],[v2v

′
3],[v′

3v3]
)
α

(
[v2v

′
3],[v′

3v3],[v3v4]
)

×α
(
[v1v

′
3],[v′

3v3],[v3v4]
)−1

, (9)

where on the right-hand side, the new enumerations are in the
order v1 < v2 < v′

3 < v3 < v4, and the following chain rule
of group elements on the edges holds:

[v1v
′
3] = [v1v3] · [v3v

′
3],

[v2v
′
3] = [v2v3] · [v3v

′
3], (10)

[v′
3v4] = [v′

3v3] · [v3v4].

The phase factor consisting of three 3-cocycles on the right-
hand side of Eq. (9) encodes the nonvanishing matrix elements

of B
v′

3
v3 , namely(

Ag
v3

)[v1v3][v2v3][v3v4]

[v1v
′
3][v2v

′
3][v′

3v4]
([v1v2],[v2v3],[v1v3])

= α([v1v2],[v2v
′
3],[v′

3v3])α([v2v
′
3],[v′

3v3],[v3v4])

×α([v1v
′
3],[v′

3v3],[v3v4])−1. (11)

For each vertex on the left-hand side of Eq. (9), we group
its three neighboring enumerations together with the new
enumeration v′

3 in the ascending order. Hence, we have
(v1,v2,v

′
3,v3) for the lower vertex, (v1,v

′
3,v3,v4) for the

upper left vertex, and (v2,v
′
3,v3,v4) for the upper right one,

v1

v2

v4

v3

v3

FIG. 3. The topology of the action of Ag
v3

.

and then assign three 3-cocycles, respectively, to the three
vertices: α([v1v2],[v2v

′
3],[v′

3v3]), α([v2v
′
3],[v′

3v3],[v3v4]), and
α([v1v

′
3],[v′

3v3],[v3v4])−1. The chirality of a 3-cocyle, or in
other words, whether a vertex contributes a 3-cocycle α or the
inverse α−1, is based on the following criteria. We write down
a triple for the three neighboring enumerations around each
vertex in the counterclockwise direction and append v′

3 to the
front, namely, (v′

3,v1,v2,v3) for the lower vertex, (v′
3,v1,v3,v4)

for the upper left one, and (v′
3,v2,v4,v3) for the upper right

one. If it takes (odd) even number of steps to permute a list to
the ascending order, the vertex contributes (the inverse of) the
corresponding 3-cocycle in the action.

The matrix elements in Eq. (11) can be better motivated
and understood in the following way. One may think that the
graph evolves in “time” under the drive of the Hamiltonian.
Focusing on the vertex operator only, and considering the A

g
v3

in Eq. (9), the action of the operator creates a new “time”
slice by replacing the original vertex v3 by v′

3 and connects the
two vertices in the “time” direction. This scenario is shown in
Fig. 3, which is made three-dimensional (2 + 1) to illustrate
the “spacetime” picture and the relation between our model
and Dijkgraaf-Witten discrete topological gauge theory to be
addressed in Sec. IX.

As in Fig. 3, we can view the original three triangles
on the left-hand side of Eq. (9) as a tetrahedron v1v2v3v4

and the three new triangles as another tetrahedron v1v2v
′
3v4,

of which the vertex v′
3 lies inside v1v2v3v4 because of the

ordering v′
3 < v3. Since v′

3 and v3 are connected, there are
three more tetrahedra generated effectively by the action of
the vertex operator, namely v1v2v

′
3v3, v2v

′
3v3v4, and v1v

′
3v3v4.

It looks like the original tetrahedron is split into four tetrahedra.
This splitting of tetrahedron implies the three chain rules in
Eq. (10), which then enables us to endow the three tetrahedra,
v1v2v

′
3v3, v2v

′
3v3v4, and v1v

′
3v3v4, respectively, with the three

3-cocycles, α([v1v2],[v2v
′
3],[v′

3v3]), α([v2v
′
3],[v′

3v3],[v3v4]),
and α([v1v

′
3],[v′

3v3],[v3v4])−1, following the rule shown in
Fig. 2.

The operator A
g
v3 in Eq. (9) is just an identity operator if

[v′
3v3] = 1, i.e., the identity in G. In fact, according to Eq. (9),

we have the following matrix element:

α([v1v2],[v2v
′
3],1)α([v2v

′
3],1,[v3v4])

×α([v1v
′
3],1,[v3v4])−1, (12)

which is unity, by the normalization condition Eq. (4).
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The vertex operator in Eq. (9) can naturally extend its
definition from a trivalent vertex to a vertex of any valence
higher than three. The number of 3-cocyles in the phase factor
brought by the action of A

g
v on a vertex is equal to the valence

of the vertex. The chirality of each 3-cocycle in the phase
factor follows the criteria described in the previous paragraph.
It is clear that A

g=1
v ≡ I by the discussion above.

It can be shown that all Bf and Av are projection operators
and commute with each other (see Appendix A). As a
result, the ground states and all elementary excitations are
thus simultaneous eigenvectors of all these local operators.
Moreover, the elementary excitations are identified as local
quasi-particles that are classified by the the representations of
the local operators.

We shall call our model “twisted quantum double model”
for reasons to be explained in Sec. IV B.

C. Equivalent models

Now that a 3-cocycle defines a twisted quantum double
model, one may wonder since a 3-cocycle represents a whole
equivalence class, whether two equivalent 3-cocycles, i.e., two

representatives of the same equivalent class, define the same
model. Let us consider two Hamiltonians, HG,α and HG,α′ ,
respectively, defined by two equivalent 3-cocycle α and α′
that are related by the 3-coboundary δβ of a normalized 2-
cochain β : G2 �→ U (1) that satisfy β(x,e) = 1 = β(e,x) for
all x ∈ G,

α′(g0,g1,g2) = δβ(g0,g1,g2)α(g0,g1,g2)

= β(g1,g2)β(g0,g1g2)

β(g0g1,g2)β(g0,g1)
α(g0,g1,g2), (13)

where gi ∈ G, and δ is the coboundary operator. As each 3-
cocycle is defined on three triangles (or equally a tetrahedron)
such as in Fig 2, each 2-cochain β can be thought as defined
on a triangle. Hence, Eq. (13) can be viewed as a local “gauge”
transformation on α.

We now check the relation between HG,α′ and HG,α . It
suffices to check only the vertex operators A

g
v (α′) and A

g
v (α)

because the face operators Bf have merely δ functions as its
matrix elements and are thus inert under the transformation
in Eq. (13). Without loss of generality, we consider again the
vertex operator on a trivalent vertex, as that in Eq. (9). By
Eq. (13), We immediately obtain the following:

A
g

3(α′) = α′ ([12],[23′],[3′3]
)
α′([23′],[3′3],[34])

α′([13′],[3′3],[34])

= β([12],[23])β([13],[34])

β([23],[34])
× α([12],[23′],[3′3])α([23′],[3′3],[34])

α([13′],[3′3],[34])

× β([23′],[3′4])

β([12],[23′])β([13′],[3′4])
, (14)

where the δ function δ[3′3],g is omitted for simplicity. The
second term consisting of three α’s is precisely the matrix
element of A

g

3(α). If we move the first fraction of β in the
second equality of the above equation to the left-hand side, we
readily see that the action of A

g

3(α′) on the rescaled state,

β([23],[34])

β([12],[23])β([13],[34])
,

matches perfectly the action of A
g

3(α) on the original state.
The above rescaling is clearly a local U (1) phase, which can
be boiled down to the following local U (1) transformation on
the basis states of triangles:

�→ β([ab],[bc])ε(a,b,c) , (15)

where ε(a,b,c) is a sign, which equals +1 if the enumerations
a < b < c are clockwise on the triangle and −1 otherwise. In

this new basis, A
g
v (α′) has the same matrix elements and thus

the same spectrum as those of A
g
v (α) in the old basis.

There is a continuous deformation between any two 3-
cocycles related by α′ = αδβ. Define a 2-cochain β(t)(x,y) =
β(x,y)t , with 0 � t � 1, then α(t) = αδβ(t) is equivalent
to α for all 0 � t � 1, with α(0) = α and α(1) = α′. The
corresponding transformation in Eq. (15) with β replaced by
β(t) is a continuous local U (1) transformation; hence, there
is no phase transition in the one-parameter family of systems
with the Hamiltonian HG,α(t) from 0 � t � 1. Thus, we can
conclude that the Hamiltonians HG,α′ and HG,α due to two
equivalent 3-cocycles α′ and α indeed describe the same
topological phase.

III. TOPOLOGICAL OBSERVABLES AND SYMMETRIES

In hydrodynamics, topological properties of fluid, such as
the stability and interactions of currents and fluxes, can be
systematically studied by the diffeomorphism symmetry group
acting on the fluid.29 Analogously, the topological properties,
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in particular the topological observables and interactions (fu-
sions) of the topological excitations, i.e., topological charges
(currents), fluxes, and dyonic states of charge and fluxes, of
a discrete model of topological phases can be systematically
studied by the discrete version of diffeomorphisms, which we
shall call the mutation symmetry transformations of the graph.

The symmetry we will be dealing with in this model are the
mutations of the graph that preserve the spatial topology but
not necessarily the local graph structure. A Hermitian operator
is a topological observable if it is invariant under the mutation
transformations.

In most physical systems, the mutation (or diffeomorphism)
symmetry does not exist. Nevertheless, in the discrete models
of topological phases proposed by Kitaev30,31 and Levin
and Wen,11 the mutation transformations to be constructed
explicitly do have the space of the ground states of these models
as invariant subspaces. Hence, we can use any topological
observable, which is invariant under these mutation trans-
formations, to characterize, at least partially, the topological
phases in these models. One such topological observable is
GSD.

In this section, we construct the mutation transformations
in our model and show that they are unitary symmetry
transformations on the ground states. Then we shall define
and see, as an immediate consequence, that the GSD of our
model is indeed a topological observable.

All Bf and Av are mutually commuting projection oper-
ators, as proven in Appendix A. Thus, the ground states are
the simultaneous +1 eigenvectors of all Bf , Av . Define the
ground-state projection operator

P 0
� =

( ∏
f ∈�

Bf

)( ∏
v∈�

Av

)
, (16)

and then the subspace of the ground states is

H0
� = {|�〉|P�|�〉 = |�〉}. (17)

Usually, symmetry transformations in a lattice model do
not affect the lattice structure and are thus well-defined on a
fixed lattice. The mutation moves in our model, however, take
one graph to another. Since each graph � is endowed with a
Hilbert space H� and the Hamiltonian defined in Eq. (5), the
Hilbert space and the Hamiltonian may be subject to changes
under the mutation moves.

It is known that we can always transform a triangular graph
� to another one �′ that triangulates the same Riemannian
surface by a composition of the following elementary Pachner
moves32,33:

(18)

(19)

(20)

which are the generators of all mutation transformations.

Each mutation generator fi : � → �′ induces a linear
transformation Ti : H� → H�′ :

T1

=
∑

[v1v3]∈G

α ([v1v2],[v2v3],[v3v4]) (21)

T2

=
∑

[v1q],[v2q],
[v3q] ∈ G

α ([qv1],[v1v2],[v2v3])

(22)

T3

= α ([v1v2],[v2v3],[v3v4]) . (23)

We now explain how we determine the linear properties of
these operators.

For T1, we enumerate the four vertices in Eq. (21) by v1 <

v2 < v3 < v4. The action of T1 does not change the degrees of
freedom on the external edges, namely [v1v2], [v2v3], [v3v4],
and [v4v1], but only changes the [v2v4] on the internal edge to
[v1v3] on the internal edge in the new graph. The new group
element [v1v3] runs over all group elements in G. The operator
T1 also yields a U (1) phase α ([v1v2],[v2v3],[v3v4])ε(v1,v2,v3,v4)

on the basis vector in the new Hilbert space. The exponent ε

is a sign function that assigns an exponent +1 or −1 to the
3-cocycle α according to the following rule. One first picks up
either of the two triangles before the action of T1, then notes
down as a list its three vertices counterclockwise, e.g., either
(v1,v2,v4) or (v2,v3,v4), as in Eq. (21). One then appends
the remaining vertex to the list from the left, such as either
(v3,v1,v2,v4) or (v1,v2,v3,v4). If it takes even permutations to
shuffle the list to completely ascending order, ε = 1, which is
the case in Eq. (21), and ε = −1 otherwise.

As to T2 defined in Eq. (22), we suppose the order of vertices
is v1 < v2 < v3. The action of T2 creates three triangles
separated by three new edges that carry, respectively, three
new group elements. We enumerate this new vertex by q,
which is set to be less than v1, such that the three new group
elements are [qv1], [qv2], and [qv3], which are then averaged
out in order not to enlarge the Hilbert space.

The remaining factor in T2 is also a phase, which is in the
form α ([v1v2],[v2v3],[v3q])ε(q,v1,v2,v3), where the exponent is
a sign depending on the orientation of the three triangles on
the right-hand side of the equation. We determine the sign
by first noting down the list of the three vertices clockwise
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from any of the three triangles of the basis graph after the
action of T2, such as (q,v3,v2) from the right-hand side of
Eq. (22), then appending the remaining vertex to the beginning
of the list, such as (v1,q,v3,v2); if the list can be turned into
ascending order by even permutations, ε = 1, which is the case
in Eq. (22), and otherwise ε = −1. In general, the enumeration
q of the new vertex in Eq. (22) can have any order relative to
the enumerations of the three old vertices; however, we assume
q is the smallest therein for simplicity.

As opposed to T2, T3 shrinks three triangles to one, as
in Eq. (23), the 3-cocycle on the right-hand side of which
is in general α ([v1v2],[v2v3],[v3v4])ε(v1,v2,v3,v4), where the
exponent is a sign depending on the orientation of the three
triangles on the left-hand side of the equation. This sign is
determined this way: One first reads off the list of the three
vertices counter–clockwise from any of the three triangles of
the original basis graph, such as (v2,v3,v4) from the left-hand
side of Eq. (23), then appends the remaining vertex to the
beginning of the list, such as (v1,v2,v3,v4); if the list can
be turned into ascending order by even permutations, ε = 1,
otherwise ε = −1. To make life easier, in Eq. (23), we consider
only one case.

Now we show that the mutation transformations generated
by T1, T2, and T3 are unitary symmetry transformations on the
ground states. In particular, T1 is a unitarity of the entire Bf =
1 subspace of the Hilbert space, in the sense that HBf =1

�
∼=

T1(HBf =1
� ). We denote the subspace of ground states of the

Hilbert space H� on a graph � by H0
� . The proof consists of

the following two steps.
(i) Mutation transformation preserve the space of ground

states.
That is, if T is a mutation transformation between two

Hilbert spaces H� to H�′ , and if |�〉 ∈ H0
� , then T |�〉 ∈ H0

�′ .
It suffices to show that TiP

0
� = P 0

�′Ti for each mutation
generator Ti and each state in HBf =1, where P� and P 0

�′ are the
projectors, respectively, onto H0

� and H0
�′ (see Appendix B).

Note that, however, we have H ′T �= T H in general.
(ii) Mutations are unitary on ground states.
By unitary, we mean: If T is a mutation transformation

between two Hilbert spaces H� to H�′ , and if |�〉,|�〉 ∈ H0
� ,

then

〈T � |T �〉 = 〈� |�〉 . (24)

It is sufficient to check Eq. (24) for T1,T2, and T3 only, as
seen in Appendix B.

Consequently, there is a bijection between the ground states
on any two graphs related by the mutation moves. Since two
such graphs have the same spatial topology, the dimension of
the ground-state Hilbert space, i.e., the GSD of our model, is a
topological invariant and well-defined topological observable.
Hence, our GSD can be taken as the trace of the ground-state
projector in Eq. (16), which is as we have just seen a Hermitian
operator that is invariant under the mutations, namely,

GSD = tr
(
P 0

�

)
, (25)

where trace can be taken on any one of the graphs that are
connected by the mutation moves, but the result is obviously
independent of this choice.

1

2

3

4

g

g

h h

FIG. 4. Triangulation of a torus, with g,h ∈ G.

IV. THE GROUND-STATE DEGENERACY AND
TOPOLOGICAL DEGREES OF FREEDOM

GSD partially characterizes a topological phase. The
nontrivial feature is that the GSD depends only on the
spatial topology of the system. Two topological phases having
different GSDs must be considered different.

Another important characteristic of topological phases is
the emergent fractional quantum numbers of the elementary
excitations in these phases and the fractional statistics of the
quasiparticles of these elementary excitations. The relation
with GSD is that the GSD is equal to the number of species of
the quasiparticles of the elementary excitations.

The significance of the GSD lies in the degrees of freedom
that are capable of distinguishing the degenerate ground states.
The topological dependence of the GSD originates in that
these degenerate degrees of freedom are global. An interesting
question then arises: How do we characterize these global
degrees of freedom? Answering this question will enable us to
(1) discern between two different topological phases that have
the same topological dependence of GSD and (2) understand
better the relationship between the global degrees of freedom
in the degenerate ground states and the emergent fractional
quantum numbers of the elementary excitations.

In what follows, we calculate the GSD of our model on a
torus and then analyze the global degrees of freedom in the
degenerate ground states.

A. Ground-state degeneracy on a torus

The topological invariance of the GSD of our model enables
us to compute the GSD on the simplest triangle graph that
triangulates the surface on which the model is defined.

In the case of finite groups, the GSD of our model on
a 2-sphere is always unity because a 2-sphere has a trivial
topology, in the sense that its fundamental group is trivial.
This fact can be checked by following the approach to be
presented shortly in this section. This is a common feature of
all known models of topological phases.

A torus is the simplest closed surface with a nontrivial
topology. Figure 4 depicts the simplest triangle graph that
triangulates a torus.

This graph has two triangle faces and only one vertex. But
for the sake of assigning the 3-cocycles in Ax

v easily, we use
1,2,3, and 4 to enumerate the sole vertex. This is perfectly
fine because the boundary condition automatically merges the
differently labeled vertices into one. We identify the boundary
edge [12] with [34], and [13] with [24]. It is tricky to notice
that the four enumerations cannot be arbitrary. In Fig. 4, the
orientations of the two boundary edges are consistently taken
from higher enumerations to lower enumerations.

The subspace HBf =1 is spanned by the basis vectors

{|g,h〉 |g,h ∈ G,gh = hg} , (26)
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corresponding to the assignment of [13] = g,[12] = h, and
[14] = gh = hg in the above graph.

Since there is only one vertex in Fig. 4, we simplify the
notation of Ax

v at this mere vertex by Ax , the action of which,
according to its definition in Eq. (9), is

Ax |[13],[12]〉
= (α([13],[34′],[4′4])α([12],[24′],[4′4])−1)

×α([13′],[3′3],[34′])−1α([12′],[2′2],[24′])
× (α([1′1],[13′],[3′4′])α([1′1],[12′],[2′4′])−1)

× |[1′3′],[1′2′]〉, (27)

where the rule [1′1] = [2′2] = [3′3] = [4′4] = x holds for the
new enumerations 1′,2′,3′, and 4′. The coefficient consisting
of the six 3-cocycles are determined as follows. We obtain
[α([13],[34′],[4′4])α([12],[24′],[4′4])−1] at enumeration 4,
then replace 4 by 4′ to determine the rest of the factors.
Next we obtain α([13′],[3′3],[34′])−1 at enumeration 3 and
then again replace 3 by 3′. Having repeated similar steps at
enumerations 2 and 1, we arrive at the above formula. One may
derive a seemingly different coefficient by following a different
path, e.g., 1 → 2 → 3 → 4. But because of the topological
invariance, the new coefficient can be brought to precisely the
same as that in Eq. (27) by applying 3-cocycle conditions, as
one can check.

Now we write down the action explicitly in terms of the
group elements g,h, and x:

Ax |g,h〉
= α(g,hx−1,x)α(h,gx−1,x)−1α(gx−1,x,hx−1)−1

×α(hx−1,x,gx−1)α(x,gx−1,xhx−1)

×α(x,hx−1,xgx−1)−1|xgx−1,xhx−1〉. (28)

One can verify the multiplication law AxAy = Axy by 3-
cocycle conditions Eq. (3), which agrees with the result in
Appendix B. The ground-state projector is, thus,

P 0 = 1

|G|
∑

x

Ax. (29)

Taking a trace of the ground-state projector Eq. (29) computes
the GSD,

GSD = tr

(
1

|G|
∑

x

Ax

)
=

∑
g,h

δgh,hg 〈g,h| Ax |g,h〉

= 1

|G|
∑
h,g,x

δgh,hgδhx,xhδxg,gxα(g,hx−1,x)

×α(h,gx−1,x)−1α(gx−1,x,hx−1)−1α(hx−1,x,gx−1)

×α(x,gx−1,h)α(x,hx−1,g)−1, (30)

where the trace is evaluated in the subspace HBf =1.
The seemingly complicated summation of the six 3-

cocycles in Eq. (30) can actually be simplified in many cases
due to a hidden simple mathematical structure. To see this, we
shall first explore in the next subsection the algebraic structure
in Eq. (28), after which we come back to the simplification of
the GSD.

B. Topological degrees of freedom

We now proceed to extract the algebraic structure in
Eq. (28) and explore the classification of the topological
degrees of freedom in the ground states, so as to reveal the deep
mathematical significance of the GSD yet not fully discussed
in the previous subsection.

To this end, we rewrite Eq. (28) as follows by applying
appropriate 3-cocycle conditions (see Appendix C for the
derivation):

Ax |g,h〉
= α(g,x−1,xhx−1)α(x−1,xhx−1,xgx−1)

α(x−1,xgx−1,xhx−1)

× α(h,g,x−1)

α(g,h,x−1)α(h,x−1,xgx−1)
|xgx−1,xhx−1〉. (31)

By defining a new function in terms of 3-cocycles as

βa(b,c)
def= α(a,b,c)α(b,c,c−1b−1abc)

α(b,b−1ab,c)
, (32)

∀a,b,c ∈ G, and plugging it into Eq. (31), we obtain

Ax |g,h〉 = βg(x−1,xhx−1)

βg(h,x−1)
|xgx−1,xhx−1〉

= ηg(h,x)|xgx−1,xhx−1〉, (33)

where we define

ηg(h,x) = βg(x−1,xhx−1)

βg(h,x−1)
, (34)

for any given g ∈ G and h ∈ Zg = {x ∈ G|xg = gx}, the
centralizer subgroup for g ∈ G. Let h = g in the above
definition, we have

ηg(g,x) = βg(x−1,xgx−1)

βg(g,x−1)
= 1, (35)

for all g,x ∈ G, which can be quickly checked by directly
using the 3-cocycle condition. Interestingly, if x ∈ Zg,h =
{x ∈ G|xg = gx,xh = hx}, we see that the U (1) number

ρg(h,x)
def= ηg(h,x)|Zg,h

= βg(x−1,h)

βg(h,x−1)
(36)

is actually a 1-dimensional representation of the sub-
group Zg,h ⊆ G. This is because ρg(h,x)ρg(h,y) = ρg(h,xy),
which is a consequence of AxAy = Axy on the ground
states.

It follows from Eq. (33) that the ground states are spanned
by the vectors{

1

|G|
∑
x∈G

ηg(h,x)|xgx−1,xhx−1〉|g ∈ G, h ∈ Zg

}
. (37)

This tempts one to think that counting the GSD amounts to
counting the elements in Hom(π1(T 2),G)/conj, where the
conj in the quotient is the conjugacy equivalence: (g,h) ∼
(xgx−1,xhx−1) for any x. This is, in general, not true however,
as one may over-count the states, because in Eq. (37), the terms
that are summed over for some g and h may actually vanish,
causing the corresponding states to be nonexistent, as we now
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classify by studying the algebraic structure of the function βa

defined in Eq. (32).
Using the 3-cocycle condition of α, one can show that

the function βa is, in fact, a normalized, twisted 2-cocycle
satisfying the twisted 2-cocycle condition,

δ̃βa(x,y,z) ≡ βx−1ax(y,z)βa(x,yz)

βa(xy,z)βa(x,y)
= 1, (38)

and the normalization condition,

βa(x,e) = βa(e,x) = 1, (39)

for all a,x,y,z ∈ G. The δ̃βa is called the twisted 3-
coboundary of βa .

Furthermore, when its variables are restricted to the
centralizer Za of a ∈ G, βa clearly reduces to a normalized,
usual 2-cocycle over Za , which obeys the usual 2-cocycle
condition,

βa(y,z)βa(xy,z)−1βa(x,yz)βa(x,y)−1 = 1, (40)

for all x,y,z ∈ Za .
The function βa is closely related to the projective repre-

sentations of Za . In fact, each βa classifies a class of projective
representations called βa representations ρ̃ : Za→GL (Za) ,

obeying

ρ̃(x)ρ̃(y) = βa(x,y)ρ̃(xy). (41)

It is evident that the normalization condition corresponds to
ρ̃(e)ρ̃(x) = ρ̃(x)ρ̃(e) = ρ̃(x), while the 2-cocycle condition
in Eq. (38) corresponds to the associativity ρ̃(x) [ρ̃(y)ρ̃(z)] =
[ρ̃(x)ρ̃(y)] ρ̃(z). In particular, if the 3-cocycles that define βa

are the trivial one, i.e., α = α0 ≡ 1, then βa = 1, reducing ρ̃

to the usual linear representations of Za .
In this paper, we are interested in the classification of βa

representations of Za with fixed a ∈ G. Here we record a few
important properties of this kind of representations.

An element g ∈ Za is βa regular if βa(g,h) = βa(h,g) for
all h ∈ Za,g ⊆ Za . Moreover, g is βa regular if and only if all
its conjugates are so, which can be verified by the 3-cocycle
condition in Eq. (3). That is, g is βa regular ⇔ [g] is βa regular.
We call [g] a βa-regular conjugacy class. In particular, each g

is always βg regular.
Let us denote all the conjugacy classes of G by CA and

number of such classes by r(G). Since for any a,b ∈ CA, Za
∼=

Zb, it is convenient to denote these isomorphic centralizers by
ZA, obtained by any representative of the class. We henceforth
collect any chosen set of representatives of all CA by simply
RC = {gA ∈ CA|A = 1 . . . r(G)}.

For a ∈ ZA, let the number of βa-regular conjugacy classes
in ZA be r(ZA,βa). Clearly, we have

r(ZA,βa) � r(ZA). (42)

It is known that the number of inequivalent irreducible βa

representations of ZA is equal to r(ZA,βa). In particular, in
the case where βa = 1 because of the trivial 3-cocycle α0,
we arrive at the familiar result that the number of irreducible
linear representations equals the number of conjugacy classes.
Equation (42) states that irreducible βa representations of Za

are fewer than the irreducible liner representations.
The topological degrees of freedom is related to this

classification of projective representations of ZA. To show

this, we reexpress the GSD in Eq. (30) as

GSD = 1

|G|
∑

g,h,x∈G

δgh,ghδgx,xgδhx,xhη
g(h,x)

= 1

|G|
∑
g∈G

∑
h∈Zg

∑
x∈Zg,h

ρg(h,x), (43)

which can be further simplified, by the identity

1

|Zg,h|
∑

x∈Zg,h

ρg(h,x) =
{

1, h is βg regular
0, otherwise , (44)

where |Zg,h| is the order of the subgroup Zg,h with fixed
g,h ∈ G.

Here is the proof of Eq. (44). As shown below Eq. (36), the
phase ρg(h,x) in Eq. (36) is a 1-dimensional representation of
Zg,h; it is the trivial representation ρ0 = 1 if h is βg regular
and is otherwise a nontrivial irreducible representation (i.e.,
different from the identity representation). By the orthonormal
condition

1

|Zg,h|
∑

x∈Zg,h

ρg (j )(h,x) = δj,0, (45)

where j = 0 corresponds to the trivial representation and j �=
0 a nontrivial irreducible representation, we obtain Eq. (44).

Equation (44) renders Eq. (43) as

GSD =
∑
g∈G

∑
h∈Zg

|Zg,h|
|G| ×

{
1, h is βg regular
0, otherwise

=
∑

h∈ZA,A

|ZA|
|G|

|ZgA,h|
|ZA| ×

{
1, h is βgA–regular
0, otherwise

=
∑
A

r(ZA,βgA ). (46)

In the last equality, use is made of that |G|/|ZA| = |CA|.
According to the relationship between the number of

βg-regular conjugacy classes of Zg and the number of βg

representations of Zg as discussed above, the GSD can take
the form

GSD =
∑
A

#(βgA representations of ZA), (47)

where # stands for “the number of.”

C. Ground-states basis

As promised in the previous subsection, we have simplified
GSD evaluation in Eq. (30) to counting the relevant projective
representations. Computing the GSD of our model on a
torus amounts to counting the irreducible projective βgA

representations of each conjugacy class CA, then sum it over
CA in G.

Hence, the ground states on a torus can be labeled by
pairs (gA,h) with gA running over RC and h running over
a set of βgA -regular conjugacy class representatives of ZA.
Equivalently, the ground states can also be labeled by pairs

(A,μ) with A = 1 . . . r(G) and μ labeling ρ̃
gA

μ , which are the
irreducible βgA representations of ZA. We posit that the basis
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vectors |A,μ〉 can be defined as

|A,μ〉 = 1√|G|
∑

g∈CA,h∈Zg

χ̃g
μ(h) |g,h〉, (48)

where χ̃
g
μ(h) = trρ̃g

μ(h) is the projective character defined, as
usual, by the trace of the representation and |G| the order
of G. Since the centralizers Zg are isomorphic for all g

in a conjugacy class CA, so are the set of irreducible βg

representations of Zg for all g ∈ CA. Therefore, the same label
μ works for all βg representations. We detail the construction
of the isomorphism among the irreducible βg representations
for g ∈ CA in Appendix A. The projective characters χ̃

g
μ(h)

satisfy the following relation under simultaneous conjugation
of g and h:

χ̃ xgx−1

μ (xhx−1) = ηg(h,x)χ̃ g
μ(h), (49)

for all x ∈ G. Keep in mind that if h ∈ ZA but h �= g, then
h /∈ CA. Practically, for each conjugacy class CA with its
representative element gA, if we find a βgA representation

ρ̃
gA

μ of ZA, we can construct the βg representations for all
other elements g of CA. Throughout this paper, we take
the representations such that the relation Eq. (49) is always
satisfied.

Note that, in general, the projective characters are
not functions of conjugacy classes because the fact that
ρ̃

g
μ(a)ρ̃g

μ(b) = βg(a,b)ρ̃g
μ(ab) yields the relation χ̃

g
μ(xhx−1) =

[βg(hx−1,x)/βg(x,hx−1)]χ̃ g
μ(h). Nevertheless, the orthogo-

nality and completeness relations of these projective characters
still hold, namely, for all βg-regular elements a,b in G,

1

|Zg|
∑
h∈Zg

χ̃
g
μ(h)χ̃ g

ν (h) = δμ,ν,

(50)|CA|
|Zg|

∑
μ

χ̃
g
μ(a) χ̃ g

μ(b) =
{

1, a conjugate to b

0, otherwise ,

where |Zg| is the order of the subgroup Zg , and |CA| is the
cardinality of the conjugacy class CA containing a in the
subgroup Zg . By Eq. (50), one can verify that the basis in
Eq. (48) is orthonormal. Moreover, if h is not βg regular,
then χ̃

g
μ(h) = 0, which is the very Proposition 1 proven in

Appendix F.
We can now justify that |A,μ〉 is indeed a ground state by

its invariance under the action of the ground-state projection
operator P 0 defined in Eq. (29):

P 0|A,μ〉
= 1

|G|
∑
x∈G

Ax |A,μ〉

= 1√
|G|3

∑
x∈G

∑
g ∈ CA

h ∈ Zg

χ̃g
μ(h)ηg(h,x)|xgx−1,xhx−1〉

= 1√
|G|3

∑
x∈G

∑
g ∈ CA

h ∈ Zg

χ̃xgx−1

μ (xhx−1)|xgx−1,xhx−1〉

= 1√
|G|3

∑
g′∈CA,h′∈Zg

χ̃g′
μ (h′)|g′,h′〉

∑
x∈G

1

= 1√|G|
∑

g∈CA,h∈Zg

χ̃g
μ(h) |g,h〉 = |A,μ〉, (51)

where Eqs. (33) and (49) are used, respectively, in the second
and third equalities, while substitutions g′ = xgx−1 and h =
xhx−1 are made to get the fourth equality but renamed back
to g and h in the end. Therefore, we conclude that the set of
|A,μ〉 does furnish an orthonormal basis of the ground states,
i.e.,

H0 = span{|A,μ〉 : A = 1 . . . r(G), μ = 1 . . . r(ZA,βgA )}.
(52)

This uncovers the mathematical structure that classifies the
topological degrees of freedom in the ground states via
representation theory. We start with our model specified
by a 3-cocycle α over G and end up with the result that
the topological degrees of freedom are determined by the
2-cocycles βg over Zg .

The ground-state basis vectors (A,μ) label the set of all
inequivalent irreducible representation spaces of the twisted
quantum double Dα(G), which plays a central role in the
orbifolds by a symmetry group G of a holomorphic conformal
field theory. We may understand the term “twisted” as twisting
linear representations to projective representations. We are
not going to explain the details of the twisted quantum
double, which is beyond the concern of this paper. But for
completeness, we note here the multiplication law in the
twisted quantum double Dα(G):

(Pa ⊗ x)(Pb ⊗ y) = βa(x,y)δa,xbx−1 (Pa ⊗ xy), (53)

for all a,b,x,y ∈ G, where Pa projects out a, while x obeys
the usual group multiplication with a projective phase factor.

In particular, as will be shown in Sec. VIII, the untwisted
version of our model (i.e., when α = α0) turns out to be
Kitaev’s quantum double model (or, the toric code model),
the GSD of which agrees with the number of irreducible
representations of the quantum double D(G) of the finite
group G. Therefore, our model can be viewed as a defor-
mation of the quantum double model by a twisting with
the βa in Eq. (32), which twists the linear representations
of a group to the projective representations. This is mainly
why we christen our model twisted quantum double (TQD)
model.

V. FRACTIONAL TOPOLOGICAL NUMBERS

In the previous section, we studied the GSD as the simplest
topological observable of our model. But topological phases
only partially characterize GSD. It is possible that two models
specified by two inequivalent 3-cocycles have the same
GSD but, in the mean time, give rise to distinct topological
phases.

Hence, a natural question is how to differentiate two distinct
topological phases if they bear the same GSD. It is known
that the emergent fractional topological numbers in the ele-
mentary excitations can differentiate such distinct topological
phases.
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FIG. 5. S and T transformations of a torus.

In this section, we shall first construct on the subspace
HBf =1 the topological observables then solve their eigen prob-
lems to acquire the expected fractional topological numbers.
These fractional topological numbers are related to the frac-
tional statistics of quasiparticles in the elementary excitations.
Actually, there is believed to exist a correspondence between
the topological degrees of freedom in the ground states of the
system on a torus and the local degrees of freedom of the
quasiparticles in the elementary excitations. We shall come
back to address this correspondence in Sec. IX.

A. Topological observables as SL(2,Z) generators

Consider the graph � on which the model is defined. In
Sec. III, we constructed the mutation transformations that
can change the local structure of the graph but preserve the
graph topology, i.e., the topology that � triangulates. Under
such mutations, the topological degrees of freedom of the
ground states are intact. All such transformations are local.
The ground-state projector

∏
v Av can also be constructed from

such mutations.
Here, on the other hand, we look into the large transforma-

tions that alter the graph structure globally but still preserve
the graph topology and lead to richer topological observables.

Again, since we are not interested in the local transfor-
mations of the graph, we need only to work on the simplest
triangulation of torus as in Fig. 4.

The transformations that change the topology are the
familiar modular transformations, which form the group
SL2(Z) that is generated by

S =
(

0 −1
1 0

)
, T =

(
1 1
0 1

)
, (54)

satisfying relations (ST )3 = S2 and S4 = 1.
To cast the modular transformations in the form of 3-

cocycles, let us redraw the torus in Fig. 4 in the coordinate
frame in Fig. 5, which illustrates the S and T transformations
on the torus. The S and T transformations on the subspace
HBf =1 are constructed as follows.

We leave the details of the construction to Appendix E but
claim here that

Sx

= α([2′1],[13],[34])α([2′1],[12],[24])−1

×α([2′4′],[4′1],[13])−1
α([1′2′],[2′1],[12])−1

×α([2′3′],[3′4′],[4′1])α([1′2′],[2′3′],[3′1])−1

×α([1′2′],[2′3′],[3′4′]) , (55)

where we set the order of the enumerations by 1′ < 2′ <

3′ < 4′ < 1 < 2 < 3 < 4, such that the orientation of the two
boundary edges are taken consistently. One sees that the wave
function transforms oppositely in Fig. 5.

Taking [12] = [34] = h, [13] = [24] = g, and [3′1] =
[1′2] = [4′3] = [2′4] = x, Sx is casted explicitly in terms of
the group elements as

Sx |g,h〉
= α(xg−1h−1,g,h)α(xg−1h−1,h,g)−1

×α(xh−1x−1,xg−1,g)−1α(xgx−1,xg−1h−1,h)−1

×α(xg−1h−1x−1,xgx−1,xg−1)

×α(xgx−1,xg−1h−1x−1,x)−1

×α(xgx−1,xg−1h−1x−1,xgx−1)

× |xh−1x−1,xgx−1〉, (56)

where |[1′3′],[1′2′]〉 def= |xh−1x−1,xgx−1〉.
Similarly, we claim that T x behaves as

T x

= α
(
[2′1],[13],[34]

)
α

(
[2′1],[12],[24]

)−1

×α
(
[3′′2′],[2′1],[13]

)
α

(
[4′′2′],[2′1],[12]

)−1

×α
(
[1′′3′′],[3′′2′],[2′1]

)
α

(
[1′′4′′],[4′′2′],[2′1]

)−1

×α
(
[1′′3′′],[3′′4′′],[4′′2′]

)
, (57)

where we set 1′′ < 3′′ < 4′′ < 2′ < 1 < 2 < 3 < 4 as the
order of enumerations, and when explicitly expressed in term
of group elements, becomes

T x |g,h〉
= α(xg−1h−1,g,h)α(xg−1h−1,h,g)−1

×α(xhx−1,xg−1h−1,g)α(xgx−1,xg−1h−1,h)−1

×α(xgx−1,xhx−1,xg−1h−1)

×α(xhx−1,xgx−1,xg−1h−1)−1

×α(xgx−1,xhg−1x−1,xgx−1)|xgx−1,xg−1hx−1〉.
(58)

The s and T transformations are defined by

S = 1

|G|
∑

x

Sx, T = 1

|G|
∑

x

T x. (59)

The operators S,T in Eq. (59) are a representation of the S and
T matrices in Eq. (54) on the subspace HBf =1 of the model.
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Indeed, a direct evaluation by the 3-cocycle conditions verifies
(ST )3 = S2 and S4 = 1.

On a torus, the vertex operator Ax and the modular
transformation operators Sx and T x comprise an interesting
algebraic structure, namely,

SxAy = Sxy = AxSy, T xAy = T xy = AxT y. (60)

We shall not prove this here, as it can be done straightforwardly
by manipulating the 3-cocycles in the above equations.
This algebraic structure results in the following important
reexpression of the S and T operators.

P 0T e = T = T eP 0, P 0Se = S = SeP 0, (61)

the first of which is proven as follows.

T = 1

|G|
∑
x∈G

T xEq. (60)
1

|G|
∑
x∈G

T eAx

= T e

(
1

|G|
∑
x∈G

Ax

)
= T eP 0 = P 0T e,

where e is the identity element of G. The proof of the second
relation in Eq. (61) follows likewise. This indicates that the
operators S and T are indeed topological observables and
symmetries in H0.

We can lay the ground states in the basis composed of the
eigenvectors {�k} of T ,

T |�k〉 = θk|�k〉, (62)

where θk is a U (1) phase, and k = 1,2,...,GSD labels the
degenerate ground states. These eigenvectors will be identified
with |A,μ〉 in the next subsection.

We remark that T also has other eigenvectors, whose
eigenvalues are zero, which is implied by the first relation
in Eq. (61). These zero eigenvectors are actually the excited
states of the model; however, we are not going to dwell on
them in this paper.

Hence, one can regard the eigenvalues θk of T as a set
of topological numbers of the model. In fact, from Fig. 5, T
can be viewed as a global twisting of the system, and thus its
eigenvalues θk can be regarded as the topological spins of the
topological sectors |�k〉.

Another set of topological numbers are the S matrix of the
topological sectors,

sij = 〈�i |S|�j 〉, (63)

where i,j = 1,2,...,GSD. This matrix is orthonormal:∑
j

sij sjk = δik. (64)

Above all, apart from GSD, we obtain two more sets of topo-
logical numbers, {θk} and {sij }, to characterize the topological
phases in our model.

We remark that we have presented here a novel derivation
of the modular S and T matrices, which is purely based on
our model and in terms of 3-cocycles of G, without resorting
to any theory of group representations.

B. S and T matrices

We now offer concrete solutions of the topological numbers
{θk,sij }, which are tied to the projective representation theory.
We emphasize that the topological observables S and T are
defined on the subspace HBf =1, whereas the solutions to their
eigen-problems are to be obtained on H0 ⊂ HBf =1.

In the following we diagonalize the T matrix in Eq. (59).
One should bear in mind that the transformation T acts
nonvanishingly only on the ground states. In Sec. IV C, we see
that the ground states are spanned by the orthonormal basis
|A,μ〉 defined in Eq. (48), with A running over all conjugacy
classes of G and μ over the irreducible βgA representations
of ZA. It turns out that |A,μ〉 are eigenvectors of T as we
demand. Here, we sketch the proof. In the |A,μ〉 basis, the
action of T becomes

T |A,μ〉 = T eP 0|A,μ〉 = T e|A,μ〉
= 1

|G|
∑

g ∈ CA

h ∈ Zg,ν

χ̃g
μ(h)χ̃ g

ν (g−1h)|A,ν〉

= χ̃
gA

μ (gA)

dimμ

|A,μ〉, (65)

where dimμ is the dimension of the representation μ, the
second row uses Eqs. (61) and (51), and in the fourth equality
use is made of the inverse transformation

|g,h〉 = 1√|G|
r(ZB,βg )∑

ν=1

χ̃
g
ν (h) |B,ν〉, (66)

which is defined inH0 only, with g ∈ CB assumed. Appendix F
proves Eq. (65) step by step.

Therefore, the basis vectors |A,μ〉 are indeed the eigenvec-
tors of T , with the eigenvalues

θA
μ = χ̃

gA

μ (gA)

dimμ

. (67)

Clearly, the projective characters are the ground-state wave
functions of the system, collapsed in the basis vectors that are
the eigenvectors of the T matrix.

The above calculation guides us to interpret θA
μ from the

representation theory as an invariant that characterizes the
representation ρ̃

g
μ. More precisely, for any g ∈ CA, the matrix

ρ̃
g
μ(g) commutes with all other matrices ρ̃

g
μ(h) for h ∈ Zg , as

ρ̃g
μ(g)ρ̃g

μ(h) = βg(g,h)

βg(h,g)
ρ̃g

μ(h)ρ̃g
μ(g) = ρ̃g

μ(h)ρ̃g
μ(g), (68)

where the second equality can be checked by a direct evaluation
in terms of 3-cocycles. From Schur’s lemma, the matrix ρ̃

g
μ(g)

is a multiple of the identity matrix

ρ̃g
μ(g) = χ̃

g
μ(g)

dimμ

1. (69)

Moreover, by setting h = g in Eq. (49) and using Eq. (35),
we find that χxgx−1

(xgx−1) = χg(g), indicating that the
topological number θA

μ = χ̃
g
μ(g)/dimμ is indeed an invariant

on CA, associated with the representation ρ̃
g
μ of ZA.
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The topological spin θA
μ are given in terms of 3-cocycles α

by (
θA
μ

)pA = ωA (70)

with

ωA
def=

pA−1∏
n=0

α(g,gn,g), (71)

for conjugacy class CA of G, and pA the degree, i.e., the
least integer such that gpA = e, where gn is the power of g.
The ωA is independent of the choice of g ∈ CA and, thus, a
conjugacy class function. This relation is verified by applying
Eq. (41) to (ρ̃A

μ )pA = (θA
μ )pA1. Therefore, the topological spin

θA
μ takes values in the pA-th roots of ωA. Moreover, each of

the pA distinct pA-th roots appears precisely r(ZA,βgA )/pA

times in {θA
μ } for all μ, where the ratio r(ZA,βgA )/pA is an

integer. To see this, one observes that each element in Zg

can be uniquely written as gnh with n = 0,1,...,pA for some
h ∈ Zg , and there are pA 1-dimensional representation of Zg

by ρj (gnh) = exp(2π ijn/pA). Then for each representation
μ there exist a μ′, such that ρ̃A

μ′(gnh) = ρj (gnh)ρ̃A
μ (gnh), and

thus, that θA
μ′ = exp(2π in/pA)θA

μ .
Similarly, the S matrix can also be evaluated in terms of the

projective characters. We record as follows the final formula
for the S matrix while we detail the proof in Appendix F. The
S matrix reads

s(Aμ)(Bν) = 〈A,μ|S|B,ν〉
= 1

|G|
∑

g ∈ CA,h ∈ CB

gh = hg

χ̃
g
μ(h)χ̃h

ν (g). (72)

Again, we take the projective representations ρ̃
g
μ such that

the projective characters are related by Eq. (49). This general
result of the S matrix actually offers an answer to one of the
open questions listed in Ref. 34.

The mathematical significance of the S and T matrices
is the following. They are the invariants carried by the
projective representations of ZA for all conjugacy classes
CA, in which the βg functions play a crucial role. All these
ingredients are well-organized by the representation theory of
a twisted quantum group (or, a twisted Hopf algebra), called
the twisted quantum double Dα(G) of the finite group G,
which is parameterized by a 3-cocycle α. All the irreducible
βgA -representations for all conjugacy class representatives gA

form the linear irreducible representations of Dα(G).
Usually, the irreducible representations of a (twisted)

quantum group classify the anyonic quasiparticle species.
The invariants of each irreducible representation identifies the
fractional topological quantum numbers of the corresponding
quasiparticle. The S matrix has the origin as a braiding
operation that exchanges any two of these quasiparticles, while
the T matrix contains the statistical spins of the corresponding
quasiparticles, which are determined by the braiding operation.
For the discussion of the S and T matrices for the twisted
quantum double Dα(G), see Refs. 28, 34, and 35. We also
remark here that twisted quantum double has been used to
classify confinement phases in planar physics.36

In this section, we have reproduced from our S and
T operators in terms of 3-cocycles the familiar S and T
matrices in terms of projective characters for the twisted
quantum double Dα(G), which were originally obtained from
representation theory, according to a braiding operation. Our
calculations are carried purely in the ground-state subspace
and root in the large transformation of the spatial graph of
the system on a torus. We expect that the quasiparticles in
the elementary excitations will be classified by the same
topological numbers in the way that the GSD equals the
number of the quasiparticle species, the S and T matrices on
the ground states are the same as those of the quasiparticles.

VI. TOPOLOGICAL NUMBERS AND
TOPOLOGICAL PHASES

We believe that the topological phases are classified by
the topological numbers {GSD,θA

μ ,s(Aμ),(Bν)}. In all examples
discussed in Sec. VII, we observe that they are classified by
the third cohomology classes of α, i.e., any two models HG,α

and HG,α′ have the same topological numbers if and only if α

and α′ are equivalent.
In this section, we study how the topological numbers

depends on the cohomology classes of α.

A. When 3-cocycle is cohomologically trivial

In Sec. II C, we have shown that two equivalent 3-cocycles
define equivalent twisted quantum double models, which
consequently should describe the same topological phase. We
now study this topological phase in more details.

We begin with a special case, where the 3-cocycle of our
model belongs to a class of the trivial 3-cocycle α0. Such a
3-cocycle can take the form of a 3-coboundary:

α(x,y,z) = δβ(x,y,z) = β(y,z)β(x,yz)

β(xy,z)β(x,y)
, (73)

where β(x,y) is any normalized 2-cochain, i.e., any function
G × G → U (1) that satisfies β(e,x) = 1 = β(x,e) for all x ∈
G. To be seen in Sec. VIII, such a model is equivalent to
Kitaev’s quantum double model.

The corresponding twisted 2-cocycle βg , defined in
Eq. (32), is automatically trivial such that it has the freedom
to be written as a twisted 2-coboundary:

βg(x,y) = δ̃εg(x,y), (74)

where

εg(x) = β(x,x−1gx)β(g,x)−1 (75)

is a twisted 1-cochain, whose twisted 2-coboundary reads

δ̃εg(x,y) = εg(x)εg(xy)−1εx−1gx(y), (76)

for all g,x,y ∈ G. From the relation Eq. (75), we inevitably
notice the following constant:

εg(h)εh(g) ≡ 1, ∀h ∈ Zg and εg(g) ≡ 1, ∀g,h ∈ G.

(77)

This is indeed a constant as it is clearly independent of which
α is picked in its equivalent class.

By the form of βg in Eq. (87), the irreducible βg repre-
sentations ρ̃

g
μ of Zg are in one-to-one correspondence to the
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irreducible linear representations ρμ, by

ρ̃g
μ(h) = εg(h)ρg

μ(h), (78)

for all h ∈ Zg , by which one can directly check the definition
property Eq. (41).

The ground states in Eq. (48) now become

|A,μ〉 =
√

1

|G|
∑

g∈CA,h∈Zg

εg(h)χg
μ(h)|g,h〉, (79)

where χ
g
μ = trρg

μ is the usual character.
Equation (76) implies that βg(x,y) = βg(y,x) for all x,y ∈

Zg with xy = yx. This means that all elements in Zg are βg

regular and that ηg(h,x) ≡ 1 for all x ∈ Zg,h. Hence, the GSD
in Eq. (43) now reads

GSD =
∑
g∈G

∑
h∈Zg

∑
x∈Zg,h

1

|G| =
∣∣∣∣Hom(π1(T 2),G)

conj

∣∣∣∣ , (80)

where the quotient means the equivalence (g,h) ∼
(xgx−1,xhx−1) for any x ∈ G.

By Eq. (78) and the constraint Eq. (77) of the εa , the
topological numbers θA

μ and the S matrix are expressed by

θA
μ = χ̃

gA

μ (gA)

dimμ

= χ
gA

μ (gA)

dimμ

(81)

and

s(Aμ)(Bν) = 1

|G|
∑

g ∈ CA,h ∈ CB

gh = hg

χ
g
μ(h)χh

ν (g). (82)

When the 3-cocycle is α0 = 1, the ground states are labeled
by the usual irreducible linear representations of all the
centralizers ZA ⊆ G. For α ∈ [α0] but α �= α0, the ground
states are labeled by projective representations, which are
related to the corresponding linear representations by merely
a phase, of all the centralizers, since βg �= 1; however, all
topological numbers are the same as those in the case of α0,
as they should be.

B. When twisted 2-cocycle is cohomologically trivial

When the 3-cocycle α /∈ [α0], it could still be “trivial” at
a lower level, in the mathematical sense that the 2-cocycle βa

it defines in Eq. (32) is cohomologically trivial; i.e., this βa is
actually a twisted 2-coboundary:

βa(x,y) = δ̃εa(x,y), (83)

for all a,x,y ∈ G. Note that, however, the twisted 1-cochain
εa in this case does not necessarily have the closed form in
Eq. (75) in general because α is not cohomologically trivial;
hence, εg(g) �= 1 in general. The twisted 2-cocycle condition
in Eq. (38) yields

ηg(h,x) = εxgx−1 (xhx−1)

εg(h)
, (84)

for all h ∈ Zg and x ∈ G, which is unity for all x ∈ Zg,h.
Similar to the previous case, the ground-state subspace

in the current case are also spanned by the basis vectors

|A,μ〉 of the form in Eq. (79), where μ labels the βg

representations ρ̃
g
μ of Zg , which are again related to the usual

linear representations ρμ by Eq. (78).
Since Eq. (84) renders all elements in Zg βg-regular, as

before, the GSD in this case copies that in Eq. (80).
By the form of Eq. (78), the topological numbers θA

μ and
the s matrix are related to εg(h) by

θA
μ = εgA(gA)

χ
gA

μ (gA)

dimμ

(85)

and

s(Aμ)(Bν) = 1

|G|
∑

g ∈ CA,h ∈ CB

gh = hg

χ
g
μ(h)χh

ν (g) εg(h)εh(g). (86)

The GSD is the same as the one in the [α0] model, a
result of the cohomologically trivial βg . Nevertheless, the
topological numbers θA

μ and the S matrix characterize the
difference between the current model and the untwisted model.
Equation (85) exhibits the physical relevance of the phases ε:
They endow each basis ground state |A,μ〉 an extra spin factor
εgA(gA) in addition to the topological spins in Eq. (81).

C. General properties of the topological numbers

Since our model is defined in terms of 3-cocycles α, all of
the topological numbers discovered must depend on α at the
bottom level. Notwithstanding this, the special cases belabored
above imply that, in general, some topological numbers may
have a higher-level dependence of α via the quantities derived
from α, such as the equivalence class of α and the twisted
2-cocycles. We now list as follows the general characteristic
properties of the topological numbers {GSD,θA

μ ,s(Aμ)(Bν)} of
our model on torus.

(1) The set {GSD,θA
μ ,s(Aμ)(Bν)} of all topological numbers

depends on the equivalence class [α] ∈ H 3[G,U (1)] of the α

that defines the model.
(2) The GSD depends only on the equivalence classes

[βgA ] ∈ H 2[ZA,U (1)] for gA ∈ RC, A = 1, . . . ,r(G), inde-
pendent of the representatives gA.

(2) The topological spins {θA
μ } are classified by

{r(ZA,βA),ωA} for all conjugacy classes CA.
We now elaborate on the two properties above in order.
For property 1, one can check that any two equivalent 3-

cocycles α′ and α related by α′ = αδβ, as in Eq. (13), give
rise to two equivalent twisted 2-cocycles β ′

a and βa related by
a twisted 2-coboundary as follows:

β ′
a(b,c) = βa(b,c)̃δεa(b,c), (87)

where the twisted 2-coboundary δ̃ε happen to be those defined
in Eqs. (75) and (76). The constraint in Eq. (76) implies that
GSD′ = GSD, θ ′A

μ = θA
μ , and s ′

(Aμ)(Bν) = s(Aμ)(Bν).
Property 2 is manifest in Eq. (46), in which the GSD is

a sum of the numbers r(ZA,βgA ) over all conjugacy classes
CA of G. One further confirms this by looking at Eq. (43),
where the GSD is a sum of the phases ρg as a function of βg

defined in Eq. (36), which is a 1-dimensional representation
of Zg,h with h ∈ Zg . Suppose two 3-cocycles α and α′, not
necessarily inequivalent, that define βa and β ′

a equivalent for all
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a ∈ G, in the sense that there exists functions εa : G → U (1)
parameterized by a ∈ G, which satisfies εa(e) = 1, such that
βa and β ′

a are different by merely a twisted 2-coboundary,
namely,

β ′
a(x,y) = εa(x)εx−1ax(y)

εa(xy)
βa(x,y), (88)

for all a,x,y ∈ G. In the restriction to x ∈ Za and y ∈ Za,x ,
one sees that β ′

a and βa are equivalent up to a usual 2-
coboundary over Za . By Eqs. (88) and (43), we obtain

ρ ′g(h,x) = ρg(h,x),

which verifies that GSD′ = GSD. Furthermore, Eq. (44)
states that the sum of ρg(h,x) over Zg,h is either unity or
zero, regardless of which representative g ∈ CA is chosen.
Therefore, property 1 holds, as expected from the analysis in
Sec. II C.

Property 3 is straightforward. As discussed in Sec. V, each
of the pA distinct pA roots appears precisely r(ZA,βgA

)/pA

times in {θA
μ } for all μ. Then ωα = ωα′ yields θA

μ = θ ′A
μ

up to a relabeling of μ = 0,1,...,r(ZA,βA) − 1, assuming
r(ZA,βA) = r(ZA,β ′

A).

VII. EXAMPLES

In this section, we explicitly compute various examples of
our model, making contact with the structure discussed in the
previous sections. We declare that some parts of the results here
are adapted from certain known results26–28,34 of 3-cocycles
and projective representations that were otherwise discovered
in studies of conformal field theory by means of representation
theory, which now, however, as we show, become applicable to
describing topological phases, owing to the lucid connection
revealed by our model between topological phases and group
cohomology. In all examples to be discussed in this section,
any two models HG,α and HG,α′ have the same GSD and satisfy
the condition in Eq. (77) if and only if α and α′ are equivalent
via Eq. (13).

A. G = Zm

When G is the cyclic group Zm of order m, it is known that
the cohomology group is H 3 [Zm,U (1)] ∼= Zm, and hence,
there are m inequivalent classes of 3-cocycles.37

We denote by a ∈ {0,1,...,m − 1} the elements of Zm. The
multiplication in Zm is a · b = a + b mod m.

The m cohomology classes of 3-cocycles are generated
by34,37,38

α : Zm × Zm × Zm → U (1)

α(a,b,c) = exp

{
2π i

m2
a [b + c − 〈b + c〉)]

}
, (89)

where a,b,c ∈ Zm, and 〈a〉 is the residue of a mod m. By
“generated” we mean that the m classes of 3-cocycles can be
represented by the powers of α in Eq. (89) as

{αk(a,b,c)| k = 0,1,...,m − 1}. (90)

One verifies that αm = 1 and αkαl = αk+l .

The βg for each αk has the form of Eq. (83), with

εa(b) = exp

{
2π i

m2
k × a × b

}
. (91)

Hence, each αk gives rise to GSD = m2.
The linear characters are χμ(a) = exp(2π iμa/m), for μ =

0,1,...,m − 1. Applying this to Eqs. (85) and (86) yields

θa
μ = exp[2π i(ka2 + maμ)/m2]

s(aμ),(bν) = 1

m
exp{−2π i[2kab + m(aν + bμ)]/m2} (92)

B. G = Z2 and Z3

In the special case where G is the simplest finite group Z2,
there are two classes of 3-cocycles. The first is the trivial one,
namely,

α0(a,b,c) = 1, (93)

where a,b,c = 0,1 are elements of Z2.
The second one is given as follows, according to Eq. (89),

α1(1,1,1) = −1,
(94)

α1(a,b,c) = 1, for all other a,b,c.

We recognize the α0 model as Kitaev’s toric code model, or
dual to the Levin-Wen model with the 6j symbols determined
by irreducible representations of Z2. The α1 model is dual
to the Levin-Wen model with the 6j symbols determined
by the semisimple irreducible representations of the quantum
group Uq[sl(2,C)] for q = exp(iπ/3), up to a local unitary
transformation (see Sec. X). These form the complete solutions
to Levin-Wen models with Z2 fusion rule. The topological
spins θx

μ for ground states ( x

μ ) are given in Table I.
When G = Z3, there are three classes of 3-cocycles,

denoted by α0,α1, and α2. The α0 model is dual to the
Levin-Wen model with the 6j symbols determined by the
irreducible representations of Z3 (or equivalent to Kitaev’s
model with Z3), whereas the α1 and α2 models are not dual to
any Levin-Wen models with the Z3 fusion rule, as there is only
one Levin-Wen model in the circumstance. The topological
spins θx

μ are also tabulated in Table II.
Consider the complex conjugation K. The models HZ2,α0 ,

HZ2,α1 , and HZ3,α0 are invariant under K, whereas the models
HZ3,α1 and HZ3,α2 are not. The complex conjugation K
transforms the topological spins in the HZ3,α1 model to
those in the HZ3,α2 model, as seen in Table II. The HZ3,α1

and HZ3,α2 models are the simplest models that break the
complex conjugation symmetry which persists in the Levin-
Wen models.

TABLE I. θx
μ for models with G = Z2(

0
0

) (
0
1

) (
1
0

) (
1
1

)
α0 1 1 1 −1
α1 1 1 i −i
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TABLE II. θx
μ for models with G = Z3(

0
0

) (
0
1

) (
0
2

) (
1
0

) (
1
1

) (
1
2

) (
2
0

) (
2
1

) (
2
2

)
α0 1 1 1 1 e

2π i
3 e− 2π i

3 1 e− 2π i
3 e

2π i
3

α1 1 1 1 e
2π i
9 e

8π i
9 e− 4π i

9 e
8π i
9 e

2π i
9 e− 4π i

9

α2 1 1 1 e
4π i
9 e− 8π i

9 e− 2π i
9 e− 2π i

9 e− 8π i
9 e

4π i
9

C. G = Zm × Zm

The simplest noncyclic Abelian group is G = Z2
m. But

nothing is really new compared with the case where G =
Zm. The cohomology group H 3[Z2

m,U (1)] = Z3
m has three

generators. We will label the group elements in G = Z2
m as

pairs a = (a1,a2) with a1,a2 = 0,1,...,m − 1. The multiplica-
tion is the obvious one (a1,a2)(b1,b2) = (a1 + b1 mod m,a2 +
b2 mod m). The three 3-cocycle generators are

α
(1)
I (a,b,c) = exp

{
2π i

m2
a1(b1 + c1 − 〈b1 + c1〉)

}
,

α
(2)
I (a,b,c) = exp

{
2π i

m2
a2(b2 + c2 − 〈b2 + c2〉)

}
, (95)

α
(12)
II (a,b,c) = exp

{
2π i

m2
a1(b2 + c2 − 〈b2 + c2〉)

}
,

where 〈x〉 = x mod m is the residue of x. The m3 classes of
3-cocycles are the products of powers of these three generators.
The βa function for all these three generators has the form of
Eq. (83), with (

ε
(1)
I

)
a
(b) = exp

{
2π i

m2
a1 × b1

}
,

(
ε

(2)
I

)
a
(b) = exp

{
2π i

m2
a2 × b2

}
, (96)

(
ε

(12)
II

)
a
(b) = exp

{
2π i

m2
a1 × b2

}
.

Therefore, the associated βa for all 3-cocycles are equivalent
and correspond to the trivial element in H 2[Z2

m,U (1)] = Zm,
though the second cohomology group itself is nontrivial.

We conclude the models specified by all 3-cocycles have
GSD = m4.

D. G = Zm × Zm × Zm

When it comes to the case of G = Z3
m, things become

more interesting. We label the group elements by triples a =
(a1,a2,a3) with a1,a2,a3 = 0,1,...,m − 1. The cohomology
group H 3[Z3

m,U (1)] = Z7
m has seven generators,

α
(i)
I (a,b,c) = exp

{
2π i

m2
ai(bi + ci − 〈bi + ci〉)

}
,

α
(ij )
II (a,b,c) = exp

{
2π i

m2
ai(bj + cj − 〈bj + cj 〉)

}
, (97)

αIII(a,b,c) = exp

{
2π i

m
a1b2c3

}
,

where 1 � i � 3 and 1 � i � j � 3 are assumed, respec-
tively, in the first two lines, and 〈x〉 is the residue of x mod m.

The βa function for the first two types has the form of
Eq. (83), with (

ε
(j )
I

)
a
(b) = exp

{
2π i

m2
aj × bj

}
,

(98)(
ε

(jk)
II

)
a
(b) = exp

{
2π i

m2
aj × bk

}
.

But αIII cannot be decomposed as in Eq. (83). This provides
further classification of the models defined by the m7 3-cocycle
representatives. Precisely speaking, each 3-cocycle class has a
representative of the form of a product of powers of the seven
generators. They are classified into m classes, depending on
the power of αIII they contain, namely the form α

q

III for
q = 0,1,...,m − 1. The 2-cocycle for each α

q

III is given by

βa(b,c) = exp

{
2π i

m
q(a1b2c3 − b1a2c3 + b1c2a3)

}
. (99)

If α1 and α2 belong to two different classes with the powers
q1 and q2 �= q1, the corresponding models have inequal GSD
in general.

Then the GSD in Eq. (30) for the model specified by α

depends on the class only, i.e., the power q of αIII . Specifically,
the GSD is determined by Eq. (43), with βa given by Eq. (99).
According to the analysis in Sec. IV A, computing the GSD
amounts to count the number of βa-regular conjugacy classes
of Za , for each conjugacy class representative a of G, then
sum over all a. The GSD is

GSD = m6

f 3

∏
p

[(pkp − 1)(1 + p−1 + p−2) + 1], (100)

where f = m/ gcd(q,m) is the greatest common divisor of q

and m, p and kp are the prime number and the corresponding
power in the prime decomposition f = ∏

p pkp . The GSD
in m = 2,3,4,5 cases are given in Table III, which can be
computed either from the original formula Eq. (30) or the final
reduced formula Eq. (100).

The models with q = 0, i.e., with only αI and αII as
the defining 3-cocycles, possess similar topological numbers
{GSD,θ,s} as those in the previous examples for G = Zm

and G = Zm × Zm. The θ and S are derived from the linear

TABLE III. GSD with G = Zm × Zm × Zm

q = 0 q = 1 q = 2 q = 3 q = 4

m = 2 64 22
m = 3 729 105 105
m = 4 4096 400 1408 400
m = 5 15625 745 745 745 745
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characters

χμ(x) = exp

{
2π i

m
(μ1x1 + μ2x2 + μ3x3)

}
, (101)

with μ1,μ2,μ3 = 0,1,...,m − 1 labeling the irreducible repre-
sentations of G = Zm × Zm × Zm.

The models with q �= 0, i.e., involving αIII in the defining
3-cocycle, possess more interesting topological numbers.
Though the finite group G is Abelian, the topological charges
of the ground states are non-Abelian.

E. G = Zn
m

We now study the Abelian noncyclic group Zn
m for some

integer m and n more generally, whose special cases where
n � 3 were investigated in previous subsections. For n > 3,
things are similar to G = Z3

m case. The second and the third
cohomology groups are

H 2
[
Zn

m,U (1)
] � Zn(n−1)/2

m ,
(102)

H 3
[
Zn

m,U (1)
] � Zn+n(n−1)/2+n(n−1)(n−2)/3!

m .

Like in the Z3
m case, there are three types of 3-cocycles taking

the following form:

α
(i)
I (a,b,c) = exp

{
2π i

m2
ai(bi + ci − 〈bi + ci〉)

}
,

α
(ij )
II (a,b,c) = exp

{
2π i

m2
ai(bj + cj − 〈bj + cj 〉)

}
, (103)

α
(ijk)
III (a,b,c) = exp

{
2π i

m
aibj ck

}
,

where 1 � i � 3, 1 � i � j � 3, and 1 � i � j � k � 3
are assumed, respectively, in the three lines. the number
of three types of generators are n, n(n − 1)/2, and n(n −
1)(n − 2)/3!, corresponding to the number of generators
in H 3[Zn

m,U (1)]. Topological phases are classified by the
elements in H 3[Zn

m,U (1)]. The 2-cocycles βa obtained from
type-III generators correspond to nontrivial elements in
H 2[Zn

m,U (1)].

F. G = Dm for odd m

The simplest non-Abelian finite groups are the dihedral
groups Dm. Specifically, D3 (equivalent to the permutation
group S3) is the simplest non-Abelian group. We will only
consider odd m here, in which all 3-cocycles can be decom-
posed as in Eq. (83).

We will label the elements in Dm by pairs (A,a) for A = 0,1
and a = 0,1,...,m − 1. The multiplication law takes the form

(A,a)(B,b) = (〈A + B〉2,〈(−1)Ba + b〉m), (104)

where 〈x〉2 = x mod 2 and 〈x〉m = x mod m means taking the
residue.

The cohomology group H 3[Dm,U (1)] = Z2m has only one
generator of the 3-cocycles:

α[(A,a),(B,b),(C,c)]

= exp

(
2π i

m2

{
(−1)B+Ca[(−1)Cb + c − 〈(−1)Cb + c〉m]

+ m2

2
ABC

})
. (105)

The representatives of each 3-cocycle class takes the form
αp for p = 0,1,...,2m − 1.

The βa for this 3-cocycle generator takes the form of
Eq. (83), with

ε(A,a)
[
(B,b)

]
= exp

(
2π i

m2

{
b[(−1)Ba + 2Ab] − Ab2 + m2

4
AB

})
,

(106)

for all (A,a) and (B,b) that satisfy (A,a)(B,b) = (B,b)(A,a).
The GSD is the same for all 3-cocycles and are given by
GSD = m2+7

2 .

VIII. KITAEV’s QUANTUM DOUBLE MODEL:
α IS TRIVIAL

In this section, we show that in the special case where the
3-cocycle is trivial, our model becomes the Kitaev’s quantum
double(QD) model. By “trivial” we mean that the 3-cocycle
takes the constant value 1,

α0(x,y,z) = 1, for all x,y,z ∈ G. (107)

With this α0, the definition Eq. (9) of Av operator is reduced
to

Av3 = . (108)

Then the model defined by Eqs. (5) and (1) becomes the
familiar Kitaev’s quantum double model on triangle graphs.
With a nontrivial 3-cocycle α, our model can be viewed as the
twisted version of Kitaev’s QD model, where the twisting is
specified by the 3-cocycle α. We will explain the twisting in
more detail in the next section.

To gain more insight, we would like to briefly review
Kitaev’s quantum double model in the language of gauge
theory.

To set up a gauge theory on the graph �, we need to specify
the connections and the gauge transformations. Each basis
vector in Eq. (1) corresponds to a connection, namely, an
assignment g : E → G to each edge e of � a group element
ge of G. A gauge transformation h on � is an assignment
to each vertex v a group element hv of G. The action L(h)
of a gauge transformation h on a connection g is given by
[L(h)g]e = gt(e)geg

−1
s(e) for each e, where s(e) and t(e) are the

starting and ending vertices of the edge e. For example, on
one edge e orienting from v1 to v2, the action of a gauge
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transformation h is

L(h) : → . (109)

The action of any gauge transformation can be decomposed
into local operators defined at each vertex. We denote by
Lv(hv) the action of a local gauge transformation of at vertex
v, which is defined as

Lv(hv) : → . (110)

The Hamiltonian of Kitaev’s QD model is

H = −
∑
v∈V

Av −
∑
f ∈F

Bf . (111)

It includes two types of local operators, Av and Bf . The
operator Av at vertex v, defined by

Av = |G|−1
∑
hv∈G

Lv(hv), (112)

is an average of all local gauge transformations at v. This
is the same as Eq. (108). By checking that Lv(h′

v)Av =
|G|−1 ∑

hv∈G Lv(h′
vhv) = |G|−1 ∑

hv∈G Lv(hv) = Av , we see
that this is the projector that projects onto states that are
invariant under the local gauge transformation Lv(h′

v) at vertex
v for any h′

v ∈ G. Therefore, Av prefers gauge symmetry
at vertex v. While the gauge symmetry broken states are
allowed, it costs an energy of 1 to break the gauge symmetry.
An important consequence of this gauge symmetry breaking
is that a quantum number emerges at vertex v, and it is
classified by the representations of the gauge group G. This
quantum number identifies a quasiparticle at vertex v. The
group element ge represents the action on the states of the
parallel transport of this emergent quasiparticle along the edge
e of the graph.

The operator Bf on face f is defined via

Bf = δg1·g2·g3 , (113)

which is the same as Eq. (6).
Here, g1g2g3 is the holonomy around the face f , and the δ

function δa = 1 if the group element a equals the identity
element e in G and 0 otherwise. The δ function can be
expanded in terms of characters,

δg = |G|−1
∑

ρ∈Irrep(G)

dimρ χρ(g),

where Irrep(G) is the set of all irreducible representations
of G, dimρ the dimension of the representation ρ, and χρ

the character of the ρ. Thus, Bf is a projector that measures
whether the holonomy around the face f is trivial or not.

Returning to the cases where α is in general nontrivial,
our model Eq. (5) may be viewed as the twisted version of
Kitaev’s QD model. In this interpretation, A

g
v is the action

of the twisted gauge transformation at v, and the Av is the
average of all local twisted gauge transformations. To make

this interpretation precise, we need to study the algebra of all
local operators, which is the main task of the next section.

IX. RELATION TO DIJKGRAAF-WITTEN TOPOLOGICAL
GAUGE THEORY AND CONFORMAL FIELD THEORY

In this section, we dwell on the relation between our model,
a lattice realization due to Dijkgraaf and Witten of topological
Chern-Simons gauge theories, and conformal field theories.

We begin with a quick review of the gist of the part of
Dijkgraaf-Witten gauge theories that is relevant to our model.
In Ref. 27, Dijkgraaf and Witten established a correspondence
between the three-dimensional Chern-Simons gauge theories
with a compact gauge group G and the two-dimensional sigma
models with Wess-Zumino interactions of the group G, in
the sense that there is a natural map from the cohomology
group H 4(BG,Z), which classifies the Chern-Simons theories,
and the group H 3(G,Z), which classifies the Wess-Zumino
interactions. The classifying space of the group G is denoted
by BG. In general, the prescription of the topological action
of a three-dimensional Chern-Simons gauge theory is rather
abstract; however, in view of that H 4(BG,Z) is isomorphic
to H 3[BG,U (1)] when G is finite, Dijkgraaf and Witten
constructed a concrete lattice realization of the topological
action in the case of finite gauge groups. From now on in this
section, we restrict the discussion to finite groups only.

So, more precisely, consider a topological gauge theory
defined in a three-dimensional manifold M , with a finite gauge
group G, the lattice realization is defined on a three-skeleton,
i.e., a triangulation T, of M , with a group element of G living
on each 1-simplex, which is oriented, of the triangulation (see
Fig. 6). The topological partition function of such a lattice
gauge theory reads

Z[T(M),G] = 1

|G|
∏

i

W (Ti)
εi , (114)

where the product runs over all of the tetrahedra Ti in the
triangulation T(M), and εi is a sign, +1 or −1, depending on
whether the four vertices of the corresponding tetrahedron are
in a right-handed arrangement or left-handed arrangement. It
is shown27 that the W (Ti) associated with each tetrahedron
Ti is a 3-cocycle over G. For example, for the tetrahedron in
Fig. 6, W (T ) = α(g,h,k).

1

2

3

4

g h

k

gh

hk

ghk

FIG. 6. A tetrahedron whose edges are graced with group ele-
ments; group multiplication rule applies to each of the four triangles.
The corresponding 3-cocycle is α(g,h,k).
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1

2

3

4

g h

k

gh

hk

ghk

1c

cg

cgh

cghk

FIG. 7. Gauge transformation acting on the vertex 1 in Fig. 6;
a new vertex 1′ is created at the barycenter, accompanied by a new
group element c on the edge [1′1]. Also understood as the 1 → 4
Pachner move.

Note that α is an equivalence class, and any two representa-
tives of the class are related by a 3-coboundary. If the manifold
M is closed, the value of Z[T(M),G] does not depend on
the choice of the representative of an equivalent class of
3-cocycles. The partition function is also invariant under the
Pachner moves that connect two simplicial triangulations of
M . Another remark is that the labeling of the vertices of the
tetrahedron in Fig. 6 is fixed once for all. At this point, the
partition function does not have tetrahedral symmetry.

On closed manifolds, the partition function in Eq. (114)
also has a gauge invariance. Consider the single tetrahedron
in Fig. 6 as an example; the gauge transformation that acts on
vertex 1 transforms the topological action as follows:

W (T) → W ′(T) = α(c,g,h)α(c,gh,k)

α(c,g,hk)
W (T), (115)

where c ∈ G is the gauge parameter. This gauge transfor-
mation can be understood topologically as in Fig. 7. The
tetrahedron [1234] is associated with the original topological
action W (T). The gauge transformation acting on vertex
1 creates a new vertex 1′ inside the tetrahedron (can be
thought as being at the barycenter) and thus created four
new tetrahedra, of which the tetrahedron [0′123] is associated
with the new topological action W ′(T) = α(cg,h,k). There
are five tetrahedra all told in Fig. 7, associated with which
the five 3-cocycles satisfy the 3-cocycle condition and thus
lead to Eq. (115). On closed manifolds, the topological action
is invariant under the gauge transformation Eq. (115) because
the factors on the right-hand side of Eq. (19) can be canceled by
those produced by the gauge transformation on the neighboring
tetrahedra. Topologically, the gauge transformation behaves
like a 1 → 4 Pachner move that splits a tetrahedron at its
barycenter into four tetrahedra. Such a Pachner move can
be visualized only in four dimensions, whereas Fig. 7 is
the three-dimensional projection of a 4-simplex whose five
boundary 3-simplices are the five tetrahedra in the figure.

To gain a deeper understanding of the gauge transformation
Eq. (115), let us rewrite the equation in terms of 3-cocycles
only as follows:

α(g,h,k) → α′(g,h,k)

= α(cg,h,k) = γ (c,g,h,k)α(g,h,k), (116)

where we define

γ (c,g,h,k) = α(c,g,h)α(c,gh,k)

α(c,g,hk)
.

In general, however, the new object α′(g,h,k) is not a 3-cocycle
any longer because one can check that it does not meet the
3-cocycle condition Eq. (3). Nonetheless, that α′ is not a
3-cocycle makes it possible to choose a convenient gauge
such that the prescription of the topological partition function
becomes simpler. Indeed, according to Ref. 27, depending on
the divisibility of |G|, the following gauge of the 3-cocycles
may be imposed:

α′(g,g−1,h) = α′(g,h,h−1) = 1. (117)

Under this gauge, the ordering of the vertices of a tetrahedron
is irrelevant; in other words, the topological action W ′(T)
acquires tetrahedral symmetry, in the sense that it is invariant
under the change of the labeling of the vertices. Therefore,
the 3-cocycle condition and the gauge in Eq. (116) are
incompatible unless the 3-cocycle under consideration is
equivalent to the trivial one, namely α ∈ [α0].

If the manifold M has a boundary (open or closed), however,
the gauge transformation in Eq. (115) ceases to apply because
a boundary condition must be imposed on M , which fixes the
boundary value of the embedding of M into the classifying
space BG and hence forbids the Pachner moves that involve
the boundary simplices. Effectively, there are now degrees of
freedom that cannot be gauged away on the two-dimensional
boundary ∂M of M . As such, the three-dimensional partition
function turns out to be the wave function of the corresponding
boundary state at certain time. Since the Dijkgraaf-Witten
Chern-Simons theory is a topological gauge theory, there is
no nonvanishing Hamiltonian due to Legendre transform that
can enable the notion of ground and excited states for the
boundary states. Instead, here we have only gauge-invariant
and noninvariant states. In particular, however, if the manifold
M has a closed boundary, e.g., a solid torus with its boundary a
2-torus, the remaining boundary states are automatically only
those gauge-invariant ones. This can be understood by the
standard technique of “gluing” and “sewing” if a topological
quantum field theory, which in the current case gives the
size of the Hilbert space on the boundary. As such, the
Dijkgraaf-Witten partition function becomes the dimension
of the Hilbert space of the gauge-invariant states on the closed
boundary of M .

At this point, one may ask if it is possible to construct
a Hamiltonian on the closed boundary of M whose ground
states happen to be the gauge-invariant boundary states of the
Dijkgraaf-Witten theory in M . Yes, the Hamiltonian of our
TQD model turns out to be a positive answer to this question,
as explained as follows.

Staring at Fig. 6 again, as if it is a triangulation of a 3-
ball, then the the right-to-left projection of the four triangles
comprising the boundary 2-sphere to the paper plane is the
very graph in Fig. 2(b), a basis graph of our twisted quantum
double model. Note that in this case, there are four triangles
in Fig. 2(b), including the triangle [124] in the back. When
the corresponding state of the graph in Fig. 2(b) is a ground
state, the Bf operator is unity acting on any of the triangles,
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complying with the group multiplication rule on each of the
triangles in Fig. 6.

By comparing Ac
3 with c ∈ G at vertex 3 on the graph in

Fig. 2(b) to Eq. (115), one may see the vertex operator A
g
v in the

Hamiltonian of our model is formally identical to the gauge
transformation on the partition function in Dijkgraaf-Witten
theory. In our model, the operators Av evolve the states;
however, we have Av = 1 on the ground states, which implies
that they are invariant under the Dijkgraaf-Witten gauge
transformation in Eq. (115). If we embed the graph of the
TQD model on a torus or any surface homeomorphic to
it, say, ∂X × S1, where X is homeomorphic to a disk, we
soon see that the ground states of the TQD model are the
gauge-invariant boundary states of the Dijkraaf-Witten theory
defined on M = X × S1. Therefore, we can conclude that

ZCS[T(X × S1),G] = GSDTQD[T (∂X × S1)].

The results obtained in Secs. IV and V fall into this latter case,
which can be verified by comparing them to the corresponding
results in Refs. 27 and 34.

Now that we have gone through the logic of this correspon-
dence, we can claim that our twisted quantum double models
may indeed be regarded as a valid Hamiltonian extension of the
Dijkgraaf-Witten discrete Chern-Simons theories. Although
the discussion so far is restricted to three dimensions, the
correspondence described above may be readily generalizable
to higher dimensions.

In light of this correspondence, the gauge transformation in
Eq. (116) implies that all twisted quantum double models but
the one defined by [α0] do not have tetrahedral symmetry.

On the other hand, the CS theories in a 3-manifold M also
correspond to other two-dimensional theories on the boundary
∂M , namely the rational conformal field theories (RCFT), such
as Wess-Zumino-Witten (WZW) models. The salient point
of this correspondence is that the CS Hilbert space on ∂M

is isomorphic by a canonical identification to the space of
holomorphic conformal blocks of the RCFT on ∂M , while
the CS wave function reproduces the fusion algebra of the
holomorphic sector of the RCFT. Note that this correspondence
is level by level, in the sense that the CS theory and the WZW
interaction of the corresponding RCFT are both at the same
level, say, k.

What follows naturally is a correspondence between our
twisted quantum double models with a finite group G and a
type of RCFTs, namely the CFTs as orbifolds by the group
G of a holomorphic CFT. The modular data of a G-orbifold
is twisted by a 3-cocycle over G. This correspondence is also
level by level, in the following sense. The third cohomology
group over G, H 3[G,U (1)], is a discrete group; in particular,
it is Z if G is a compact Lie group. Hence, one can label
the equivalence classes as the elements of H 3[G,U (1)] by
integers, say, [k]. The situation is similar when G is finite, in
which case H 3[G,U (1)] also becomes finite, indicating that
there are only a finite number of levels available. Hence, a
twisted quantum double model defined by a 3-cocycle α ∈ [k]
corresponds to a G-orbifold twisted by the same α, which has
a twisted modular data at level k, too. As such, when α = α0 ∈
[0], the twisted quantum double model is actually untwisted,
which is equivalent to Kitaev model, and thus corresponds to
the usual untwisted G-orbifold.

TABLE IV. Correspondence between a TQD and a twisted G-
orbifold.

HG,α CG,α

States: |g,h〉 Conformal blocks: h�g

Ground state: |A,μ〉 1-loop characters: κ
A
μ

Ground-state degeneracy Number of primary fields
S and T matrices in |A,μ〉 basis S and T matrices in κ

A
μ basis

Let HG,α be a twisted quantum double model on a torus and
CG,α a twisted toroidal orbifold of a holomorphic CFT C. One
can check that they correspond to each other in the respects
tabulated row by row in Table IV.

A few remarks on Table IV are in order. The equality
between the GSD of the TQD model and the number of primary
fields of the corresponding orbifold is not surprising, as each
primary field is associated with a highest-weight vector of
an irreducible representation of the Virasoro algebra that is
annihilated by the positive modes of the algebra and thus
can be thought as a “ground state.” At this moment, such a
relation may appear to be abstract; however, if a TQD model
has a boundary, it may be possible to construct a boundary
CFT whose number of primary fields matches the GSD of
the TQD model. An example is shown numerically for a
(2 + 1)-dimensional Haldane model and its boundary CFT.39

Since each 1-loop character counts all the descendants of a
primary field, including the primary field itself, it naturally
corresponds to a unique ground state of the TQD model. Like
the TQD ground states |A,μ〉, the 1-loop characters κ

A
μ form

an orthonormal basis, in which the T operator is diagonal. The
conformal block h�g projects onto this basis as

h�g =
∑

μ

χ̃
gA

μ (h)κA
μ,

which is precisely how a TQD state |g,h〉 projects onto the
ground-state basis, as in Eq. (66).

Although we have been talking about the fractional topo-
logical numbers and statistics of the quasiparticles of our
model, we do not have in hand the operators that can create
or annihilate these quasiparticles, nor do we know the exact
wave functions of these quasiparticles. Nevertheless, as a
ramification of the correspondence with the orbifold CFTs,
that we can study the topological numbers and statistics of the
possible quasiparticles of our model by using only the modular
matrices can be expected. This ramification is further propped
by a similar correspondence between the (2 + 1)-dimensional
Hamiltonian formulation of fractional quantum Hall effect
(FQHE) systems and two-dimensional RCFT, which maps the
holomorphic wave functions of the quasiparticles of the FQHE
system to the conformal blocks of the CFT.

X. RELATIONS TO LEVIN-WEN MODELS

In this section, we discuss the relation between Levin-Wen
models and our TQD models. In particular, we demonstrate a
duality map of a class of Levin-Wen models into certain TQD
models.
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sa sc

sb

sa sc

sb

FIG. 8. A string-net vertex.

To begin with, let us briefly review Levin-Wen models.
Levin-Wen models, also known as string-net models, were
proposed to generate the ground states that exhibit the phe-
nomenon of string-net condensation as a physical mechanism
for the time-reversal invariant topological phases. They are
believed to be a Hamiltonian formulation of the Turaev-Viro
topological field theories,40–43 analogous to that our TQD
models are a Hamiltonian extension of topological Chern-
Simons theories, as belabored in the previous section. Levin-
Wen models are usually defined on the honeycomb lattice.

String degrees of freedom reside on the edges of the honey-
comb lattice, each link of which is graced with one of N + 1
string types. In the most general setting, the N + 1 string types
form a finite set I equipped with a duality map ∗ : I → I

such that j ∗∗ = j for all j ∈ I . These abstract string types are
usually considered to label the irreducible representations of
certain group or algebra (e.g., a quantum group).

A Levin-Wen model is specified by a triple of the input data
{d,δ,F }. Quantum numbers dj are called quantum dimensions
and are complex numbers associated with the group elements
j ∈ G, satisfying dj = dj∗ . There are, in principle, two ways
of setting up the fusion rules δ. First, one can let the tensor
product rules of the irreducible representations labeled by the
string types as the fusion rules. But we do not consider this case
here. Second, which is the case to be discussed in this section,
one can use the product rule of certain group G as the fusion
rule, which is in fact a Kronecker δ function associated with
each triple of string types {i,j,k}, respectively, on the three
links meeting at a vertex, such that δijk equals 1 if the group
multiplication ijk is the identity element e, and 0 otherwise.
The quantum dimensions and fusion rules must satisfy

didj = δijk∗dk. (118)

The dual string type j ∗ = j−1 can also represent the corre-
sponding inverse group element in G. Figure 8 illustrates the
fusion rule on the honeycomb lattice, by showing just one
vertex. A link a of the lattice is graced with a string type sa

and endowed with an orientation, specified by an arrow. Such
a string of type sa can also be represented by a flipped arrow,
but with the conjugate string type s∗

a = (sa)−1.
The 6j symbol F are complex numbers that obey the

following self-consistency conditions:

F
ijm

kln = F
mij

nk∗l∗
vmvn

vjvl

= Fklm∗
ijn∗ = F

jim

lkn∗ = F
j∗i∗m∗
l∗k∗n ,

F
mlq

kp∗nF
jip
mns∗F

js∗n
lkr∗ = F

jip

q∗kr∗F
riq∗
mls∗ , (119)

F
mlq

kp∗nF
l∗m∗i∗
pk∗n = δiqδmlqδk∗ip,

where vj = √
dj (and ve = 1 for the identity group element

e). The first line is a symmetry over the indices of F , where
the last equality is meant for the Hamiltonian to be Hermitian,
the second line the pentagon identity, and the last line the
orthogonality condition. We remark here that it is the solution
of the F -symbols and the quantum dimensions to Eq. (119) that

dictates for which the abstract string types label the irreducible
representations. Often, the string types turn out to label the
irreducible representations of a rather complicated algebra A,
although the group G that supplies the fusion rules is very
simple. See Sec. VII B for an example.

The usual string-net Hamiltonian takes the form

H = −
∑

v

Âv −
∑

p

B̂p, (120)

where Âv = δijk is the vertex operator de-

fined at each string-net vertex, and B̂p = ∑N
s=0 asB̂

s
p, with

as = ds/D and D = ∑N
i=0 d2

i , is the “magnetic-flux” operator
defined for each hexagonal plaquette of the string-net lattice.
Each operator B̂s

p in B̂p acts on a plaquette as follows22:

B̂s
p =

6∏
a=1

F
lae

∗
aea−1

s∗e′
a−1e′∗

a
, (121)

where e′
a = eas.

The vertex operators Âv are projectors. The parameter as

ensures that the operators B̂p are also projectors. It can be
shown that {Âv,B̂p|∀v,p} is a set of commuting operators,
whose common eigenstates span the Hilbert space of the
model. The ground states of the model are thus the +1
eigenstates of Âv and B̂p, which are known as the string-net
condensed states.

We emphasize that in Levin-Wen models, the plaquette
operator B̂p is identically zero outside of the subspace of Âv =
1 because the F -symbols are automatically zero. This is in
contrast to our TQD models in which the vertex operators are
well-defined and nontrivial outside HBf =1.

The honeycomb lattice has as its dual lattice the triangular
lattice, which is a regular case of the triangle graph � on which
our TQD models are defined. We further notice that the way
we enumerate the vertices and assign group elements on the
edges of � does induce orientations on the links of the dual
honeycomb lattice, as seen in Eq. (122), in which only the
dual honeycomb plaquettes are shown. Bear in mind that the
enumerations of the vertices of � now label the plaquettes.

. (122)

The pair [v1v2] indicates that the plaquette v1 is on the left of
their common edge, while v2 is on the right. Hence, the group
element on the edge can be denoted as g[v1v2] and obviously
satisfies g[v1v2] = g−1

[v2v1]. This rule can be applied to the entire
graph.

These observations imply that there may exist a kind of
duality between the concerned type of Levin-Wen models and
certain TQD models, in fact, an inclusion of the former into
the latter, as we now explore.

We claim that any F symbol that solves Eq. (119) can be
mapped to a 3-cocycle α (up to a 3-coboundary) that defines
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a TQD model. That said, a Levin-Wen model with such an F

can be identified with a TQD model with the corresponding
α. Indeed, a tensor F has three independent indices and can
be expressed as

F
ijm

kln = α(i,j,k)δm,(ij )−1δn,jkδl,(ijk)−1 , (123)

where α ∈ C× = C \ {0} is a function of i,j,k ∈ G. The
self-consistency conditions in Eq. (119) become

α(i,j,k) = α((ij )−1,i,jk)
vij vjk

vj vijk

= α(k,(ijk)−1,i)

= α(j,i,ijk−1)

= α(j−1,i−1,ijk),
α(l,k,j )

α(ml,k,j )

α(m,lk,j )

α(m,l,kj )
α(m,l,k) = 1,

α(m,l,k)α(l−1,m−1,mlk) = 1, (124)

respectively. The pentagon identity in the second line is
readily the 3-cocycle condition of this α that turns out to be
a 3-cocycle in H 3(G,C×). It does no harm to assume that α is
U (1)-valued in H 3[G,U (1)] ∼= H 3(G,C×). Then we see that
the orthogonality condition is identified with one equality in
the symmetry condition.

The quantum dimension dj then takes the definition

di = α(i−1,i,i−1), (125)

as is verified by setting j = i−1 and k = i in the symmetry
condition and by the 3-cocycle condition.

The conditions didk = dik and di = di−1 = ±1 are imme-
diate consequences of the symmetry condition in Eq. (124).
By setting j to the identity element e in the first equality of the
symmetry condition Eq. (124) and by applying the 3-cocycle
condition δα[(ij )−1,i,j,k] = 1, we obtain

vivk

vik

= α(e,e,k)

α(i−1,i,k)α(i−1,i,e)
. (126)

Since α(i−1,i,k)2 = 1 from the symmetry condition for all
i,k ∈ G, taking a square of the above equation yields didk =
dik . The condition di = di−1 = ±1 is due to α(i−1,i,i)2 = 1
and didi−1 = de = 1.

Substituting the α in Eq. (123) into the B̂s
p in Eq. (121),

we find that As
p|Bf =1 can be identified with dsB̂

s
p for all p

up to a common unitary transformation that depends on the
enumeration of the vertices and the choice of {vi}, where
As

p|Bf =1 is the TQD model vertex operator acting on the
vertex p dual to the plaquette p on the honeycomb lattice,
with the action restricted to the subspace HBf =1. Notice that
the enumeration dependence of the transformation is related
to the enumeration dependence of the definition of As

p.
Therefore, we infer that the Levin-Wen model with the

fusion rule δijk determined by the group multiplication law of
G and the F symbols meeting Eq. (119) can be identified as
the TQD model restricted to HBf =1 that is defined by the (not
necessarily normalized) U (1)-valued 3-cocycle α that satisfies

α(i,j,k) = α[(ij )−1,i,jk]
vij vjk

vj vijk

= α[k,(ijk)−1,i]

= α(j,i,ijk−1) = α(j−1,i−1,ijk)
−1

, (127)

where vi = √
di and di = α(i,i−1,i).

Nevertheless, not all 3-cocycles satisfy the conditions of
Eq. (127), in which case the TQD models do not correspond
to any Levin-Wen models. For example, with Z2 fusion
rule, there are two Levin-Wen models, namely the toric code
model and the double-semion model, which can be identified
with the TQD models, respectively, with the [α0] and [α1]
given in Eq. (89), which correspond to d1 = 1 and d1 = −1,
respectively, according to Eq. (125). There is, however, only
one Levin-Wen model with Z3 fusion rule that has a dual TQD
model—the one with the [α0] given in Eq. (90). Note that here
we do not distinguish the TQD models defined by equivalent
3-cocycles because they describe the same topological phases,
as explained in Sec. II C. Details of the TQD models with Z2

and Z3 are found in Sec. VII B.
The study in this section partially answers the question

when and how Levin-Wen models can be characterized by
group cohomology, which was raised in Ref. 22.

XI. DISCUSSIONS AND OUTLOOK

In this last section, we shall summarize our major results
along with discussions on a few questions bonded to these
results that are yet not fully answered in this paper but deserve
future exploration.

First of all, we fabricated a new model—the twisted quan-
tum double model—of two-dimensional topological phases
by a 3-cocycle [α] ∈ H 3[G,U (1)] of a finite group G on a
graph composed of triangles, each edge of which is decorated
by an element of G. This model constitutes a very rich
class of topological phases, which are otherwise missing in
some other models, such as the Kitaev model and Levin-Wen
model. The topological properties of the TQD model are
reflected in the topological numbers—GSD, topological spin,
etc.—associated with the topological observables of the model.

We further classified these topological numbers, which
either directly depend on the defining 3-cocycle of the model or
indirectly via a twisted 2-cocycle determined by the 3-cocycle.
Two TQD models defined by two equivalent 3-cocycles are
shown to bear the same topological phase. We thus expect that
the classification of the topological numbers does the job as
well for the topological phases described by the TQD models.
We expect but do not affirm this yet because we have not been
able to explicitly prove that two inequivalent 3-cocycles never
yield the same topological phase. This and detailed studies of
the topological phases certainly calls for more efforts in future
works.

Second, our TQD model appears to be a certain generaliza-
tion of the Kitaev model in the following sense. A TQD model
is precisely a Kitaev model when its defining 3-cocycle is
trivial. In this situation, the Hamiltonian consists of local gauge
transformations and local flux projections. As a collective
effect, the ground states are classified by the irreducible
representations of quantum double of the finite group G, and
this is expected to be true also for the quasiparticle excitations.
When the defining 3-cocycle is nontrivial, the Hamiltonian can
be viewed as consisting of local twisted gauge transformations
and local flux projections. Similarly, the ground states are
classified by the irreducible representations of the twisted
quantum double of the finite group G.
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Third, we relate our TQD models to the Dijkgraaf-Witten
(DW) topological Chern–Simons theories, by viewing ours as
a Hamiltonian extension of the latter. In fact, we have shown
that the GSD of a TQD model defined by some 3-cocycle
on the boundary of a 3-manifold coincides with the partition
function of the DW topological Chern-Simons theory in the
bulk, whose topological action is given by the same 3-cocycle.

This connection motivates a correspondence between our
TQD models on a torus and the RCFTs that are the toric
orbifolds by a finite group of a holomorphic CFT and are
twisted by nontrivial 3-cocycles. This correspondence identi-
fies the ground states, the GSD, and the modular matrices of
a TQD model, respectively, with the holomorphic characters,
the number of primary fields, and also the modular matrices
of the corresponding RCFT. Provided with the description of
fractional quantum Hall effect by CFT, we are encouraged
to expect that the statistical and topological properties of the
quasiparticle excitations and hence the topological phase of
a TQD model can be investigated in terms of the modular
matrices of the model.

Fourth, to echo the fact that our model is partly motivated by
the Levin-Wen model, we studied the relation between TQD
models and the type of Levin-Wen models where the fusion
rules coincide with the multiplication laws of finite groups: we
demonstrated that each such Levin-Wen model on a graph can
be directly translated to a TQD model of the type on the dual
graph. The reverse is not true, however, indicating that TQD
models embodies more topological phases than this type of
Levin-Wen models. In our study of this in Sec. X, we adopted
simply the original settings of the Levin-Wen model.11

Furthermore, as pointed out in Sec. X and in Ref. 22,
the fusion rules in a Levin-Wen model can in principle be
identified with the tensor product rules of the irreducible
representations of a certain group or algebra. If this is the
case, the pentagon identity in Eq. (119) of the F symbols
contains a summation over the index n on the left-hand
side due to the summation that would appear in the fusion
rules, which comprises the interpretation of the F symbols
as 3-cocycles and the pentagon identity as the corresponding
3-cocycle condition. Then clearly, this type of Levin-Wen
models, apart from the special cases where the representations
are restricted so as to remove the summation, cannot be dual to
our TQD models. This type of Levin-Wen models is believed
to be classified in terms of tensor categories. This distinction
between the two types of Levin-Wen models is related to the
question when and how a Levin-Wen model can be classified
by group cohomology, which is raised in Ref. 22, inspired
by the duality between certain SPT phases and long-range
entangled topological phases described by certain Levin-Wen
models.22,23,44 The duality found between our TQD models
and Levin-Wen models then partially answered this question.

Above all, a main purpose of this paper is to reveal the
topological properties of the ground states. We propose the
following topological properties of the elementary excitations.
The number of quasiparticle species in the elementary excita-
tions is equal to the GSD on a torus. Moreover, the topological
charge that identifies the quasiparticles are classified by the
twisted quantum double of the finite group G, and the S
and T statistical matrices are the same as the modular S
and T matrices derived from the topological observable in

the ground states on a torus. Work is in progress in this
direction. In general, two inequivalent 3-cocycles may yield
the same topological phase because of possible relabeling of
the quasiparticles. For example, H 3[Z2 × Z2,U (1)] has eight
equivalence classes of 3-cocycles. If we assume that the set
{GSD,S,T } gives the number of topological phases, then it is
verified that there are only four independent sets of GSD, S, T
in the case of Z2 × Z2. At this moment, we lack a systematic
understanding of the underlying principle and general pattern,
and we shall try to address this issue in our future work.
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APPENDIX A: BASICS OF Hn[G,U(1)]

The 3-cocycles concerned in this paper correspond to the
topological actions in the Dijkgraaf-Witten Chern-Simons
theory realized on simplicial triangulations of 3-manifolds.
This physics is introduced in Sec. IX. In this Appendix,
to be self-contained, we briefly catalog basic definitions of
cohomology groups Hn[G,U (1)] of finite groups G.

The nth cochain group Cn[G,U (1)] of a finite group
G is an Abelian group of n cochains c(g1, . . . ,gn) :
G×n → U (1), where gi ∈ G, with the group multiplication:
c(g1, . . . ,gn)c′(g1, . . . ,gn) = (cc′)(g1, . . . ,gn). There is a nat-
ural derivation from Cn to Cn+1, namely the coboundary
operator δ defined as follows:

δ : Cn → Cn+1

: c(g1, . . . ,gn) �→ δc(g0,g1 . . . ,gn),

where

δc(g0,g1 . . . ,gn)

=
n+1∏
i=0

c(. . . ,gi−2,gi−1gi,gi+1, . . . )(−1)i ,

where it is understood as when i = 0, the arguments start at g0,
and when i = n + 1, the arguments end at gn−1. Equation (3)
is the example for n = 3. It is easy to verify that δ2c = 1,
the nilpotency of δ, by which the following exact sequence is
established:

· · · Cn−1 δ→ Cn δ→ Cn+1 · · · ,

where the n cochains in im(δ : Cn−1 → Cn) are called n

coboundaries, and those in ker(δ : Cn → Cn+1) are called n

cocycles, i.e., those satisfying the cocycle condition δc = 1.
Again, Eq. (3) is the example for n = 3. This exact sequence
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gives rise to the definition of the cohomology group

Hn[G,U (1)] := ker(δ : Cn → Cn+1)

im(δ : Cn−1 → Cn)
,

which is the Abelian group of equivalence classes of n cocyles
that defer from each other by merely an n coboundary. Trivial
n cocycles are those in the equivalence class with the unit 1.

APPENDIX B: ALGEBRA OF LOCAL OPERATORS

In this Appendix, we show that the local operators in the
Hamiltonian Eq. (5) form the following algebra:

(i) [Bf ′ ,Bf ] = 0,
[
Bf ,Ag

v

] = 0,

(ii)
[
Ag

v,A
h
w

] = 0 if v �= w,

(iii) A
g

v′A
h
v = Ag·h

v , (B1)

where in (iii), [v′v] = g is understood. The equality (iii) in the
above implies that Av = ∑

g A
g
v/|G| is a projector.

(i) That [Bf ′ ,Bf ] = 0 follows immediately from the defini-
tion of Bf in Eq. (6). Since Av affects only the group elements
on the boundary of the vertex v, [Bf ,A

g
v ] = 0 holds obviously

when the vertex v is not on the boundary of f . In the case where
v is right on the boundary of v, without loss of generality, let
us consider two actions, Ag

v2Bf and Bf A
g
v2 , on the basis vector

.

We have

Ag
v2

Bf (B2)

= . . .
δ[v1v

′
2]·[v′

2v3]·[v3v1]

α
(
[v1v

′
2],[v′

2v2],[v2v3]
)

= . . .
δ[v1v2]·[v2v3]·[v3v1]

α
(
[v1v

′
2],[v′

2v2],[v2v3]
)

= . . .
δ[v1v2]·[v2v3]·[v3v1]

α
(
[v1v

′
2],[v′

2v2],[v2v3]
)

= Bf Ag
v2

, (B3)

where [v′
2v2] = g is understood, the dots . . . collect all other

factors irrelevant, and thus omitted, and the second equality
follows from applying the chain rule [v1v

′
2] · [v′

2v3] = [v1v
′
2] ·

[v′
2v2] · [v2v

′
2] · [v′

2v3] = [v1v2] · [v2v3]. Hence, we conclude
that [Bf ,A

g
v ] = 0 holds for all f,v ∈ �.

(ii) It is clear by the definition of Bv that if v1 and v2 are not
connected by any edge, [Ag

v1 ,A
h
v2

] = 0 is true. We then need
only to check the case where v1 and v2 are neighboring to each

other. Let us first check the following action of A
g
v1A

h
v2

on a
relevant basis vector.

Ag
v1

Ah
v2

= [α([v1v
′
2],[v′

2v2],[v2v4])−1

×α([v1v
′
2],[v′

2v2],[v2v3])...]Ag
v1

= [α([v1v
′
2],[v′

2v2],[v2v4])−1α([v1v
′
2],[v′

2v2],[v2v3])...]

× [α([v′
1v1],[v1v

′
2],[v′

2v4])

×α([v′
1v1],[v1v

′
2],[v′

2v3])−1...] ,

(B4)

with [v′
2v2] = h,[v′

1v1] = g. Only those 3-cocycles corre-
sponding to the two common boundary vertices are written
down.

By using twice the 3-cocycle condition in Eq. (3), we have

α([v′
1v

′
2],[v′

2v2],[v2v4])α([v′
1v1] · [v1v

′
2],[v′

2v2],[v2v4])−1

×α([v′
1v1],[v1v

′
2] · [v′

2v2],[v2v4])

×α([v′
1v1],[v1v

′
2],[v′

2v2] · [v2v4])−1

×α([v′
1v1],[v1v

′
2],[v′

2v2]) = 1 (B5)

and

α([v′
1v

′
2],[v′

2v2],[v2v3])

×α([v′
1v1] · [v1v

′
2],[v′

2v2],[v2v3])−1

×α([v′
1v1],[v1v

′
2] · [v′

2v2],[v2v3])

×α([v′
1v1],[v1v

′
2],[v′

2v2] · [v2v3])−1

×α([v′
1v1],[v1v

′
2],[v′

2v2]) = 1, (B6)

together with the chain rule Eq. (10), we find the action of
A

g
v1A

h
v2

is the same as Ah
v2

A
g
v1 :

Ah
v2

Ag
v1

= [α([v′
1v1],[v1v2],[v2v4])

×α([v′
1v1],[v1v2],[v2v3])−1...]Bh

v2

= [α([v′
1v1],[v1v2],[v2v4])α([v′

1v1],[v1v2],[v2v3])−1...]

× [α([v′
1v

′
2],[v′

2v2],[v2v4])−1

×α([v′
1v

′
2],[v′

2v2],[v2v3])...] . (B7)

Notice that the chain rule in Eq. (10) guarantees that each
group element indexed by the same pair of enumerations is
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the same in the above evaluations. Therefore, we arrive at
A

g
v1A

h
v2

= Ah
v2

A
g
v1 .

(iii) We show A
g

v′Ah
v = A

g·h
v , where v is assumed to become

v′ after the action of Ah
v with [v′v] = h, while v is turned to

be v′′ with [v′′v] = g · h. We begin with the action of A
g

v′Ah
v

on the vertex v2 of the basis vector as follows:

A
g

v′
2
Ah

v2

= α
(
[v1v

′
2],[v′

2v2],[v2v3]
)

×α
(
[v1v

′
2],[v′

2v2],[v2v4]
)−1

×α
(
[v′

2v2],[v2v3],[v3v4]
)−1

A
g

v′

= [α([v1v
′
2],[v′

2v2],[v2v3])α([v1v
′
2],[v′

2v2],[v2v4])−1

×α([v2v
′
2],[v′

2v3],[v3v4])−1]

× [α([v1v
′′
2 ],[v′′

2v′
2],[v′

2v3])α([v1v
′′
2 ],[v′′

2v′
2],[v′

2v4])−1

×α([v′′
2v′

2],[v′
2v3],[v3v4])−1] . (B8)

Using three times the 3-cocycle condition Eq. (3),

α([v1v
′
2],[v′

2v2],[v2v3])α([v1v
′′
2 ],[v′′

2v′
2],[v′

2v3])

= α([v1v
′′
2 ],[v′′

2v′
2],[v′

2v2])α([v1v
′′
2 ],[v′′

2v2],[v2v3])

×α([v′′
2v′

2],[v′
2v2],[v2v3]) (B9)

α([v1v
′′
2 ],[v′′

2v′
2],[v′

2v4])−1α([v′′
1v′

2],[v′
2v2],[v2v4])−1

= α([v1v
′′
2 ],[v′′

2v′
2],[v′

2v2])−1α([v1v
′′
2 ],[v′′

2v2],[v2v4])−1

×α([v′′
2v′

2],[v′
2v2],[v2v4])−1 (B10)

α([v′
2v2],[v2v3],[v3v4])−1α([v′′

2v′
2],[v′

2v3],[v3v4])−1

= α([v′′
2v′

2],[v′
2v2],[v2v3])−1α([v′′

2v′
2],[v′

2v2],[v2v4])

×α([v′′
2v2],[v2v3],[v3v4]), (B11)

we obtain

α([v1v
′′
2 ],[v′′

2v2],[v2v3])α([v1v
′′
2 ],[v′′

2v2],[v2v4])−1

×α([v′′
2v2],[v2v3],[v3v4]) .

(B12)

According to the chain rule in Eq. (10), we have [v′′
2v2] =

[v′′
2v′

2] · [v′
2v2]. The above action is identified as action of A

g·h
v2 .

Therefore, we conclude that

A
g

v′A
h
v = Ag·h

v .

Though the above proof is done on a triangle plaquette,
the general proof on a plaquette of any other shape is
straightforward.

APPENDIX C: MUTATIONS ARE UNITARY SYMMETRY
TRANSFORMATIONS

1. Symmetry

When restricted to ground states in H0
� ⊂ HBf =1

� , we can
impose the following chain rule on all triangles in �:

[vivj ] = [vivj ] · [vjvk], (C1)

where vi , vj , and vk are the three vertices of any triangle. Since

the mutation operators are defined on the subspace HBf =1
� for

all �, to show that TiP� = P�′Ti , where �′ = Ti(�), we can
neglect the face operators in the projectors P� and P�′ defined
in Eq. (16). We thus need to show that

Ti

∏
v∈�

Av =
∏
v∈�′

AvTi (C2)

holds for all mutation operators Ti , i = 1,2,3, and any state in
HBf =1

� on any graph �. Since a Ti acts on at most four three
triangles and does not affect any other triangle in the same
graph, Ti certainly commutes with any Av at any vertex v that
does not lie on the boundary of the triangles on which the
Ti acts. Hence, in Eq. (C2) we can neglect the part of � out
of the scope of the action of Ti and hence the Av acting on
this part. We now pursue the proof in the following equations,
respectively, for T1, T2, and T3. In the sequel, [ijk] denotes
a triangle whose vertices are i, j , and k counterclockwise,
and “· · · ” represents all the irrelevant factors, which are thus
omitted:

T1([1′2′4′],[2′3′4′])
4∏

i=1

Ai

= 1

|G|4
∑

[1′1],[2′2],
[3′3],[4′4] ∈ G

· · · α (
[1′1],[12],[24]

)
α

(
[1′2′],[2′2],[24]

)−1
α

(
[2′2],[23],[34]

)

×α([2′3′],[3′3],[34])−1α([1′2′],[2′4′],[4′4])α([2′3′],[3′4′],[4′4])T1
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= 1

|G|4
∑

[1′3′],[1′1],[2′2],
[3′3],[4′4] ∈ G

· · · α([1′1],[12],[24])α([1′2′],[2′2],[24])−1α([2′2],[23],[34])α([2′3′],[3′3],[34])−1

×α([1′2′],[2′4′],[4′4])α([2′3′],[3′4′],[4′4])α([1′2′],[2′3′],[3′4′]) (C3)

4∏
i=1

AiT1([124],[234]) =
∑

[13]∈G

α ([12],[23],[34])
4∏

i=1

Ai

= 1

|G|4
∑

[13],[1′1],[2′2],
[3′3],[4′4] ∈ G

· · · α([1′1],[12],[23])α([1′1],[13],[34])α([1′2′],[2′2],[23])−1

×α([1′2′],[2′3′],[3′3])α([1′3′],[3′3],[34])

×α([1′3′],[3′4′],[4′4])α ([12],[23],[34]) . (C4)

It is straightforward to show that the right-hand side of Eq. (C3) is equal to that of Eq. (C4) by knowing that
∑

[1′1],[13],[3′3] =∑
[1′1],[1′3′],[3′3] because of the chain rules [1′1] · [13] = [1′3] and [1′3′] · [3′3] = [1′3], and by applying the following four

3-cocycle conditions in order.

α([1′2′],[2′4′],[4′4])α([2′3′],[3′4′],[4′4]) = α([1′3′],[3′4′],[4′4])α([1′2′],[2′3′],[3′4])α([1′2′],[2′3′],[3′4′])−1,

×α([1′1],[12],[24]) = α([12],[23],[34])α([1′2],[23],[34])−1α([1′1],[13],[34])α([1′1],[12],[23]),

×α([2′2],[23],[34])α([1′2],[23],[34])−1 = α([1′2′],[2′3],[34])−1α([1′2′],[2′2],[24])α([1′2′],[2′2],[23]),

×α([2′3′],[3′3],[34])−1α([1′2′],[2′3′],[3′4])α([1′2′],[2′3],[34])−1 = α([1′3′],[3′3],[34])−1α([1′2′],[2′3′],[3′3]).

Thus, Eq. (C2) holds for T1.
The case of T2 is a bit trickier. Let us write down how the left-hand side and right-hand side of Eq. (C2) act on a state as

follows:

T2([2′3′4′])
3∏

i=1

Ai

= 1

|G|3
∑

[2′2],[3′3],
[4′4] ∈ G

α([2′2],[23],[34])α([2′3′],[3′3],[34])−1α([2′3′],[3′4′],[4′4])T2

= 1

|G|3
∑

[2′2],[3′3],[4′4],
[12′],[13′],[14′] ∈ G

α([2′2],[23],[34])α([2′3′],[3′3],[34])−1α([2′3′],[3′4′],[4′4])

×α([12′],[2′3′],[3′4′]) (C5)

3∏
i=1

AiT2([234]) = a
∑

[12],[13],
[14] ∈ G

α ([12],[23],[34])−1
4∏

i=1

Ai

= 1

|G|4
∑

[12],[13],[14],[1′1],
[2′2],[3′3],[4′4] ∈ G

α ([12],[23],[34]) α([1′1],[13],[34])α([1′1],[12],[24])−1
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×α([1′1],[12],[23])α([1′2′],[2′2],[23])−1α([1′2′],[2′2],[24])α([1′2′],[2′3′],[3′3])

×α([1′3′],[3′3],[34])−1α([1′2′],[2′4′],[4′4])−1α([1′3′],[3′4],[44])

= 1

|G|3
∑

[2′2],[3′3],[4′4],
[1′2′],[1′3′],[1′4′] ∈ G

α([2′2],[23],[34])α([2′3′],[3′3],[34])−1

×α([2′3′],[3′4′],[4′4])α([1′2′],[2′3′],[3′4′]) , (C6)

where the last equality is obtained by first plugging into the second row the following four 3-cocycle conditions:

α([1′1],[13],[34])α([1′1],[12],[23])

α([1′1],[12],[24])
= α([1′2],[23],[34])

α([12],[23],[34])
× α([1′2′],[2′2],[24])

α([1′2′],[2′2],[23])

= α([2′2],[23],[34])α([1′2′],[2′3],[34])

α([1′2],[23],[34])
× α([1′2′],[2′3′],[3′3])

α([1′3′],[3′3],[34])

= α([1′2′],[2′3′],[3′4])

α([1′2′],[2′3],[34])α([2′3′],[3′3],[34])
× α([1′3′],[3′4′],[4′4])

α([1′2′],[2′4′],[4′4])

= α([2′3′],[3′4′],[4′4])α([1′2′],[2′3′],[3′4′])
α([1′2′],[2′3′],[3′4])

,

and then by applying to the summations these chain rules:

[1′1] · [12] · [2′2]−1 = [1′2′],
[1′1] · [13] · [3′3]−1 = [1′3′],
[1′1] · [14] · [4′4]−1 = [1′4′],

which are guaranteed by the restriction of Bf = 1 and the properties of the vertex operators Ai . The summations over [2′2], [3′3],
and [4′4] can be replaced by those over [1′2′], [1′3′], and [1′4′], respectively. Since [1′1] does not appear in the 3-cocycles any
more,

∑
[1′1] contributes a factor a |G|. Clearly, the vertex enumerated by 1′ on the right-hand side of the last equality of Eq. (C6)

is now a dummy and, thus, can be re-enumerated by 1 without altering its order relative the enumerations of the other three
vertices. As such, we can see that the right-hand side of Eq. (C6) and that of Eq. (C5) are actually identical. That is, Eq. (C2) is
true for T2.

When it comes to the case of T3, we have the action of the left-hand side and that of the right-hand side of Eq. (C2) on the
same state, respectively, being

T3([1′2′3′4′])
4∏

i=1

Ai

= 1

|G|4
∑

[1′1],[2′2],
[3′3],[4′4] ∈ G

· · · α([1′1],[12],[24])α([1′1],[12],[23])−1α([1′2′],[2′2],[23])

×α([1′2′],[2′2],[24])−1α([2′2],[23],[34])α([1′2′],[2′3′],[3′3])−1

×α([2′3′],[3′3],[34])−1α([1′2′],[2′4′],[4′4])α([2′3′],[3′4′],[4′4])T3

= 1

|G|4
∑

[1′1],[2′2],
[3′3],[4′4] ∈ G

· · · α([1′1],[12],[24])α([1′1],[12],[23])−1α([1′2′],[2′2],[23])α([1′2′],[2′2],[24])−1

×α([2′2],[23],[34])α([1′2′],[2′3′],[3′3])−1α([2′3′],[3′3],[34])−1
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×α([1′2′],[2′4′],[4′4])α([2′3′],[3′4′],[4′4])α([1′2′],[2′3′],[3′4′]) , (C7)

3∏
i=1

AiT3([1234]) = α ([12],[23],[34])
3∏

i=1

Ai (C8)

= 1

|G|3 α ([12],[23],[34])
∑

[1′1],[3′3],
[4′4] ∈ G

α([1′1],[13],[34])α([1′3′],[3′3],[34])−1

×α([1′3′],[3′4′],[4′4]) . (C8)

The right-hand side of Eq. (C7) and that of Eq. (C8) can be identified by applying the four 3-cocycle conditions to the
corresponding 3-cocycles in Eq. (C7):

α([1′1],[12],[24])α([1′1],[12],[23])−1 = α([12],[23],[34])α([1′1],[13],[34])α([1′2],[23],[34])−1

α([1′2′],[2′2],[23])α([1′2′],[2′2],[24])−1α([2′2],[23],[34]) = α([1′2],[23],[34])α([1′2′],[2′3],[34])−1

α([1′2′],[2′3′],[3′3])−1α([2′3′],[3′3],[34])−1 = α([1′3′],[3′3],[34])−1α([1′2′],[2′3],[34])

×α([1′2′],[2′3′],[3′4])−1

α([2′3′],[3′4′],[4′4])α([1′2′],[2′4′],[4′4]) = α([1′3′],[3′4′],[4′4])α([1′2′],[2′3′],[3′4])

×α([1′2′],[2′3′],[3′4′])−1. (C9)

These 3-cocycle conditions render the 3-cocycles resulted independent of the
∑

[2′2] in Eq. (C7), which then contributes a factor

of |G|. Therefore, we conclude that Eq. (C2) holds for all mutation operators and any state in HBf =1
� , which means that the

mutation operators preserve the space of ground states.

2. Unitarity

Now we need to show that all mutation transformations
are unitary, i.e., they satisfy Eq. (24). It is sufficient to show
all generators T1, T2, and T3 are unitary. We show them,
respectively, in the following.

We first demonstrate that T1 is unitary not only on the
ground states but also over the entire subspace HBf =1. Let
us consider the action of T 2

1 on a generic basis state as
follows, in which only the relevant part of the graph is
shown:

T 2
1

=
∑

[v1v3]∈G

α ([v1v2],[v2v3],[v3v4]) T1

=
∑

[v1v3]∈G

∑
[v2v4]′∈G

α ([v1v2],[v2v3],[v3v4])

×α ([v1v2],[v2v3],[v3v4])−1

=
∑

[v1v3]∈G

∑
[v2v4]′∈G

δ[v2v4]′,[v2v4]

=
∑

[v1v3]∈G

= ,

which deserves some explanation. In the second equality, the
action of T1 on two triangles sharing a horizontal edge is
understood from rotating by π/2 either way the action of T1

on two triangles with a vertical common edge as in the first
equality because there is a global rotation symmetry on the
graph. The inverse 3-cocycle α−1 follows the rule described
below Eq. (21). The group element [v2v4]′ that is summed over
in the second equality is brought by the action of the second
T1, as the edge [v2v4] in the second equality is a new edge
relative to the [v2v4] on the left-hand side of the equation,
despite the same end vertices, and thus, should be graced
with a different group element [v2v4]′, which is, however,
constrained by Bf = 1 on the four triangles to be equal to
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[v2v4]. The last equality is also due to the restriction to the
subspace HBf =1. As a result, T1 = T −1

1 , such that we can
define that T

†
1 = T1 and infer that T1 is unitary over the entire

HBf =1.
Next, we show that T3T2 = 1 on the entire subspace HBf =1.

We consider the action of T3T2 on a generic basis state
as follows, in which only the relevant part of the graph is
shown:

T3T2

=
∑

[v1q],[v2q],
[v3q] ∈ G

α ([qv1],[v1v2],[v2v3]) T3

=
∑

[v1q],[v2q],[v3q]∈G

α ([qv1],[v1v2],[v2v3])

×α ([qv1],[v1v2],[v2v3])−1

= ,

where the inverse 3-cocycle α−1 follows from the rule
introduced below Eq. (23). At this point, one may think that T3

is the inverse of T2 on HBf =1. But this is not true because
T2T3 �= 1 in general. Nevertheless, fortunately, as we now
show, T2T3 = 1 on the ground states H0.

Since T2T3P
0 = T2P

0T3 = P 0T2T3 on H0, we have

T2T3P
0(1,2,3,4)

= T2P
0(1,2,3,4)T3

= α ([12],[23],[34]) T2P
0(1,2,3)

= α ([12],[23],[34]) P 0(1,2,3)T2

= P 0(1,2,3)
∑

[12′],[2′3],
[2′4] ∈ G

α ([12],[23],[34])

×α
(
[12′],[2′3],[34]

)−1

= P 0(1,2,3)
∑

[12′],[2′3],
[2′4] ∈ G

α([12′],[2′2],[23])

×α([2′2],[23],[34])α([12′],[2′2],[24])−1

×

= P 0(1,2,3)
1

|G|
∑

[2′2]∈G

α([12′],[2′2],[23])

×α([2′2],[23],[34])α([12′],[2′2],[24])−1

×

= P 0(1,2,3)A2

= P 0(1,2,3,4) , (C10)

where P 0(1,2,3) and P 0(1,2,3,4) are projectors acting on
the vertices of the corresponding basis graph. The fifth
equality in the equation above is obtained by applying to
the two 3-cocycles in the fourth row the following 3-cocycle
condition:

α ([12],[23],[34])

α ([12′],[2′3],[34])
= α([12′],[2′2],[23])α([2′2],[23],[34])

α([12′],[2′2],[24])
.

We now explain why this 3-cocycle condition is applicable.
The action of T3 on the basis graph in the first row of Eq. (C10)
followed by an action of T2 on the resulted basis vector in the
third row of the equation can be viewed (see Fig. 9 and assume
the line [2′2] nonexisting for the moment) as if the original
tetrahedron [1234] is first flattened to be the triangle [134]
and then lifted again to a new tetrahedron [12′34]. These two
tetrahedra share a face, i.e., the triangle [134], so there are
seven triangles all told. The restriction to the subspace HBf =1

imposes a chain rule of the three group elements on each of
the seven triangles, such that the following identities on the
group elements hold:

[2′1] · [12] = [2′3] · [32],

[2′3] · [32] = [2′4] · [42],

[2′4] · [42] = [2′1] · [12].
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1

2

4

3

2

FIG. 9. The topology of the action of T2T3.

This enables one to add the line [2′2] and assign [2′2] = [2′1] ·
[12] = [2′3] · [32] = [2′4] · [42]. Hence, there are now five
tetrahedra in Fig. 9 with Bf = 1 on any of the ten triangles,
justifying the 3-cocycle condition above. Furthermore, [2′2]
determines [12′], [2′3], and [2′4], and the summation in the
fifth equality in Eq. (9) can be replaced by

∑
[2′2] /|G|, where

the factor of 1/|G| arises because [2′2] ∈ G is a new element
to be summed over.

We infer from Eq. (9) that T2T3 = 1 on the ground states,
which together with T3T2 = 1 on HBf =1, implies that T2 = T

†
3

and T3 = T
†

2 on H0. That is, T2 and T3 are unitary on the
ground states.

An interesting byproduct of this proof is that on the
subspace HBf =1,

T2T3 = Av, (C11)

where v is the vertex annihilated by the action of T3.

APPENDIX D: GROUND-STATE OPERATORS

We prove Eq. (31) in this appendix. We start with the coeffi-
cient in Eq. (28), which can be expressed by I x(a,b)/I x(b,a),
where I x(a,b) is

I x(a,b) = α(a,bx−1,x)α(bx−1,x,ax−1)α(x,ax−1,xbx−1).

(D1)

We use the 3-cocycle condition Eq. (3) together with the
normalization condition Eq. (4) to rewrite the three 3-cocycles
above, by

δα(a,b,x−1,x) = 1

δα(b,x−1,x,ax−1) = 1

δα(x,x−1,xax−1,xbx−1) = 1

δα(x−1,x,x−1,xax−1) = 1,

and have

α(a,bx−1,x) = α(ab,x−1,x)

α(b,x−1,x)α(a,b,x−1)

α(bx−1,x,ax−1) = α(x−1,x,ax−1)α(b,x−1,x)

α(b,x−1,xax−1)

α(x,ax−1,xbx−1) = 1

α(x−1,xax−1,xbx−1)α(x,x−1,xax−1)

α(x−1,x,ax−1) = α(x,x−1,xax−1)α(x−1,x,x−1).

These four identities lead to

I x(a,b)

− α(ab,x−1,x)α(x−1,x,x−1)

α(a,b,x−1)α(b,x−1,xax−1)α(x−1,xax−1,xbx−1)
.

(D2)

Using ab = ba, We evaluate I x(a,b)/I x(b,a) directly and
arrive at Eq. (31).

APPENDIX E: MODULAR TRANSFORMATIONS

Here we show how we construct the modular transformation
operators Sx and T x :

Sx :

�→ α([2′1],[13],[34])α([2′1],[12],[24])−1

×

�→ α([2′1],[13],[34])α([2′1],[12],[24])−1

×α([2′4′],[4′1],[13])−1

�→ α([2′1],[13],[34])

α ([2′1],[12],[24]) α ([2′4′],[4′1],[13])

×α([1′2′],[2′1],[12])−1

�→ α([2′1],[13],[34])α([2′1],[12],[24])−1

×α([2′4′],[4′1],[13])−1
α([1′2′],[2′1],[12])−1

× α([2′3′],[3′4′],[4′1])

α([1′2′],[2′3′],[3′1])

�→ α([2′1],[13],[34])α([2′1],[12],[24])−1

×α([2′4′],[4′1],[13])−1
α([1′2′],[2′1],[12])−1

×α([2′3′],[3′4′],[4′1])α([1′2′],[2′3′],[3′1])−1

×α([1′2′],[2′3′],[3′4′]) (E1)
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T x :

�→ α([2′1],[13],[34])α([2′1],[12],[24])−1

×

�→ α([2′1],[13],[34])α([2′1],[12],[24])−1

×α([3′′2′],[2′1],[13])

�→ α([2′1],[13],[34])α([2′1],[12],[24])−1

× α([3′′2′],[2′1],[13])

α([4′′2′],[2′1],[12])

�→ α([2′1],[13],[34])α([2′1],[12],[24])−1

×α([3′′2′],[2′1],[13])α([4′′2′],[2′1],[12])−1

× α([1′′3′′],[3′′2′],[2′1])

α([1′′4′′],[4′′2′],[2′1])

�→ α([2′1],[13],[34])α([2′1],[12],[24])−1

×α([3′′2′],[2′1],[13])α([4′′2′],[2′1],[12])−1

×α([1′′3′′],[3′′2′],[2′1])α([1′′4′′],[4′′2′],[2′1])−1

×α([1′′3′′],[3′′4′′],[4′′2′]) . (E2)

APPENIDX F: SOLUTIONS FOR S AND T MATRICES

1. Projective characters

The centralizer subgroups Zg are isomorphic for all
elements g of the conjugacy class CA. Therefore, the corre-
sponding projective representations are also isomorphic. Given

the representation ρ̃
g
μ for a fixed g ∈ CA, we construct ρ̃

xgx−1

μ

as follows. For all x ∈ G, the elements xhx−1 runs over all
elements in xZgx

−1, while h runs over all elements in Zg . We

can define a projective representation ρ̃
xgx−1

μ of xZgx
−1 from

a given representation ρ̃
g
μ of Zg , by

ρ̃xgx−1

μ (xhx−1) = βg(x−1,xhx−1)

βg(h,x−1)
ρ̃g

μ(h). (F1)

We verify that ρ̃
xgx−1

μ is indeed a βxgx−1 representation. We
check the multiplication rule for all h1,h2 ∈ Zg:

ρ̃xgx−1

μ (xh1x
−1)ρ̃xgx−1

μ (xh2x
−1)

= βg(x−1,xh1x
−1)

βg(h1,x−1)

βg(x−1,xh2x
−1)

βg(h2,x−1)
ρ̃g

μ(h1)ρ̃g
μ(h2)

= βg(x−1,xh1x
−1)

βg(h1,x−1)

βg(x−1,xh2x
−1)

βg(h2,x−1)
βg(h1,h2)ρ̃g

μ(h1h2)

= βg(x−1,xh1x
−1)

βg(h1,x−1)

βg(x−1,xh2x
−1)

βg(h2,x−1)
βg(h1,h2)

×
[
βg(x−1,xh1h2x

−1)

βg(h1h2,x−1)

]−1

ρ̃xgx−1

μ (xh1h2x
−1)

= ηg(h1,x)ηg(h2,x)

ηg(h1h2,x)
βg(h1,h2)ρ̃xgx−1

μ (xh1h2x
−1)

= βxgx−1 (xh1x
−1,xh2x

−1)ρ̃xgx−1

μ (xh1h2x
−1), (F2)

where the last equality is obtained by using the following
relation:

ηg(h1,x)ηg(h2,x)

ηg(h1h2,x)
= βxgx−1 (xh1x

−1,xh2x
−1)

βg(h1,h2)
, (F3)

which can be verified by directly applying the twisted 2-
cocycle conditions δ̃βg = 1 in Eq. (38) successively to the
triples (h1,h2,x

−1), (h1,x
−1,xh2x

−1), (x−1,xh1x
−1,xh2x

−1)
and make the corresponding substitutions.

An immediate consequence of the above isomorphism is
the relation between the projective characters,

χ̃ xgx−1

μ (xhx−1) = ηg(h,x)χ̃ g
μ(h), (F4)

which is the very Eq. (49). This relation leads to the following
proposition.

Proposition 1. If h ∈ Zg is not βg-regular, χ̃
g
μ(h) = 0.

Proof. The proof is straightforward. If h ∈ Zg is not
βg-regular, there must exist k ∈ Zg,h, such that βg(h,k) �=
βg(k,h). By setting x = k−1 in Eq. (F4), we have

χ̃ g
μ(h) = βg(k,h)

βg(h,k)
χ̃ g

μ(h) =⇒ χ̃ g
μ(h) = 0. �

2. Some proofs

We prove the equalities in Eq. (65), in particular the last
one, as follows. We first write down the action of T |A,μ〉
explicitly:

T |A,μ〉 = T eP 0|A,μ〉 = T e|A,μ〉

= 1

|G|
∑

g∈CA,h∈Zg

r(ZA,βgA )∑
ν=1

× χ̃
g
μ(h)α(g−1h−1,g,h)α(g−1h−1,h,g)−1

×α(h,g−1h−1,g)α(g,g−1h−1,h)−1

×α(g,h,g−1h−1)α(h,g,g−1h−1)−1

×α(g,hg−1,g)χ̃ g
ν (g−1h−1)|A,ν〉,
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where the inverse transformation in Eq. (66) is used. Note
that g must belong to precisely one conjugacy class, so in the
equation above the classes CA and CB are identified. Knowing
this, we rewrite the action of T in the equation above by
grouping the 3-cocycles into the twisted 2-cocycles:

T |A,μ〉

= 1

|G|
∑

g ∈ CA

h ∈ Zg

r(ZA,βgA )∑
ν=1

βg(g,g−1h)χ̃ g
μ(h)χ̃ g

ν (g−1h)

× βg(h,g−1h−1)

βg(g−1h−1,h)
|A,ν〉

= 1

|G|
∑

g ∈ CA

h ∈ Zg

r(ZA,βgA )∑
ν=1

βg(g,g−1h)χ̃ g
μ(h)χ̃ g

ν (g−1h)

× [ηg(h,gh)]−1|A,ν〉

= 1

|G|
∑

g ∈ CA

h ∈ Zg

r(ZA,βgA )∑
ν=1

βg(g,g−1h)χ̃ g
μ(h)χ̃ g

ν (g−1h)|A,ν〉,

(F5)

where, in the last step, use is made of Eq. (49) to absorb the
ηg term into the projective characters χ̃

g
μ and χ̃

g
ν .

Because Eq. (69) says that ρ̃g
μ(g) is a multiple of the identity

matrix, we have

βg(g,g−1h)χ̃ g
μ(h) = tr[βg(g,g−1h)ρ̃g

μ(h)]

= tr[ρ̃g
μ(g)ρ̃g

μ(g−1h)]

= tr

[
χ̃

gA

μ (gA)

dimμ

1ρ̃g
μ(g−1h)

]

= χ̃
gA

μ (gA)

dimμ

χ̃g
μ(g−1h).

Clearly,
∑

h = ∑
g−1h, together with the orthogonality condi-

tion in Eq. (50), the summation evaluates to

T |A,μ〉 = χ̃
gA

μ (gA)

dimμ

|A,μ〉, (F6)

confirming Eq. (65).
In the sequel, we derive the S matrix in Eq. (63). We first

act the S operator on a generic eigenvector |B,ν〉 of the T
operator.

S|B,ν〉 = SeP 0|B,ν〉 = Se|B,ν〉
= 1√|G|

∑
g′∈CB,h′∈Zg′

χ̃ g′
ν (h′)

×α(g′−1h′−1,g′,h′)α(g′−1h′−1,h′,g′)−1

×α(h′−1,g′−1,g′)−1α(g′,g′−1h′−1,h′)−1

×α(g′−1h′−1,g′,g′−1)α(g′−1,g−1h−1,e)−1

×α(g′,g′−1h′−1,g′)|h′−1,g′〉.
Notice that in the equation above, the first two and the
fourth α terms define a twisted 2-cocycle βg′ (g′−1h′−1,h′)−1,

the sixth α equals 1 as it is normalized, and by the
3-cocycle condition, the fifth and seventh α terms are
equal to α(h′−1,g′,g′−1)α(g′,g′−1h′−1,g′)−1, which together
with the third α term, define another twisted 2-cocycle
βg′(h′−1,g′−1)−1. As such, the above equation becomes

S|B,ν〉 = 1√|G|
∑

g′∈CB,h′∈Zg′

χ̃ g′
ν (h′)

×βg′(g′−1h′−1,h′)−1βg′(h′−1,g′−1)−1|h′−1,g′〉
= 1√|G|

∑
g′∈CB,h′∈Zg′

χ̃
g′
ν (h′−1)βg′(h′−1,h′)

×βg′(g′−1h′−1,h′)−1βg′(h′−1,g′−1)−1|h′−1,g′〉
= 1√|G|

∑
g′∈CB,h′∈Zg′

χ̃
g′
ν (h′−1)|h′−1,g′〉,

where the second equality and third equality are, respectively,
the results of the following two identities:

ρ̃g′
ν (h′)ρ̃g′

ν (h′−1) = βg′(h′−1,h′)1

⇔ ρ̃g′
ν (h′) =

[
ρ̃g′

ν (h′−1)
]†

βg′(h′−1,h′)

⇔ χ̃ g′
ν (h′) = χ̃

g′
ν (h′−1)βg′ (h′−1,h′),

which is due to the unitarity of the projective represent-
ation ρ̃,

βg′ (h′−1,h′)βg′(g′−1,e)

βg′(g′−1h′−1,h′)βg′(g′−1,h′−1)
= 1

⇐⇒ βg′ (h′−1,h′)
βg′(g′−1h′−1,h′)βg′(h′−1,g′−1)

= 1,

which is a consequence of the (twisted) 2-cocycle condition,
the normalization of βg′ , and the fact that βg′(g′−1,h′−1) =
βg′(h′−1,g′−1) because h′−1 must be βg′–regular otherwise

χ̃
g′
ν (h′−1) vanishes.

As such, the S matrix reads

s(Aμ)(Bν) = 〈A,μ|S|B,ν〉
= 1

|G|
∑

g ∈ CA

h ∈ Zg

∑
g′ ∈ CB

h′ ∈ Zg′

χ̃
g
μ(h)χ̃ g′

ν (h′−1)〈g,h|h′−1,g′〉

= 1

|G|
∑

g ∈ CA

h ∈ Zg

∑
h ∈ CB

g ∈ Zh

χ̃
g
μ(h)χ̃h

ν (g),

where 〈g,h|h′−1,g′〉 = δh′−1,gδg′,h is understood. This proves
Eq. (63).

125114-32



TWISTED QUANTUM DOUBLE MODEL OF TOPOLOGICAL . . . PHYSICAL REVIEW B 87, 125114 (2013)

*yuting@physics.utah.edu
†ywan@meso.t.u-tokyo.ac.jp
‡wu@physics.utah.edu
1X. G. Wen, Phys. Rev. B 40, 7387 (1989).
2D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48,
1559 (1982).

3R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
4N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991).
5X. G. Wen, Phys. Rev. B 44, 2664 (1991).
6R. Moessner and S. L. Sondhi, Phys. Rev. Lett. 86, 1881 (2001).
7V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59, 2095 (1987).
8X. G. Wen, F. Wilczek, and A. Zee, Phys. Rev. B 39, 11413 (1989).
9N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).

10V. Gurarie and L. Radzihovsky, Phys. Rev. B 75, 212509 (2007).
11M. A. Levin and X.-G. Wen, Phys. Rev. B 71, 045110 (2005).
12Z.-C. Gu and X.-G. Wen, Phys. Rev. B 80, 155131 (2009).
13F. Pollmann, E. Berg, A. M. Turner, and M. Oshikawa, Phys. Rev.

B 85, 075125 (2012).
14F. Haldane, Phys. Lett. A 93, 464 (1983).
15C. L. Kane and E. J. Mele, Phys. Rev. Lett.95, 226801 (2005).
16C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
17B. A. Bernevig and S.-C. Zhang, Phys. Rev. Lett. 96, 106802 (2006).
18J. E. Moore and L. Balents, Phys. Rev. B 75, 121306 (2007).
19L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803

(2007).
20X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B 78, 195424

(2008).
21Z.-C. Gu and X.-G. Wen, arXiv:1201.2648 (2012).
22L.-Y. Hung and Y. Wan, Phys. Rev. B 86, 235132 (2012).
23X. Chen, Z.-X. Liu, and X.-G. Wen, Phys. Rev. B 84, 235141 (2011).

24X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, arXiv:1106.4772
(2011).

25Y.-M. Lu and A. Vishwanath, Phys. Rev. B 86, 125119 (2012).
26R. Dijkgraaf, C. Vafa, E. Verlinde, and H. Verlinde, Commun. Math.

Phys. 526, 485 (1989).
27E. Dijkgraaf, Robbert and Witten, Commun. Math. Phys. 429, 393

(1990).
28M. Propitius, Ph.D. thesis, University of Amsterdam, 1995.
29V. I. A. and Arnold and B. A. Khesin, Topological Methods in

Hydrodynamics (Springer, Berlin, 1998).
30A. Kitaev, Ann. Phys. 303, 2 (2003).
31A. Kitaev, Ann. Phys. 321, 2 (2006).
32U. Pachner, Arch. Math. 30, 89 (1978).
33U. Pachner, Ahb. Math. Sem. Univ. Hamburg 57, 69 (1987).
34A. Coste, T. Gannon, and P. Ruelle, Nucl. Phys. B 581, 679 (2000).
35R. Dijkgraaf, V. Pasquier, and P. Roche, Nucl. Phys. B, Proc. Suppl.

18 60 (1991).
36F. A. Bais, B. J. Schroers, and J. K. Slingerland, Phys. Rev. Lett.

89, 181601 (2002).
37G. Moore and N. Seiberg, Commun. Math. Phys. 123, 177 (1989).
38M. Wakui, Osaka J. Math. 29, 675 (1992).
39L. Cincio and G. Vidal, Phys. Rev. Lett. 110, 067208 (2013).
40Y. Hu, S. D. Stirling, and Y.-S. Wu, Phys. Rev. B 85, 075107 (2012).
41Z. Wang, Topological Quantum Computation (American Mathe-

matical Society, Providence, 2010), 1st ed.
42V. G. Turaev, Quantum Invariants of Knots and 3-Manifolds (Walter

de Gruyter, Berlin, 1994).
43Z. Kádár, A. Marzuoli, and M. Rasetti, Int. J. Quantum. Inform. 07,

195 (2009).
44M. Levin and Z.-C. Gu, Phys. Rev. B 86, 115109 (2012).

125114-33

http://dx.doi.org/10.1103/PhysRevB.40.7387
http://dx.doi.org/10.1103/PhysRevLett.48.1559
http://dx.doi.org/10.1103/PhysRevLett.48.1559
http://dx.doi.org/10.1103/PhysRevLett.50.1395
http://dx.doi.org/10.1103/PhysRevLett.66.1773
http://dx.doi.org/10.1103/PhysRevB.44.2664
http://dx.doi.org/10.1103/PhysRevLett.86.1881
http://dx.doi.org/10.1103/PhysRevLett.59.2095
http://dx.doi.org/10.1103/PhysRevB.39.11413
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.75.212509
http://dx.doi.org/10.1103/PhysRevB.71.045110
http://dx.doi.org/10.1103/PhysRevB.80.155131
http://dx.doi.org/10.1103/PhysRevB.85.075125
http://dx.doi.org/10.1103/PhysRevB.85.075125
http://dx.doi.org/10.1016/0375-9601(83)90631-X
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.96.106802
http://dx.doi.org/10.1103/PhysRevB.75.121306
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://arXiv.org/abs/arXiv:1201.2648
http://dx.doi.org/10.1103/PhysRevB.86.235132
http://dx.doi.org/10.1103/PhysRevB.84.235141
http://arXiv.org/abs/arXiv:1106.4772
http://dx.doi.org/10.1103/PhysRevB.86.125119
http://dx.doi.org/10.1007/BF01238812
http://dx.doi.org/10.1007/BF01238812
http://dx.doi.org/10.1007/BF02096988
http://dx.doi.org/10.1007/BF02096988
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1007/BF01226024
http://dx.doi.org/10.1007/BF02941601
http://dx.doi.org/10.1016/S0550-3213(00)00285-6
http://dx.doi.org/10.1016/0920-5632(91)90123-V
http://dx.doi.org/10.1016/0920-5632(91)90123-V
http://dx.doi.org/10.1103/PhysRevLett.89.181601
http://dx.doi.org/10.1103/PhysRevLett.89.181601
http://dx.doi.org/10.1007/BF01238857
http://dx.doi.org/10.1103/PhysRevLett.110.067208
http://dx.doi.org/10.1103/PhysRevB.85.075107
http://dx.doi.org/10.1142/S0219749909004785
http://dx.doi.org/10.1142/S0219749909004785
http://dx.doi.org/10.1103/PhysRevB.86.115109



