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Wigner crystallization in two dimensions: Evolution from long- to short-ranged forces
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We study fermions in two dimensions interacting via a long-ranged 1/r potential for small particle separations
and a short-ranged 1/r3 potential for larger separations in comparison to a length scale ξ . We compute the energy
of the Wigner crystal and of the homogeneous Fermi liquid phases using a variational approach, and determined
the phase diagram as a function of density and ξ at zero temperature. We discuss the collective modes in the
Fermi liquid phase, finite temperature effects on the phase diagram, and possible experimental realizations of
this model.
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I. INTRODUCTION

Inhomogeneity plays an important role in many highly
correlated materials.1–8 For example, stripe phases which
break translational symmetry of real space in one direction
have been observed in high temperature superconductors.4

Similarly, a Wigner crystal (WC) phase1 which has only
discrete translational symmetry of triangular lattices and
sixfold rotational symmetry has been observed in electrons
on the surface of liquid helium2,9 and in ultraclean two-
dimensional hole gases.3

For interactions which decay as the power law 1/rα , a
classical argument shows that the potential energy scales with
density as nα/2 in two dimensions (2D) and the kinetic energy
as n. The ratio of the potential to the kinetic energy scales
as nα/2−1, which becomes n−1/2, for Coulomb interactions, a
constant for 1/r2, and n1/2 for 1/r3 potentials. A stable WC
crystal phase occurs when the interaction energy is greater
than the kinetic energy.1 Hence, a WC is expected in the high
density regime or low density regime depending on the power
law decay of interactions. For Coulomb forces this suggests
that there is a phase transition at decreasing densities from a
homogeneous Fermi liquid (FL) phase, which is conducting,
to a WC phase, which is insulating. In this regime, perturbative
methods fail and one must resort to numerical studies.5,6

In reality, many important systems do not have pure power
law interactions. For two-dimensional electron gases (2DEGs)
in semiconductor inversion layers or quantum wells, the
presence of a nearby gate modifies the Coulomb interaction.
Image charges emerge at the gate and screen the Coulomb
(1/r) interaction, which become 1/r3 at large distances
beyond a length scale given by the distance to the gate.
The effects of such long-ranged forces change the energetics
of the 2DEG.10 Recently, the effects of long-ranged forces
on superconductivity have been explored, too.11 A similar
experimental scenario occurs in ionic liquid transistors,12,13

where an electrolyte is used as a dielectric in a standard field
effect transistor configuration. Positive and negative charges
accumulate at opposite ends of the electrolyte. Finally, recent
progress in cooling techniques have allowed the study of
degenerate dipolar gases14–22 including Wigner crystallization
of dipoles with 1/r3 potentials20 and collective modes.21–24

Such objects interact as 1/r3 at large separations. At short

distances the interaction potential is modified by the interac-
tions between the electronic clouds. The common feature of
these systems is that there is a length scale in the interactions.
They are composed of charges of opposite signs which are
located in layers separated by a dielectric. As such, the
interparticle potential crosses over between two different
power law regimes.

In this paper, we study the ground state properties and
collective modes of polarized electrons in 2D with screened
Coulomb interactions. Such a system is realized in a 2DEG in
the presence of a nearby gate and a magnetic field parallel to
the surface to avoid significant orbital effects. We also describe
the related problem of a gas of fermionic dipoles which
have a finite size. To be concrete, we consider an interaction
interpolating smoothly between a 1/r (1/r3) potential at short
(long) distances

V (r) = e2

εr
− e2

ε(r2 + ξ 2)1/2
, (1)

where ξ represents the screening length. While three-
dimensional effects have been investigated in a variety of
contexts,25 here we consider a 2D model. Our phase diagram
agrees with studies of 2DEGs with a nearby gate,7,8 and of
electrons on the surface of liquid helium.26 In our analysis, we
consider a many-body wave function in the form of a Slater
determinants and variational single-particle wave functions
for the FL and WC phases. In the WC phase, the variational
parameter is the spatial extent of the single-particle wave
functions. Optimizing the total energy at zero temperature we
explicitly calculate and compare the ground state energies of
the WC and FL phases. We note that the effects of screened
interactions on the capacitance of 2DEGs and ionic liquids
have also been explored.10,13

The corresponding zero-temperature (T = 0) phase dia-
gram is presented in Fig. 1 as a function of the length scale
ξ and density n parametrized by rs = 1/(a0

√
πn), where

a0 = εh̄2/(me2) is the Bohr radius in the presence of the
dielectric constant ε. The FL and WC phases are indicated in
the phase diagram and are labeled according to the dominant
interaction regimes. For fixed ξ > ξc there is a regime of
densities where the Wigner crystal is energetically more
favorable than a uniform FL. We also show the asymptotic
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FIG. 1. (Color online) Phase diagram of fermions with two-body
interaction, Eq. (1). The phase boundary between the Wigner crystal
(WC) and uniform Fermi liquid (FL) phase as a function of the
screening length ξ in units of a0 and density n = 1/(πa2

0r
2
s ). Circles

represent numerical points with 55 electrons and the solid line is a
guide to the eye. Also shown is the ξ = rs line, which divides the
Coulomb 1/r regime (right) from the 1/r3 regime (left).

forms of the phase boundaries in dashed (red) lines. In the
regime dominated by 1/r3, the asymptotic phase boundary
corresponds to ξ ∼ r

1/2
s , while in the Coulomb case it is

rs = const (≈ 24.2). Intuitively, for 1/r3 potentials (left of
the ξ = rs line) the kinetic (1/r2

s ) and potential (e2ξ 2/r3
s )

energies are comparable when ξ ∼ r
1/2
s , whereas for the 1/r

regime, the potential energy scales as e2/rs and these energies
are comparable when 1/r2

s is a constant (≈ 1.72 × 10−3).
Notice that for ξ < ξc = 27.5a0 there is no WC phase. The
existence of the maximum is a general feature that also follows
from the physical argument described above; if ξ is too small,
the potential energy cannot be of the same order as the kinetic
energy. The limit ξ → ∞ (Coulomb regime) is not strictly
accessible within our method. However, by extrapolating, we
find that the WC phase is more favorable than the WC phase
for rs > 24.2.

For ξ < ξc and increasing density from zero to finite values,
we find a first order phase transition from a dipolar FL to
a WC. This phase transition has been studied numerically
in the context of dipole gases with pure 1/r3 forces.20 With
additional increases of the density beyond the ξ = rs line, the
WC crosses over to a Coulomb WC. Upon further increase of
the density, the WC melts into a FL. This reentrant behavior for
the FL phase is a remarkable characteristic of any 2D system
interacting via an effective potential which crosses over from
long to short range. Figure 1 constitutes one of our main results.

In what follows we show how this phase diagram is
obtained. In Sec. II, we present the Hamiltonian and in Sec. III,
we compute the energy of the homogeneous FL and discuss
its collective modes, as they are modified by the presence of
ξ . In Sec. IV, we obtain the energy in the WC phase with
a variational wave function. In Sec. V, we discuss in detail
the physical significance of our results, and we compare the
energies of these two states in different density regimes in
order to determine the ground state of the system. In addition,
we discuss the scaling of energy of the WC with respect to

density, give a schematic finite temperature phase diagram,
and we present our concluding remarks.

II. MODEL

We start from the microscopic Hamiltonian

Ĥ = −
∑

i

∇2
i

2m
+

∑
i<j

V (ri − rj ), (2)

where the first term corresponds to the kinetic energy and the
second term is given in Eq. (1), which describes the interactions
between spinless fermions. The variable ξ is the “screening”
length and we treat it as a phenomenological parameter. It
could represent a number of physical quantities, e.g., twice the
distance between a polarized 2DEG and a nearby gate or the
classical effective size of the dipoles. Here, ε is the dielectric
constant of the medium. Note that for a fixed density and
in the limit ξ → ∞, the interaction becomes V (r) = e2/εr ,
whereas, in the limit ξ → 0, it becomes V (r) = (eξ )2/εr3 to
lowest nonvanishing order in ξ . In Sec. V, we also discuss
polarized fermionic dipoles where there is a factor of 2 in the
two-body interaction.

For both FL and WC phases, we consider the many-body
ground state wave function to be

�(r1,r2, . . . ,rN ) = A [φ1(r1) · · · φN (rN )] , (3)

where N is the number of particles, and A is an operator
that describes the antisymmetrization necessary for indistin-
guishable fermions. The results for indistinguishable bosons
and for classical distinguishable particles are straightforward
extensions. For simplicity, we assume that the spin degrees
of freedom are frozen, such that the wave function describing
individual particles φ�(r�) are either plane waves in the FL
phase, or Gaussian centered at individual sites of a triangular
lattice in the Wigner crystal phase.

III. FERMI LIQUID PHASE

To begin, let us consider the homogeneous FL phase. Our
system has two length scales. The first scale is ξ , while the
second is the interparticle distance k−1

F set by the density
n = k2

F /(4π ), where kF is the Fermi momentum of the FL
with Fermi energy EF = k2

F /2m. The relative size of these
length scales determines the range of the potential. Using the
relation between n, kF , and rs , we see that for ξ/(a0rs) � 1
the fermions interact with a 1/r3 potential, whereas for
ξ/(a0rs) 	 1 they interact with the Coulomb 1/r potential
(see Fig. 1). The energy per particle of a uniform and polarized
FL is

EFL

E0
= 2

r2
s

+ 2ξ̄

r2
s

− 1

ξ̄

[
I0(4ξ̄ /rs) − I2(4ξ̄ /rs)

+ 8ξ̄

πrs

− 1 − L0(4ξ̄ /rs) + L2(4ξ̄ /rs)

]
, (4)

where ξ̄ = ξ/a0 is scaled by the Bohr radius a0 = εh̄2/me2,
and the energy EFL is scaled by the Bohr energy E0 = e2/2a0.
The functions In(x) are the nth order modified Bessel function
of the first kind and Ln(x) are the nth order Struve functions.
In obtaining Eq. (4), we used the fact that the two-body
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FIG. 2. (Color online) Energy per particle vs density (in units of
particles per ξ 2) of the WC and FL phases, for ξ = 40a0. See also
Fig. 3. Inset: Ewc(s) vs size of the wave function.

interactions shown in Eq. (1) have a Fourier transform
V (q) = (2πe2/εq)(1 − e−ξq), where q is the magnitude of
the two-dimensional momentum vector.

The first term in Eq. (4) is the kinetic energy and scales
as the density n. The second term in Eq. (4) is the Hartree
contribution, which also scales as n. In the limit ξ̄ → ∞,
EFL/E0 = 2/r2

s + 2ξ̄ /r2
s − 16/(3πrs) is formally divergent

as the interaction potential is long ranged, that is, it behaves
as 1/r . In a 2DEG the positive background charge cancels the
Hartree term and, in this case, EFL/E0 = 2/r2

s − 16/(3πrs),
in agreement with known results.27 The last term within
the square brackets is the Fock contribution, which becomes
−2ξ̄ /r2

s + 256ξ̄ 2/(45πr3
s ) as ξ̄ → 0 and leads to EFL/E0 =

2/r2
s + 256ξ̄ 2/(45πr3

s ) + O(ξ 3) in this 1/r3 regime. To O(ξ )
the Fock term cancels the Hartree term for pure 1/r3 potentials.
Physically, the system behaves as a charge neutral FL of
dipoles. We note that including a background to enforce charge
neutrality, as in 2DEGs with 1/r potentials, leads to negative
energies and a self-bound system. However, in the present
case the energies are positive and the system has positive
pressure. The energy of the uniform FL is shown in Fig. 2
for ξ = 40a0.

A. Collective modes

The length scale ξ in the potential introduces important
modifications to the collective excitations in the FL phase. The
Fourier transform of Eq. (1) at zero momentum is well defined,
V (0) = 2πe2ξ . For these kinds of forces, it is very important
to keep the Hartree and Fock terms in any approximation to the
self-energy28 as this provides a conserving approximation.29

The collective modes are given by the zeros of the dielectric
function ε(q,ω) = 1 − V (q)
(q,ω). A nonconserving ran-
dom phase approximation (RPA) calculation gives

ωq = vF (ξ̄ /2)1/2q, (5)

for ξ̄ 	 1 and ωq = vF [1 + ξ̄ 2/2]q for ξ̄ � 1. Hence, we
expect the system to support zero sound modes. A detailed
calculation likely renormalizes the zero sound velocity, but
does not alter the qualitative physical phenomenon; see, for
example, the analysis performed in the context of polarized

dipole gases.21–24 The speed of the zero sound diverges
when ξ → ∞, since the power expansion in q/ωq breaks
down in this limit. Indeed, the plasmon dispersion relation
in 2DEGs has been extensively studied in GaAs (Refs. 30
and 31) semiconductor quantum wells. The Fourier transform
of the pure Coulomb potential V (q) ∼ 1/q diverges at zero
momentum and leads to gapless ∼√

q mode dispersion.
According to the variational principle, the energy obtained

using the many-body wave function described in Eq. (3) is a
rigorous upper bound for the true ground state energy of the
system. In the following analysis, we perform a variational
calculation of the ground state energy of the WC phase and
compare it with that of the FL phase obtained in Eq. (4).

IV. WIGNER CRYSTAL PHASE

In the Wigner crystal phase, the single-particle wave
functions are localized at sites i of a 2D triangular lat-
tice, φi(r) = [1/(s

√
π )] exp[−(r − Ri)2/(2s2)], where Ri is

the site position and s parametrizes the 2D size of the
wave function. These single-particle wave functions are
approximately orthonormal, since the overlap at different
sites is exponentially small,

∫
d2r φ∗

i (r)φj (r) = exp[−(Ri −
Rj )2/4s2] = exp[−R2

ij /(4s2)], provided that the separation
Rij between sites i and j is much larger than the extent s

of the single-particle wave function. We denote the lattice
spacing by l and consider the regime of weakly overlapping
single-particle wave functions, where s < l/2. The localized
nature of the many-body wave function is reasonable only in
this regime. Explicitly, the energy per particle in the WC phase
is

EWC(s̄)

E0
= 1

s̄2
+

∫ ∞

0
dk̄(1 − e−ξ̄ k̄)e−k̄2 s̄2/2F1(k̄)

−
√

2π

2s̄

[
1 − eξ̄ 2/2s̄2

erfc

(
ξ̄√
2s̄

)]
F2(s̄), (6)

where the functions Fi(y) are lattice sums given by F1(k̄) =∑
i �=j J0(k̄R̄ij )/N appearing in the second term of Eq. (6),

and F2(s̄) = ∑
i �=j e−R̄2

ij /2s̄2
/N appearing in the third term

of Eq. (6). Here, we defined the dimensionless variables
s̄ = s/a0, k̄ = ka0, R̄ij = Rij/a0 and Jn is the nth order Bessel
function of the first kind. The first term is the zero point
motion due to the localization of the particles at the lattice
sites. This term favors large single-particle wave functions. The
second and third terms are the Hartree-Fock (HF) contribution
(respectively). The HF contribution is nonmonotonic in s. The
extension to particles with bosonic statistics results in a change
of the sign of the Fock term whereas for classical particles only
the Hartree term is present.

We comment on the limiting behavior of Eq. (6). Fermions
interact via a Coulomb potential when ξ → ∞. In this limit,
the ground state energy is

ECoulomb
WC

E0
= 1

s̄2
+

√
2π

2s̄N

∑
i �=j

e−R̄2
ij /4s̄2

I0
(
R̄2

ij /4s̄2
)

−
√

2π

2s̄N

∑
i �=j

e−R̄2
ij /2s̄2

. (7)
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In the regime of nonoverlapping wave functions l/2s 	 1, the
asymptotic form of the Bessel function is I0(x) ∼ ex/

√
2πx.

As we see, the series in the second (Hartree) term diverges
when N → ∞ as expected, since we have not included a
neutralizing background charge. In this case, taking a finite
N gives a well defined energy which is nonmonotonic in s.
We find that this behavior extends to the regime of ξ < ∞
and produces a WC state energy EWC(s) that does not have
a minimum as a function of s, when the density is either
too small or too large. On the other hand, in the limit of
ξ → 0, we obtain that the O(ξ ) contribution from the Fock
term cancels the Hartree term (as in the FL phase) and the first
nonvanishing term is O(ξ 2). Since the resulting expression is
not very illuminating, we omit it here.

V. DISCUSSION AND CONCLUSIONS

For ξ < ∞, the integral appearing in Eq. (6) needs to be
calculated numerically. We computed the energy per particle
as a function of density n = 2/(l2

√
3) in the WC phase for a

2D triangular array of 43 and 55 particles. In Fig. 1, we show
the resulting phase diagram for 55 particles, but we would like
to emphasize that the qualitative behavior found is essentially
unchanged for higher number of particles. The calculation of
phase boundaries for the full range of parameters ξ and rs is
very intensive when it involves a large number of particles,
however, we do not expect any major qualitative changes in
behavior.

We establish the phase boundary between solid and liquid
phases by minimizing the energy in the solid phase with respect
to the variational parameter s. A typical behavior of the energy
as a function s is shown in Fig. 2. When there is a local
minimum of EWC(s) located at s = s0, we compare the energy
EWC(s0) with the energy of the screened FL with the same
density. We find that the energy of the WC is always lower than
the FL energy in the regime of tested values of ξ . However, a
local minimum of EWC(s) does not exist for densities below
a minimum nc, min(ξ ) and for densities above a maximum
nc, max(ξ ), where the WC phase is unstable. This establishes
that the WC phase is unstable for densities n satisfying the
condition n < nc, min(ξ ) and n > nc, max(ξ ), in which case the
FL phase is the stable phase.

A phase transition from a ferromagnetic FL to a ferromag-
netic WC phase in a 2DEG with 1/r interactions is expected to
occur at rs = 29 according to recent Monte Carlo simulations.6

In the ξ → ∞ limit, we find such a phase transition at
rs = 24.2, with finite-sized samples. We note that our results
do not rigorously apply in this regime since interactions are
of pure Coulomb character and a neutralizing background
charge must be explicitly considered. Here, we are interested
in the regime of ξ < ∞, where our results are expected to be
qualitatively correct.

We note that the optimized energy values in the WC can be
fitted with a power law

EWC(s0) ∼ n4/3 (8)

in the low density regime, i.e., rs 	 ξ , where interactions are of
1/r3 character. This is shown explicitly in Fig. 3 for ξ = 40a0.
We tested the scaling for 40 < ξ/a0 < 60 to within 1% error,
but we cannot completely rule out a crossover behavior.32 A
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FIG. 3. (Color online) Scaling of the energy EWC of the Wigner
crystal (WC) near nc, min and nc, max. Here, ξ = 40a0. The picture
shows two different scalings with density. The crossover occurs at
rs = ξ/a0 where nξ 2 = 1/π . The inset shows a fit at low densities
(blue line) and the classical ∼n3/2 scaling of the WC (red dashed
line).

similar n4/3 scaling behavior has been studied in 2DEGs with a
1/r3 potential and spin-orbit interactions.33 In the high density
regime (rs � ξ ) the energy is a linear power law of the density
EWC = A|n − nc, max| + B, where the interactions are of 1/r

character. This scaling persists in the same tested range and
within the same error.

As mentioned earlier, the potential shown in Eq. (1)
describes the interactions between polarized electrons in a
clean 2DEG with a nearby gate. As is well known, by
applying a magnetic field parallel to the surface one avoids
significant orbital effects and a one-component 2DEG is
obtained. However, disorder is always present and makes it
difficult to reach the low density regime where the reentrant
FL is predicted.

In contrast, another system, where disorder does not play
a role, corresponds to degenerate polarized dipolar Fermi
gases.14,15 We extended our results to describe a system of
dipoles in 2D whose centers move in the plane perpendicular
to the polarization axis.34 In this case, ξ could parametrize
a hard core radius (or size of the molecule) below which
interactions are no longer of the 1/r3. In this situation, the
interaction potential of Eq. (1) acquires a prefactor of 2, but
the calculations are entirely analogous. In Fig. 4 we show the
phase diagram for 43 dipoles. We observe the same features as
for screened 2DEGs. For ξ < ξc = 15a0 there is no stable WC
phase. In the Coulomb limit the WC is stable for rs > 13a0. In
the expressions for the energy of the FL and WC a prefactor
of 2 is needed in the interaction energy. The collective mode
dispersion is ωq = vF ξ̄ 1/2q for ξ̄ 	 1 and ωq = vF [1 + 2ξ̄ 2]q
for ξ̄ � 1. Our results suggest that realistic dipole gases with
size ∼10a0, are Fermi liquids at low and very high densities.
We provided estimates for the critical densities as a function
of ξ in a simplified model. If only 1/r3 interactions are
considered,20 one expects a WC instability with increasing
densities near the dashed red line on the left in Fig. 4, where
the interaction energy is of the order of the kinetic energy.
However, this red dashed line is strongly modified (blue line),
when the hard core is considered.
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A. Finite temperature phase diagram

Next, we discuss the finite temperature phase diagram of
the 2DEG with screened interactions. The assumption is that
the interactions can be modeled with the simple form Eq. (1).
At finite temperatures, we expect the melting of the WC to
a liquid-like state.35 In Fig. 5, we show the phase diagram in
the (T ,n,1/ξ 2) parameter space. In the 1/ξ 2 = 0 plane, the
thermodynamics of the classical 2DEG is determined by the
quantity �, which is the ratio of the interaction energy to the
kinetic energy per particle. For a classical 2DEG, this ratio
is � = (πn)1/2e2/T . For � < 1, the kinetic energy dominates
and the system behaves as a classical liquid. For � 	 1, the
Coulomb interaction dominates and we expect a classical WC.
The phase boundary is given by the criterion2 � = �c ∼ 100.
For temperatures below EF ∼ n ∼ 1/r2

s , we obtain a quantum
WC. At high densities the melting temperature is eventually
driven down with increasing density as the Pauli principle pre-
vents strong correlations. There is a quantum phase transition
in the regime with pure Coulomb interactions at rs ≈ 24.2.
This transition can be seen along the 1/r2

s line in Fig. 5, where

FIG. 5. Schematic phase diagram as function of density ∼1/r2
s ,

temperature T , and screening parameter ξ in appropriate units. � is
the ratio of the potential to kinetic energy. See text for details.

� ∼ n−1/2 in the Hartree-Fock approximation. This defines
a critical density above which � < 1 and a quantum fluid
is recovered. The full melting line and the quantum/classical
crossover in the plane 1/ξ 2 = 0 is sketched in Fig. 5 (see
also Ref. 31). Connecting the WC phases of the 1/ξ 2 = 0
and T = 0 planes is a dome, where a WC is stable. Within this
dome there exist at least four regions corresponding to quantum
versus classical and 1/r vs 1/r3 regimes. Outside the dome
there are only quantum and classical liquid-like phases.

In conclusion, we have obtained the phase diagram of
fermions with interactions which interpolate smoothly be-
tween short- and long-ranged regimes in 2D. The phase
diagram obtained is generic to any system with such crossover,
e.g., clean 2DEGs in semiconductor inversion layers or
quantum wells in the presence of a screening gate, and
polarized dipolar gases.
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