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Alexander Selem,'>" C. M. Herdman,">>' and K. Birgitta Whaley'-?
'Berkeley Quantum Information & Computation Center, University of California, Berkeley, California 94720, USA
2Department of Physics, University of California, Berkeley, California 94720, USA
3Department of Chemistry, University of California, Berkeley, California 94720, USA
(Received 8 November 2012; published 6 March 2013)

We study the n = 2 Rényi entanglement entropy of the triangular quantum dimer model via Monte Carlo
sampling of Rokhsar-Kivelson- (RK-) like ground-state wave functions. Using the construction proposed by
Kitaev and Preskill [Phys. Rev. Lett. 96, 110404 (2006)] and an adaptation of the Monte Carlo algorithm
described by Hastings er al. [Phys. Rev. Lett. 104, 157201 (2010)], we compute the topological entanglement
entropy (TEE) at the RK point y = (1.001 £ 0.003) In 2, confirming earlier results. Additionally, we compute
the TEE of the ground state of a generalized RK-like Hamiltonian and demonstrate the universality of TEE over
a wide range of parameter values within a topologically ordered phase approaching a quantum phase transition.
For system sizes that are accessible numerically, we find that the quantization of TEE depends sensitively on
correlations. We characterize corner contributions to the entanglement entropy and show that these are well

described by shifts proportional to the number and types of corners in the bipartition.
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I. INTRODUCTION

Quantum liquid phases of matter that do not break con-
ventional symmetries can have “hidden” nonlocal quantum
orders. Such quantum liquids are ordered quantum phases that
are not described by a local order parameter. Topologically
ordered phases in particular, are of great interest because of
their potential to form the basis of a physically fault-tolerant
quantum computer.! There is therefore a strong incentive
to realize such phases in experimental systems as well as
to identify theoretical models which possess topologically
ordered phases.

However, the lack of a local order parameter inhibits the
identification of topologically ordered phases in theoretical
models. Kitaev and Preskill> and Levin and Wen? identified a
subleading negative constant term in the bipartite entanglement
entropy, the topological entanglement entropy (TEE), which
allows for the identification and classification of topological
order. Constant subleading terms can arise in other con-
texts including critical systems,*”’ from Goldstone modes
in symmetry-broken states,® and from corners in nonsmooth
bipartions as seen in integer quantum Hall wave functions.’

Lattice models with hard local constraints, such as quantum
dimer and loop models, possess quantum liquid ground-state
phases, including topological phases. In particular, the hard-
core quantum dimer model on the triangular lattice (TQDM)
has a Z, topologically ordered dimer liquid phase.'®!! Since
topological phases generally arise in strongly interacting
systems which are not always tractable by analytic meth-
ods, numerical studies of these models are often necessary.
Lanczos diagonalization may be used to compute the bipartite-
entanglement entropy in small systems.'? However, computing
the subleading term in the entanglement requires using
moderately large systems which are not generally accessible
via Lanczos diagonalization.

At the Rokhsar-Kivelson (RK) point the TEE of the TQDM
has been computed using Pfaffian (Kasteleyn) methods with
high (10~%) numerical accuracy,'>!* and away from the RK
point using exact diagonalization on small lattices.'? Recent
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work by Hastings et al.'"* has demonstrated a method for
computing the Rényi entanglement entropy via Monte Carlo
methods. This is attractive, since these techniques generally
allow for the study of moderately large systems.

Demonstrating the universality of the TEE within a topo-
logical phase and its behavior across phase transitions is an
area of ongoing research. Temperature-induced transitions
have been explored in the work of Isakov et al.'” The
behavior of TEE approaching a quantum phase transition was
previously studied by Stéphan et al. by interpolating between
the triangular- and the square-lattice dimer models.°

Here we adapt the method of Hastings et al.'* to the
TQDM. We confirm the previous results for the TEE,'>!* and
characterize constant contributions due to corner effects at the
RK point which may compete with the TEE. Additionally we
compute the TEE of a “generalized” RK wave function, using
the model of Trousselet ef al.,'® and show the evolution of TEE
on approaching a first-order quantum phase transition. The
results strongly suggest the universal nature of the TEE inside
the dimer liquid phase in the thermodynamic limit, although
correlations are found to limit convergence in finite systems.

A. Triangular lattice quantum dimer model

The fully packed hard-core dimer model is defined on a
lattice with degrees of freedom labeled by the occupation of
dimers on links, and the constraint that exactly one dimer must
touch each vertex. The Hilbert space is comprised of the fully
packed dimer coverings on the lattice satisfying the vertex
constraint (=|{C})). Different dimer coverings are defined
to be orthogonal. Rokhsar and Kivelson first introduced this
model on the square lattice.!” It was subsequently generalized
by Moessner and Sondhi'” to the triangular lattice, where in-
dications of a Z, topologically ordered ground state emerge.'!
The Hamiltonian for the TQDM is

H=>"—t(IZ){{J| +Hc) + v(|ZNZ| + [(I)(£))
P

(1)
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where p labels all minimal Rhombus plaquettes on the
triangular lattice, and the kinetic () term which flips parallel
dimers around a plaquette is the minimal dimer hopping that
respects the vertex constraint (here # > 0 always). The v term
acts as a potential energy between parallel dimers. At the RK
point, defined by v = ¢, the ground state can be written as

1
1€2) =) —=IC) (@)
27z

where the sum is over configurations reachable by plaquette
flips (Z is the number of elements in the sum). On the
torus, plaquette flips conserve two parities that are defined
by counting the occupation of dimers intersecting the two
noncontractible loops of the torus. Dimer coverings are split
into four topological sectors defined by these parities, such that
local rearrangements of dimers cannot connect configurations
in two different topological sectors. Plaquette flips on the
triangular lattice are believed to be nearly ergodic within a
topological sector, with the exception of 12 symmetry related
“staggered” configurations that have no flippable plaquettes.
Therefore four distinct ground states are defined by these
parities, which we label Q = (0,0),(1,0),(0,1),(1,1) (O for
even parity). This topological degeneracy is a characteristic
of the topological order present in the ground state at the RK
point.

On the triangular lattice the topologically ordered dimer
liquid phase persists for a finite region below the RK point, in
the range 0.86 ~ v/t < 1.'%!8 Qutside of this region (v/t <
0.86and v/t > 1), the ground state is one of several symmetry-
broken ordered crystalline phases.!®

The RK wave function can be generalized to weighted
superpositions of dimer configurations {C},

1
) =) —e 9|0), 3)
27

where Z = Y. e 2E© and E(C) is the “classical” energy
of C. Such a generalized RK wave function is the exact
zero-energy ground state of a corresponding RK-like local
Hamiltonian.!” In Sec. III B, we compute the TEE of a
generalized RK wave function that was previously studied
in Refs. 19 and 20, and seen to interpolate between the
topologically ordered phase and a symmetry-broken phase.

B. Entanglement entropy and topological phases

Bipartite entanglement entropy has emerged as a powerful
probe of quantum systems. The bipartite entanglement entropy
of a pure state |W) is defined with respect to a bipartition of
the lattice into a region A and its complement B. The von
Neumann entropy is defined as

S(pa) = —Trpalnpy 4
and the Rényi entropy is defined as

Su(pa) = Trpy, ®)

l1—n
where py = Trp|W) (W] is the reduced density matrix of A.
The Rényi entropy reduces to the von Neumann entropy in
the limit » — 1 and both are symmetric under exchange of A
and B, S,(pa) = S,(pp). Ground states of local Hamiltonians
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are known to exhibit a boundary law scaling in region size
[i.e., in two dimensions (2D) the scaling is with the perimeter
length],?! although critical fermions are a notable exception to
this rule.?? In two dimensions this scaling can generically be
written as

S(pa) =aL + Blog(La/a)+ Co+ O(/La),  (6)

where the leading term is proportional to the perimeter L 4, and
« is a nonuniversal constant. The logarithmic term appears
in certain quantum critical theories (the base is unspecified
since differences can be absorbed into 8). However for gapped
phases, itis expected that 8 = 0. The constant term Cy has been
shown to arise in critical phases as well as in topologically
ordered phases.””’

For topological phases, there is a universal, negative, con-
stant subleading term, the topological entanglement entropy:
—y € Cy (with y, also referred to as yiopo, > 0).% Topological
phases may be described by an effective topological quantum
field theory;"** such theories are categorized by the so-called
total quantum dimension D. For conventional ordered phases
D =1 and for topologically ordered phases D > 1. The TEE
is given by

y=InD 7

and therefore is a witness of topological order (y =0 for
conventional phases).

Physically the origin of this term can be seen by considering
string-net wave functions as an effective theory of topological
order.”* The nonlocal order encoded in a topologically ordered
phase can be understood in terms of effective loop or string-net
degrees of freedom describing the wave function. Specifically,
for discrete gauge theories, wave functions are comprised
of different types of nonbranching loops with (counting the
absence of a loop as one type) the relation: the number of
types of loops is equal to the number of elements of the group
which is equal to the total quantum dimension D. Then as
a direct consequence of the fact that each type of loop must
enter and exit the boundary an even number of times, the
effective degrees of freedom crossing the bipartition boundary
as probed by the entanglement entropy is corrected by a
factor of 1/D. This is responsible for the reduction of the
entanglement entropy scaling by In D.

The dimer model belongs to the Z class'! of topologically
ordered phases®>?* (the effective loop degrees of freedom
are so-called transition loops;?*>?® see the Supplemental
Material).?’” Therefore for the dimer model and other Z,
topologically ordered phases y = In2. Furthermore, it has
been shown?® that y is independent of the Rényi parameter
n, so that any Rényi entanglement entropy can be used to
compute the quantity y.

In Sec. IV we show that for nonsmooth bipartitions on
a lattice there can be nonuniversal constant contributions to
Co. We will split Cy into universal and nonuniversal parts
by writing Co = —y + k. Our results are consistent with a
nonuniversal term « of the form x = ) a;n;, where n; is the
number of corners of type i. As discussed in Sec. IV, these
corner terms can be thought of as coming from a substitution in
a generalized linear scaling S4 ~ Y _; &;{;, where the boundary
vertices i contribute different constants «;.
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II. MONTE CARLO SAMPLING
FOR ENTANGLEMENT ENTROPY

In Ref. 14 Hastings et al. describe a SWAP algorithm to
compute S(p4) via Monte Carlo simulations [in the following,
S4 will always be taken to mean S(p4)]. In the current work
we will be considering generalized RK points, characterized
by wave functions that are explicitly written as a weighting of
configurations. Therefore we are able to compute expectation
values of estimators using classical Monte Carlo sampling of
the wave function.

To estimate the entanglement entropy, following Ref. 14,
we define a new “doubled” system as two noninteracting
independent copies of the original, labeled 1 and 2. Each
corresponding copy has the identical bipartition A and B so
that the Hilbert space of the doubled system is a tensor product
of the two copies with a state labeled by degrees of freedom
in Ay,B; and A,,B;, respectively. Then S4 is related to the
expectation of the SWAP, operator defined on the doubled
Hilbert space by its action in swapping the degrees of freedom
in A:

SWAP4|A1B1) @ |A2By) = |A2By) ® |A1By). (8)

Hastings et al. showed that Tr,oi = (SWAP,), and therefore
S4 = — In{SWAP,).

Taking C to represent a “doubled” dimer covering, the
matrix elements of the SWAP operator are

(C'IsWAP4|C) = 8crc,8(Cla), ©))

where Cy4 is the configuration resulting from swapping C over
region A, and §(C|,) is 1 if the swapped configurations do not
violate the hard-core dimer constraint, and zero otherwise. We
can write the expectation value of SWAP as a weighted sum
over configurations C:

1 —E(C)—E(C)
~ Z e (C'|SWAP,|C)
c'.c

1

= Z e ECO-EQO g y)
C

(SWAP,) =

=Y e WS HI(C),
c

where Z = )" exp[—2E(C)], I1(C) = exp[—2E(C)]/Z can
be viewed as a probability distribution, and AE(C|y) =
E(Cy) — E(C). We see then that by classical Monte Carlo
sampling of I (C), we can compute the expectation value of
the SWAP operator with use of the estimator e 2£()§(C|,).
For the RK ground state, the expectation value of the SWAP
operator is simply the fraction of the dimer configurations that
are A swappable.

As a direct consequence of the perimeter law scaling, the
principal limitation of this approach is the exponential decay
of (SWAP,) with boundary length. Following Ref. 14, a “ratio
method” may be employed in which the ratio of expectation
values of SWAP can be computed more efficiently:

(SWAP /) 550
(SWAP,4)

(10)

—a(Ly—=Ly)
)

Y

~e

where region A’ is larger than A but with perimeter L 4
sufficiently close to L4 such that the ratio is not too small.
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FIG. 1. (Color online) Regions A’ and A as described in the
text. Note that A’ also includes the blue links. Shaded plaquettes
are examples of constrained plaquettes for the case where A is kept
flippable.

While a single ratio combination gives the difference of
the entanglement entropy of two regions, the entanglement
entropy of a single (large) region, required to compute the
TEE, can be determined by computing the entropy of a
single small region and adding successively the computation
of differences (SWAP ratios) [i.e., Sa, = Sao + Z:':l(SAi —
SA(i—l)) for An > e > A,‘ > e > A()]

The ratio method can be specialized to the dimer system at
generalized RK points. An example of two overlapping regions
A’ and A is shown in Fig. 1. Because the estimator used to
compute (SWAP4) [Eq. (10)] does not have support everywhere
in the doubled Hilbert space (it is nonzero only for swappable
configurations), a difficulty with directly computing the ratio
in Eq. (11) is that swappable configurations over A’ are not a
subset of those over A and vice versa. Instead, what is actually
directly possible to compute are the following ratios:

(SWAP 4/ SWAP,4)

(SWAP,/)

(SWAP 4/ SWAP,4 )
(SWAP,)

/

12)

From these, the ratio we want is simply R/R’. Each of these
ratios has a simple Monte Carlo interpretation. For example,
inserting 1 = )" |C)(C| into the numerator of R and acting
each SWAP towards the center readily leads to

_ X 8(CI3(C el ~EEIEC)
- Y e ECO-EO§(C| »)

_ Ze_AE(C|A’)5(C|A/)HA(C)’
Cla

R

13)

where the sums have been explicitly written as restricted to A-
swappable configurations, AE(C|s) = E(Cy) — E(C), and

exp[—E(Cy) — E(C)]
>l exp[—E(Ca) — E(O)]

4(C) = (14)

To compute R, we sample dimer configurations (weighted
by e ECHD=E©) in such a way that the A boundary al-
ways remains swappable, and then measure the estimator
8(C|a)e 2ECIv) At the standard RK point one may set
exp — 1, and R is simply the ratio of configurations that are
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swappable for both A and A’ to those only A swappable. To
compute R’, the region which is kept swappable is reversed.

To generate configurations which always remain swappable
over A, updates are done independently for each copy, except
for certain constrained plaquettes which must be flipped
simultaneously in copies 1 and 2. The constrained plaquettes
are those which are not entirely in region A or B (the
complement of A). Some examples are shown in Fig. 1. For
simply connected bipartitions these updates should be ergodic
over all possible A-swappable configurations. However, if A
is not simply connected, it can be shown that this is not the
case, and another method for ratio updates is needed. Details
are presented in the Supplemental Material.”’

III. COMPUTATION OF TOPOLOGICAL
ENTANGLEMENT ENTROPY

The TEE has been computed at the RK point in Refs. 12 and
13 using Kasteleyn matrices.”® Here we report computations
of this quantity using Monte Carlo simulation, which also
allows us to sample generalized RK points whose ground
states exhibit a quantum phase transition. Our findings are
useful for further numerical studies away from RK-like wave
functions.

There are two routes to compute the TEE term numerically.
The first is to use extrapolations: that is, to extrapolate the
linear part of the entanglement entropy scaling for different
perimeter-sized bipartitions and deduce the intercept. The
second is to make use of cancellations: i.e., to consider a
difference of bipartitions whose total net perimeter cancels
while the net number of boundaries does not, thereby leaving
the topological contribution y .

When using extrapolations, one has the further option of
employing simply connected polygonal bipartitions such as
parallelograms of various sizes, or splitting the torus—the
topology of periodic boundary conditions—into two pieces
with two separate smooth boundaries. In the latter, each
region is a non-simply-connected strip and tori of different
widths must be used for boundary scaling (Fig. 2). Polygonal
bipartitions suffer from corner contributions masking the
TEE, which we describe in detail in Sec. IV. Extrapolations
from strips, which have smooth boundaries, avoid these
corner effects. Also, these types of nontrivial bipartitions can
yield more information regarding the topological phase, such
as S-matrix terms.’*32 In recent work,>’ a single smooth
bipartition of a cylinder has been employed to detect TEE
using the density matrix renormalization group (DMRG).
However, there are difficulties with this approach using current

/& 7]

FIG. 2. Sample parallelogram extrapolation (left); strips with
periodic boundary conditions assumed (right).
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FIG. 3. Levin-Wen (left) and Kitaev-Preskill (right) constructions.

methods. First, we found that strips on thin tori appear to
have substantial even-odd finite-size effects. Also, it is more
difficult to formulate an appropriate ratio method for this
strip geometry, given the ergodicity problems discussed in
the Supplemental Material.”” Therefore, the alternative can-
cellation strategy turns out to be more useful for Monte Carlo
simulations.

Two cancellation geometries are typically used: a Levin-
Wen-type construction® shown in Fig. 3 gives the TEE as
two pairs —2y = (Sapcp — Sasc) + (Sac — Sapc), while
the Kitaev-Preskill construction® (Fig. 3) gives the TEE as
three pairs plus an extraregion: —y = (Sapc — Sap) + (Sa —
Sac)+ (Sg — Sgc) + Sc. It turns out that in both of these
constructions the numbers and types of corners cancel as well.

In practice, however, using the types of updates described
in Sec. II, the Levin-Wen construction turns out to not be
possible for the ratio method. The issue is that the updates fail
to be ergodic in the configuration space. The problem occurs
for calculations when the regions Sipcp and Sac are the
constrained regions (the denominators in the ratios of Sec. II;
see the Supplemental Material>’). Consequently the Kitaev-
Preskill construction offers the best method for extraction
of y.

A. RK point

We take region ABC to be an inscribed regular hexagon
with divisions as shown in Fig. 4. Note that since the Hilbert
space is defined on links, partitions are uniquely defined by
specifying to which region every link belongs. w is the outer
hexagon’s side width. Our results for the RK point wave
function are summarized in Fig. 5 and Table I for various sized
hexagons and lattices. If the spacing from the outer hexagon
edge to the lattice edge is kept on the order of the hexagon side
width or greater, the resulting TEE depends little on lattice
sizes, except in limiting the size of the outer hexagon that can
be used (this turns out not to be the case for more general wave
functions). For w = 6 convergence to the expected value of

VAVAVAY A" A T A AYAVAVAV
VAVAVAVAVAVAVAVA -
V4 VAVAVAVYAVAVAVAN o /4N
A/NNNNNNN\ N
JAVAVAVAVAVAVAVAVAVAY
\WAVAVAVAVAVAVAVAVAVA
VAVAVAVAVAVAVAVAVAVAN
\WAVAVAVAVAVAVAV, - 4W4
\WAVAVAVAVAVAVAN -V

FIG. 4. (Color online) Triangular-lattice version of the Kitaev-
Preskill construction used in the Monte Carlo runs.
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FIG. 5. (Color online) Net entanglement entropy (TEE) from
the Kitaev-Preskill construction, for the RK wave function on the
triangular lattice, computed using the partitions shown in Fig. 4.
Unless noted, the ground-state parity 2 is (0,0). The solid horizontal
line is the predicted value of the TEE (=In 2).

In 2 is seen (within the error bars). We also computed the TEE
for the different ground states on the torus, 2 = (1,0),(1,1)
(in the notation of Sec. [ A). These states also converge to the
expected value, In 2.

B. TEE approaching a quantum phase transition:
Generalized RK wave function

A number of phases from other classical weightings have
been studied.'®!*?° One class of modifications interpolates
between the liquid-like RK point and symmetry-broken
phases by preferentially weighting dimers on links reflecting
the desired ordered conﬁguration.20 These wave functions,
however, explicitly break translation invariance and therefore
constructions which rely on perimeter cancellations fail to
accurately probe the TEE unless very large regions can be
used.

A classical dimer model that preserves translation invari-
ance was discussed by Trousselet et al. in Ref. 16. In this
model the wave function was weighted to favor dimers in
parallel (equivalent to a flippable plaquette), as if they would
“interact classically” in the sense of E(C) as a classical energy.
In this case, E(C) = In(a)N;(C), where N ¢(C) is the number
of flippable plaquettes for a covering C, and « is an adjustable
parameter. « = 1 corresponds to the RK point while o < 1
favors flippable plaquettes. Such interacting wave functions

TABLE I. Numerical values for selected points of Fig. 5.

Monte Carlo run y/In2
w = 6 (18 x 18 lattice) 1.001 £ 0.003
w =6 (16 x 16 lattice) 0.994 £ 0.002
w =5 (18 x 18 lattice) 0.995 £+ 0.003
w =5 (16 x 16 lattice) 0.995 +0.001
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are the ground state of the RK-like Hamiltonian'®?°
Hy =1 —(&){{J|+Hc)
)
+ (aMNPITNT | + MNP 1) () (15)

with ANy = Ny(/\/) — N (&) (the difference in flippable
plaquettes due to a flip of plaquette p).

The topological liquid phase with a finite correlation
length persists for @ < 1 until the wave function undergoes
a first-order phase transition near o, ~ 0.2.'%2° Below this
value only configurations that have the maximum number of
flippable plaquettes contribute to the wave function. These
are 12 columnar symmetry-broken configurations, plus a large
number of configurations related by single line shifts across
the lattice.'*-1

Using the ratio method and the Kitaev-Preskill construction,
we are able to probe the TEE of such interacting wave
functions in the liquid regime as the system approaches the
transition point. Although the TEE is believed to be universal
in the topological liquid regime, there is to date only one
known example at 7 = 0, namely, that given by Stéphan
et al. in Ref. 6. These authors computed the TEE for a dimer
model starting on the triangular lattice (at the RK point) and
interpolated to the square lattice using Kasteleyn matrices.?>3*
Atacritical point the entanglement entropy is predicted to have
a constant positive shift. However Stéphan et al. found that the
TEE decreased below — In2 before rising toward a positive
value. The flow was well described by a single combination
of parameters L, where L is simultaneously the cylinder
circumference (the geometry used) and bipartition boundary,
while ¢ is the fugacity for dimers on diagonal bonds [r = 0 is
the square-lattice fugacity; note that this is a different ¢ from
the one in Eq. (1)]. Deviation away from In2 begins for as
large a value as tL ~ 9 (for Rényi parameter n = 1.5).

Our results for the interacting wave function are presented
in Fig. 6 as a function of the parameter «. Since the ordered
state involves many local minima, we cannot go through
the transition without nonlocal updates, which we have not
implemented in the current variant of the ratio method. The
TEE appears to be a robust indicator of topological order for

Interacting Wavefunction

0.8 .
® o s !l ' ! o
0.6 A 2 1
]
0.4r o B 1/w scaling 7
= 0.8
é 0.2 t 0.7 -
& 0.6 °
0.0k Side Width: |05 ® o]
N A w=4|04 o 45|0* &
a _ |03} & 4
—0.2t B w=5"llo s ®al
L ° w=6 11
. 65 4
4703 01 05 05 07 08 09 10

FIG. 6. (Color online) TEE for the ground state of Eq. (15) as a
function of the parameter «. All points are computed on an 18 x 18
lattice, with the TEE extracted from a Kitaev-Preskill construction
with outer hexagon width w.
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FIG. 7. (Color online) Negative natural logarithm of the dimer-
dimer correlation at six lattice spacings apart on an 18 x 18 lattice
for the ground state of Eq. (15), as a function of the parameter «. ||,
L refer to dimers parallel to each other or offset by 60°, respectively.

a reasonable range of «. However, below o ~ 0.5 stronger
finite-size effects begin to affect the result. An investigation of
dimer-dimer correlations, discussed below, suggests that larger
correlations are the main reason for the deviation. While the
scaling with outer hexagon width w is not clear for the system
sizes studied (inset to Fig. 6), it suggests convergence to the
expected value of In 2.

The TEE begins to diverge from the theoretical value when
the bipartite region length scale w is on the order of ten times
the correlation length £ (for the current Rényi index n = 2).
For the interacting wave function [ground state of Eq. (15)],
the dimer-dimer correlation length does not diverge, since the
transition is first order; however, it grows compared to the
RK values. Figure 7 shows the negative natural logarithm of
dimer-dimer correlation at six lattice spaces apart—the length
scale of the boundary bipartitions w on an 18 x 18 lattice
(the lattice size for the results on Fig. 6). We use the negative
logarithm of the correlation function at a characteristic length
w (=6), to estimate w/&, where & is an effective correlation
length. The divergence from —In 2, beginning around o = 0.5,
corresponds to a value of 8 in Fig. 7. Expressed in this way,
the value can be compared to the results of Stéphan et al.,
where a deviation can also be seen at similar values [since t ~
1/&,% and deviations begin near Lt ~ O(10)]. Taken together,
these results suggest that, at least for dimer systems, the TEE
is quite sensitive to finite correlations, requiring bipartition
length scales up to O(10) times the correlation length. If such
scaling holds more generally, it will constitute an important
limitation on the use of numerics to extract the TEE.

IV. CORNER CONTRIBUTIONS
TO ENTANGLEMENT ENTROPY

As noted earlier, bipartitions with corners contribute a
nonuniversal constant « to the entanglement entropy. The
presence of corner shifts can be readily seen in the scaling
of various polygonal regions, in particular, of the hexagons,
triangles, and rhombi shown in Fig. 8. The offset appears to be
a constant shift. This is more precisely measured by computing
differences of bipartitions as discussed below.
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FIG. 8. (Color online) Entanglement entropy and best-fit line as
a function of polygonal region perimeters L, showing offsets for
different polygonal regions. Fits include total constant term; for
comparison the expected y = In2 = 0.693 is shown as the solid lines
in the inset.

Corner effects have been studied for the integer quantum
Hall wave function.’ In other topological phases there have not
been any studies on corner contributions that we are aware of,
although in Ref. 13 also the potential for nonuniversal constant
corner contributions away from the critical point was noted.
Our results are consistent with a total contribution x of the
formk = ), a;n; as found for quantum Hall systems in Ref. 9,
where i labels the types of corner, n; the number of corners
of type i, and {a;} are coefficients to be determined. With this
form, « exactly cancels for the Kitaev-Preskill construction if,
as required by the symmetry of entanglement entropy, a; = a;,
where 7 is the complement of i (the angle which combines with
it to form a closed circle). Apart from the numerical values,
the most important result of this section is that corner effects
do saturate to constant shifts, allowing for the extraction of the
TEE by the approach of canceling regions.

Since the linear shifts in Fig. 8 include the topological
term, the triangles actually have the smallest shift, despite
having sharper corners. More precise results confirm this. To
see why sharper corners can have a small effect, first note that
unlike in the continuum, the types of corners i are not solely
determined by angle. Microscopically, on the triangular lattice
there are a total of six types of corners (plus complements)

FIG. 9. (Color online) Six lattice corners. Type-I corner (top), left
to right, «,8,0. Corresponding type II on bottom.
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TABLE II. Corner shifts a;. The estimate is computed from the
analysis described in the Appendix and Supplemental Material. See
text and Fig. 10 for details of the Monte Carlo runs employed.

Corner Estimate Measured
lx —0.02 0.008 £0.002
106 0.09 0.0946 + 0.0001
1B —0.26 —0.2592 £ 0.0004
118 —0.02 —0.0011 £0.0004
lo —0.62 —0.677 £0.002
Ilo —0.23 —0.238 £0.002

labeled asi € lw, I8, Io, lla, 118, and Ilo. The roman numeral
refers to the angle (I = 60°, I = 120°) and the greek letter
indicates whether incoming links are included or not, as shown
in Fig. 9. Measured values of the shifts a; are presented in
Table II. Estimates are obtained from a mean-field-like analysis
presented in the Appendix and Supplemental Material.?” Two
important points can be deduced from the analysis that give
insight into the form of x and also the original question,
i.e., why sharp corners have a small contribution. First,
the corner terms can be thought of most naturally as part
of a generalized linear scaling with boundary vertices {v},
Sa~ 2 ail; =3 a;t for j € {v}, where ¢ is the lattice
spacing. When all «; are equivalent (o; = o), as in a straight
side, this becomes a linear scaling = L s«. Then the corner
shift can be understood as single dislocation « — «;, so that
a; = Aa = a; — . Second, to first order, the scaling «; is
determined by the number of links in region A versus B (the
complement) that meet at boundary vertices. For side vertices
away from corners these are 4 and 2; therefore corners I and
118 which have the same incoming links have the smallest shift,
followed by (3,3) which adds entropy for Ile, then (1,5) for
1B and Ilo, and (0,6) for Io. These values are all in agreement
with the ordering shown in Table II.

Several Monte Carlo runs were used to extract the measured
a;. The types Il and Il were taken by combining the

Ia-Combination

13-Combination
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information from (1) the linear scalings in Fig. 8 after removing
the TEE entropy (assuming it is In2), (2) the differences
between those polygons [note that any combination of those
gives only 2a(Ile) — a(Ie)], and (3) specially constructed
combinations called “Io and Ilae combinations” shown in
Fig. 10. The measured 18 and IIB are easily obtained solely
from the L-shaped combinations shown in Fig. 10 (“I18 and 113
combinations”); similarly for Io and Ilo.

In Fig. 10, the most important feature is that corner effects
do indeed saturate to constant shifts, rendering constructions
like the Kitaev-Preskill approach useful for extracting the TEE.

V. CONCLUSIONS

We have demonstrated that Monte Carlo techniques provide
a viable method for the numerical calculation of the TEE of
the ground states of generalized RK points. In addition to
confirming existing results, we have also been able to apply
the method to a generalized RK wave function and to thereby
investigate the behavior of TEE approaching a quantum phase
transition. Our results suggest that the TEE is indeed a
robust indicator of topological order in the thermodynamic
limit throughout the quantum liquid regime. However, we
also find a strong dependence on correlations that requires
bipartitions with side lengths of order at least ten times the
correlation length. If this estimate applies generally, it implies
that numerics will be severely constrained in the vicinity of a
second-order phase transition. These results are therefore an
important guide for future quantum Monte Carlo studies.

The third aspect that we have been able to study here is the
nature of corner contributions. First, the magnitude of corner
shifts is of order y so their effects must be controlled either
by canceling them out or by dealing exclusively with smooth
boundaries. On a lattice with periodic boundary conditions,
however, these are not topologically trivial. For example,
difficulties in the linear extrapolations of Ref. 12 may have
been due to the effective variation of edges associated with
the radial-like region definitions. Second, at least for the RK

Io-Combination
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FIG. 10. (Color online) Bipartition geometries used to extract corner contributions. Entropy differences are computed between the black
and red regions. The dotted lines represent sides with “missing links” used to form 8 corners. The I« and Il combinations involve pairs plus
an extra region, thereby requiring a subtraction of the TEE (taken to be In 2). The blue horizontal lines are the values used for Table II.
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point, we can verify that corner shifts do indeed saturate to
constant values, thereby making possible constructions which
cancel corners linearly. It remains to be seen whether this is
also the case for more general wave functions.

Our results are important for future work employing
quantum Monte Carlo calculations and for conclusions about
the practical utility for TEE as a probe of topological order.
In this regard, the present results allow us to conclude that the
TEE is a useful tool as long as correlation lengths are small
enough in at least one point of the topologically ordered liquid
phase. While the only other known example of the behavior
of the TEE on approaching a quantum phase transition does
suggest a similar behavior,'? further numerical studies of TEE
in exotic phases of matter should be of great value.

Note added. We recently became aware of similar work by
Pei et al.*®

ACKNOWLEDGMENT
This work was supported by NSF Grant No. PH4-0803429.

APPENDIX: ESTIMATE OF CORNER EFFECTS

Using Kasteleyn matrices,”3* an estimate for corner effects

can be obtained. Kasteleyn showed that the number of dimer
coverings on a lattice is given by the Pfaffian of a matrix K;;,
with i, j labeling lattice sites and K;; &= 1 (or suitable weights
in generalizations) for nearest neighbors and zero otherwise;
the sign is determined according to a convention of arrows
placed on the lattice. We refer readers to Refs. 13 and 35. Only
two facts will be used for the following arguments. First, Z is
equivalent to the number of coverings and equals the Pfaffian
of K [written Pf(K)]. Second, the square of the Pfaffian is
the determinant for an even-dimensional matrix: [Pf(K)]> =
Det(K).

For a configuration to be swappable, one simply needs to
satisfy the dimer constraint along boundary vertices equivalent
to {v}, which are vertices that have links belonging to both B
and A. For each boundary vertex in each configuration, a dimer
can be on a B link or an A link, which we will consider as a
“side parity” labeled as v = a or b if the vertex has a dimer
in A or B. Then swappability simply imposes that for every
boundary vertex, the dimer in copy 1 is in the same side as
the dimer in copy 2 (v; = v;). Using a similar notation to that
of Ref. 13, the number of swappable configurations can be
written as

Zswap = ZZ1|{u}Zz|{v}, (A1)
{v}

where Z |, is the set of dimer coverings in copy 1 (2) given
a set of A, B occupations, or side parities of {v}; the sum runs
over the combinations specifying a or b for the number of
boundary vertices, equivalent to N,.. Note that Z |,y = Z;|),
and each can be written as a Pfaffian, with certain constrained
links removed. The links to be removed are those which touch
a vertex v on the side A if v = b, or on the side B if v =«
(the Pfaffian will then generate combinations on the occupied
side). An example is shown in Fig. 11. An “exclusion matrix”
E can be defined so that for a link removed from site r to s,

PHYSICAL REVIEW B 87, 125105 (2013)

y -

B

A

A W 4

FIG. 11. (Color online) Boundary vertices in black shown taking
values {v} = {baabba} (periodic boundary conditions are not as-
sumed). The lattice to be included in K—FE is shown by the darkened
links.

E,, = K,, and it is zero otherwise, so that
Zswe = Y _[PRK — Elu))* =) Det(K — El)  (A2)
{v} {v}
with K and E now referring to only a single copy. Finally,

from Eq. (10) the entanglement entropy can be written as:

Zswap Det(K — E|{v})
Zswar mZ . Ty

2
iz —~ Det(K)

Sy=—1In (A3)

which matches the n = 2 Rényi entropy in Ref. 13. Next we
can employ a perturbation theory of matrices’’ and the trace
identity
Det(K — E|w))  Det(K)Det(1 — K'E|y)
Det(K) Det(K)
= exp[Trin(l — K" E|;y))]

1
= exp[Tr(—KlE — iK’lEK’lE .. ﬂ

(A4)

with E|,, implied in the last line. K ~! can be diagonalized in
Fourier space.® It decays exponentially in vertex separation;
for nearest neighbors i,j K ifjl = =£1/6, it vanishes for next-
to-nearest neighbors, and is ~0.02 for a three-link separation.
Because the number of terms contributing to the trace also
grows, the series does not converge as fast as K -1~ /6, but
roughly ~1/2, so that at least these two terms should be kept,
and we expect the estimates to be accurate to the order of 10% if
we ignore higher-order terms of the expansion. Ignoring those
terms and making the definitions T} |;,) = Tr(—K ~'E|;,)) and
Dl = Tr(—%K’1E|[U}K’1E|{U}), the resulting form is

Su = —anexp(Tll{v} + Daly)-
{v}

(A5)

The sum ranges over the a,b choices for each vertex.

If T'(2) depended only on the number of a versus b vertices
Eq. (AS) could be written as a binomial expansion or a Gaus-
sian in the large- N, limit. However, in general 77,y depend on
the details (ordering) of a particular set of a,b choices of {v}.
Specifically, the first term 7; = (K ') i(Elqy)ji 1s nonzero
only for i,j nearest neighbors of the “excluded lattice.” It
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is evaluated as —% > ;zi =T, where the sum is over all
vertices i, and z; is the number of nearest neighbors for the
ith vertex (of the excluded lattice). 77 can be readily summed
to —% x (number of removed links). This value depends on the
number of a versus b values and also the ordering. For example,
the number of links in the excluded lattice increases by 2 for
every v = b, but may increase by 3 or 4 for v = a, depending
on whether it follows an a or a b, respectively. Therefore, to
proceed, one can define a mean-field contribution as —% X 2
per v = b vertex but —%[3P + 4(1 — P)] per v = a vertex,
where P is the likelihood of finding a v = a neighbor, which
can be determined self-consistently. The second term 75 can
be put in a similar form provided one ignores K~' terms
connecting three links or more, as these contain a factor of 0.02.
Then 75 can be shown to be —% Zi [zi2 + z;(z; — 1)]. One can
also make a mean-field estimate for the average contribution

_2(na —
A ~ —In dl/la NU

2na — No/2)?

 (Tsidea — Tside,b)”
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to 7, by considering combinations of neighboring preceding
vertices. Note that the form of these terms as a sum suggests
the potential for the generalized linear scaling mentioned in
Sec. IV, SA ~ Zi a,-ﬁ,-.

If we call the average contribution to 7 per v = a vertex on
a straight side g , and similarly per v = b vertex Tgge », then
given a combination of vertices {v} (along a side) having n,
v = a vertices, T = T} + T, can be written in terms of these
average values:

T = Ny Tside,a + (Nv - na)fside,b~ (A6)

Put into this form (depending only on the number of a’s,
ng, in {v}), the sum [Eq. (AS5)] can be written as a binomial
expansion and approximated as the Gaussian integral in the
large-N, limit:

+ Ny In(2) + Tside,b(Nv —ng) + Tside,ana)

=N, (— In(2) — Teide,b —; Tside,a

Finally a corner shift for a corner of type c can be extracted
from the difference AS4(c) = S4 (N, — 1 side vertices + ¢) —
Sa(N, side vertices); with the exception of Io discussed below.
One can think of the first term as a binomial (Gaussian)
sum over N, — 1 noncorner terms multiplied by a factor
of (e™ + e™*) which generates the last two possibilities at
the corner with similar mean-field contributions for corner

Vertices: Tiy.q, Tl.b» T1g.a Tip.b> €1C.>” Then we can write
ASy = 0(Ny — 1) — In(e™ 4+ %) — (N,)  (A8)

or

2 8
— In(e™ + e%).

AS, = (ln(2) + Tside,b T Tside,a  (Tside,a — Tside,b)2>

(A9)

8

) = g4(N,). (A7)

For the case of o, at the “corner” there is no boundary vertex.
To compute the shift in this case, instead two vertices are
removed, and the factor 7y , refers to a substitution of the
vertex just before the corner. So the above formulas can be
used with 7*’s and the first term (enclosed in parentheses)
multiplied by 2.

Insertion of estimates for the 7’s (see the Supplemental
Material?’) yields the results given in Table II which are in
good agreement with the measured values. Also, note that the
term multiplying N, in 04(N,) [Eq. (A7)] is an estimation of
the slope of the entanglement entropy. The value for the slope
obtained by plugging in the mean-field values is 0.51, which is
on the order of 10% different from the fitted slope values near
0.58. The relative success of the substitutions suggest that the
corners can be seen explicitly in the generalized linear scaling
> a;¢; noted above and in Sec. IV.
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