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Dimensionality effects in the local density of states of ferromagnetic hosts probed via STM:
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We theoretically investigate the local density of states (LDOS) probed by an STM tip of ferromagnetic
metals hosting a single adatom and a subsurface impurity. We model the system via the two-impurity Anderson
Hamiltonian. By using the equation of motion with the relevant Green’s functions, we derive analytical expressions
for the LDOS of two host types: a surface and a quantum wire. The LDOS reveals Friedel-like oscillations and
Fano interference as a function of the STM tip position. These oscillations strongly depend on the host dimension.
Interestingly, we find that the spin-dependent Fermi wave numbers of the hosts give rise to spin-polarized quantum
beats in the LDOS. Although the LDOS for the metallic surface shows a damped beating pattern, it exhibits the
opposite behavior in the quantum wire. Due to this absence of damping, the wire operates as a spatially resolved
spin filter with a high efficiency.
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I. INTRODUCTION

The local density of states (LDOS) of electronic systems
with impurities can exhibit Fano line shapes due to the quantum
interference between different electron paths. Such interfer-
ence arises from the itinerant electrons that travel through the
host and tunnel into the impurity sites.1,2 For a single magnetic
adatom in the Kondo regime3 probed by a scanning tunneling
microscope (STM) tip, interesting features manifest when one
has a spin-polarized electron bath present. Here, we mention
the splitting of the Kondo peak in the differential conductance
due to the itinerant magnetism of the host.4 Such a hallmark
has already been found experimentally in an Fe island with a
Co adatom.5 Additionally, the STM system can also operate
as a Fano-Kondo spin filter due to a spin-polarized tip and a
nonmagnetic host.6,7 In the absence of a ferromagnetic host,
the Fano-Kondo profile becomes doubly degenerate.8–23 Away
from the Kondo regime, a spin diode emerges.24

In the condensed-matter literature on scanning microscopy,
there is a profusion of work discussing spin-dependent phe-
nomena employing ferromagnetic leads coupled to quantum
dots or adatoms in the Kondo regime.4,6,7,25–44 Here, we
mention those with metallic samples and buried impurities in
which the anisotropy of the Fermi surface plays an important
role in electron tunneling.45–50 According to the experiment
of Prüser et al.,45 such anisotropy allows atoms of Fe and Co
beneath the Cu(100) surface to scatter electrons in preferential
directions of the material due to an effect called “electron
focusing.” In this scenario, the STM becomes a new tool for
the detection of the Fermi surface signatures in the real lattice
of a metal. In contrast, much less attention has been devoted to
spin-polarized systems away from the Kondo regime51–53 and
with two impurities.

Thus, in this paper, we present a theoretical description
of the systems sketched in Fig. 1. We show that interesting
phenomena, such as the spin-polarized quantum beats in
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FIG. 1. (Color online) Side-coupled geometry with two impuri-
ties in the presence of an STM tip. �tip = πw2ρtip, where w and
ρtip are the tip-host hopping term and the DOS for the STM probe,
respectively. (a) Left panel: 2D evanescent waves appear in the LDOS
of a metallic surface. The system is treated as a two-dimensional
electron gas shown in the right panel. (b) Left panel: the confinement
of 1D waves in specific directions (perpendicular wave fronts) is
due to the electron-focusing effect (see Ref. 45). Each direction is
modeled by a quantum wire as illustrated in the right panel.

the LDOS and the spin-filtering effect, arise. To this end,
we consider two distinct geometries consistent with recent
experiments: a metallic surface and a quantum wire. The two-
dimensional (2D) case emulates the Fe island in Ref. 5. The
quantum wire on the other hand, mimics the electron-focusing
effect investigated in Ref. 45. Interestingly, we note that
the pioneering quantum wire treatment for electron focusing
in a side-coupled geometry can be found in Ref. 49. In
this treatment, the noninteracting single-impurity Anderson
model54 was solved in one dimension (1D) by considering the
impurity above the wire. We should also point out that the full
ab initio calculation that yields to electron focusing in Ref. 45
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can be qualitatively recovered by the simple quantum wire
model adopted in Ref. 49.

Here, we extend this one-dimensional treatment of the
Anderson Hamiltonian by including a spin-dependent DOS
for the wire, a second lateral impurity right beneath it, and
Coulomb interaction in both impurities. We perform our study
in the framework of the two-impurity Anderson model by
employing the equation-of-motion approach to calculate the
LDOS of the system. The Hubbard I approximation55 is used
by assuming, for the sake of simplicity, infinite Coulomb
energies at the impurities. We show that the LDOS can be
written in terms of the Fano factor, the Friedel-like function
for charge oscillations, and the spin-dependent Fermi wave
numbers of the host. Such quantities lead to spin-polarized
quantum beats in the LDOS. We also show that this effect
is strongly correlated to the host dimensionality. Thus, the
quantum beats in the LDOS of the metallic surface present
a long-range damped behavior in contrast to the undamped
one found in the quantum wire system. Such distinct features
originate from the specific forms assumed by the Fano factor
and Friedel function, which depend on the dimensionality of
the host. Therefore, the metallic surface and the quantum wire
become spatially resolved spin filters where the latter displays
a higher efficiency due to the undamped LDOS.

This paper is organized as follows. In Sec. II, we show
the theoretical model of the ferromagnetic hosts with the
impurities in the side-coupled geometry as sketched in Fig. 1
and derive the LDOS formula for both systems, the metallic
surface, and the quantum wire. The decoupling scheme
Hubbard I55 for the Green’s functions is presented in Sec. III.
In Sec. IV, we discuss the results for the quantum beats in the
LDOS and the spin filtering. The conclusions appear in Sec. V.

II. THEORETICAL MODEL

A. Hamiltonian

In order to probe the LDOS of the ferromagnetic hosts, we
represent an STM tip weakly connected to hosts hybridized
to a pair of side-coupled impurities as outlined in Fig. 1. The
systems we investigate are described according to the two-
impurity Anderson model given by the Hamiltonian,3

H =
∑
�kσ

ε�kσ c
†
�kσ

c�kσ +
∑
jσ

εjdd
†
jσ djσ +

∑
j

Ujd
†
j↑dj↑d

†
j↓dj↓

+
∑
j �kσ

[
Vj �k√
N

φ∗
�k ( �Rj )c†�kσ

djσ +
V ∗

j �k√
N

φ�k( �Rj )d†
jσ c�kσ

]
.

(1)

The spin-polarized electron gas forming the hosts is described
by the operator c

†
�kσ

(c�kσ ) for the creation (annihilation) of an

electron in a quantum state labeled by the wave vector �k,
spin σ , and energy ε�kσ . For the impurities, d

†
jσ (djσ ) creates

(annihilates) an electron with spin σ in state εjd with j = 1,2.
The third term of Eq. (1) accounts for the on-site Coulomb
interaction Uj at the j th impurity placed at position �Rj . In
our calculations, we assume U1 = U2 → ∞ for the sake of
simplicity.56 Finally, the last two terms mix the host continuum
of states and the levels εjd . This hybridization occurs at the

impurity sites �Rj via the host-impurity couplings Vj �k and the

plane waves φ�k( �Rj ) = ei�k· �Rj . N is the number of conduction
states. The ferromagnetic hosts are considered spin-polarized
electron baths, characterized by the polarization,

P = ρFM↑ − ρFM↓
ρFM↑ + ρFM↓

, (2)

in which

ρFMσ = ρ0(1 + σP ) (3)

is the density of states of the hosts at the chemical potential in
a Stoner-like framework,57,58 expressed in terms of the density
ρ0 for the case P = 0.

B. LDOS for the spin-polarized systems

To obtain the host LDOS, we introduce the retarded Green’s
function in the time coordinate,

Gσ (t, �R) = − i

h̄
θ (t)Z−1

FM

∑
n

e−βEn〈n|[
̃σ ( �R,t)
̃†
σ ( �R,0)]+|n〉,

(4)

where


̃σ ( �R) = 1√
N

∑
�k

φ�k( �R)c�kσ (5)

is the fermionic operator describing the quantum state of the
host site placed below the STM tip, h̄ is the Planck constant
divided by 2π, θ (t) is the step function at the instant t, β =
1/kBT with kB as the Boltzmann constant and T as the system
temperature, ZFM and |n〉 are the partition function and a
many-body eigenstate of the system Hamiltonian [Eq. (1)],
respectively, and [· · · , · · ·]+ is the anticommutator for Eq. (5)
evaluated at distinct times. From Eq. (4), the spin-dependent
LDOS at a site �R of the host [see Fig. 1] can be obtained as

ρσ
LDOS(ε,R) = − 1

π
Im{G̃σ (ε+, �R)}, (6)

where G̃σ (ε+, �R) is the time Fourier transform of Gσ (t, �R).
Here, ε+ = ε + iη and η → 0+. In what follows, we first
develop a general formalism for impurities localized at
arbitrary positions �Rj and �Rl ; later on, we take the limit
�Rj = �Rl = �0 in order to treat the side-coupled geometry of

this paper.
To obtain an analytical expression for the LDOS, we

apply the equation-of-motion approach to Eq. (4). Thus, we
substitute Eq. (5) in Eq. (4) and begin the procedure with

Gσ (t, �R) = 1

N
∑
�k�q

φ�k( �R)φ∗
�q ( �R)Gσ

c�kc�q (t) (7)

expressed in terms of

Gσ
c�kc�q (t) = − i

h̄
θ (t)Z−1

FM

∑
n

e−βEn〈n|[c�kσ (t),c†�qσ
(0)]+|n〉. (8)
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Performing ∂
∂t

on Eq. (8), we find

∂

∂t
Gσ

c�kc�q (t) = − i

h̄
δ(t)Z−1

FM

∑
n

e−βEn〈n|[c�kσ (t),c†�qσ
(0)]+|n〉

+
(

− i

h̄

)
ε�kσGσ

c�kc�q (t) +
(

− i

h̄

)

× 1√
N

∑
j

Vj �kφ
∗
�k ( �Rj )Gσ

dj c�q (t), (9)

where we have used

ih̄
∂

∂t
c�kσ (t) = [c�kσ ,H]

= ε�kσ c�kσ (t) + 1√
N

∑
j

Vj �kφ
∗
�k ( �Rj )djσ (t). (10)

In the energy coordinate, we solve Eq. (9) for G̃σ
c�kc�q (ε+) and

obtain

G̃σ
c�kc�q (ε+) = δ�k�q

ε+ − ε�kσ

+ 1√
N

∑
j

V �jkφ
∗
�k ( �Rj )

ε+ − ε�kσ

G̃σ
dj c�q (ε+).

(11)

Notice that we need to find the mixed Green’s function
G̃σ

dj c�q (ε+). To this end, we define the advanced Green’s
function,

Fσ
dj c�q (t) = i

h̄
θ (−t)Z−1

FM

∑
n

e−βEn〈n|[d†
jσ (0),c�qσ (t)]+|n〉,

(12)

which results in
∂

∂t
Fσ

dj c�q (t t) = − i

h̄
δ(t)Z−1

FM

∑
n

e−βEn

×〈n|[d†
jσ (0),c�qσ (t)]+|n〉 − i

h̄
ε�qσFσ

dj c�q (t)

+
(

− i

h̄

)
1√
N

∑
l

Vl �qφ∗
�q ( �Rl)Fσ

dj dl
(t), (13)

where, once again, we used Eq. (10), interchanging �k ↔ �q.
Thus, the Fourier transform of Eq. (13) becomes

ε−F̃σ
dj c�q (ε−) = ε�qσ F̃σ

dj c�q (ε−) + 1√
N

∑
l

Vl �qφ∗
�q ( �Rl)F̃σ

dj dl
(ε−),

(14)

with ε− = ε − iη. Applying the property,

G̃σ
dj c�q (ε+) = {

F̃σ
dj c�q (ε−)

}†
(15)

to Eq. (14), we show that

ε+G̃σ
dj c�q (ε+t) = ε�qσ G̃σ

dj c�q (ε+) + 1√
N

∑
l

V ∗
l �qφ�q( �Rl)G̃σ

dj dl
(ε+),

(16)

and

G̃σ
dj c�q (ε+) = 1√

N
∑

l

V ∗
l �qφ�q( �Rl)

ε+ − ε�qσ

G̃σ
dj dl

(ε+). (17)

Now, we substitute Eq. (17) into Eq. (11) and the latter into
Eq. (7) in the energy coordinate to obtain

G̃σ (ε+,R) = 1

N
∑

�k

|φ�k( �R)|2
ε+ − ε�kσ

+ (πρ0)2
∑

j

(qjσ − iAjσ )(qj − iAjσ )G̃σ
dj dj

(ε)

+ (πρ0)2
∑
j �=l

(qjσ − iAjσ )(qlσ − iAlσ )G̃σ
dj dl

(ε).

(18)

It is worth mentioning that the imaginary part of the first term
of Eq. (18) gives the background DOS of the host [Eq. (3)]
and the others describe impurity contributions with

qjσ = 1

πρ0N
∑

�k

Vj �kφ
∗
�k ( �Rj )φ�k( �R)

ε − ε�kσ

(19)

being the Fano parameter due to the single coupling Vj �k
between the host and a given impurity. This factor encodes the
quantum interference originated by electrons traveling through
the ferromagnetic conduction band that tunnel to the impurity
state and return to the band and those that do not perform such
trajectories. The definition of Eq. (19) is in accordance with
Fano’s theory1,2 and leads to interference patterns in the LDOS
as we see in Sec. IV. Additionally, we recognize

Ajσ = 1

ρ0 N
∑

�k
Vj �kφ

∗
�k ( �Rj )φ�k( �R)δ(ε − ε�kσ ) = |Ajσ |eiαjσ

(20)

as an expression that we call the Friedel function because
it leads to Friedel-like oscillations in the LDOS with αjσ

as a spin-dependent phase. In the end, the Green’s function
G̃σ (ε+,R), indeed, depends on G̃σ

dj dj
(ε) and the mixed Green’s

function G̃σ
dj dl

(ε). Finally, from Eqs. (6) and (18), the LDOS
of the ferromagnetic systems can be recast as the expression,

ρσ
LDOS(ε,R)

= ρFMσ + πρ2
0

∑
j

[(|Ajσ |2 − q2
jσ

)
Im

{
G̃σ

dj dj
(ε)

}

+ 2qjσ |Ajσ | sin

(
αjσ + π

2

)
Re

{
G̃σ

dj dj
(ε)

}]

+πρ2
0

∑
j �=l

��jlσ , (21)

where

��jlσ = −qjσ qlσ Im
{
G̃σ

dj dl
(ε)

} +
[
|Ajσ |qlσ cos

(
αjσ + π

2

)
+ |Ajσ ||Alσ | cos(αjσ − αlσ )

− qjσ |Alσ | cos

(
αlσ + π

2

)]
Im

{
G̃σ

dj dl
(ε)

}
+

[
qjσ |Alσ | sin

(
αlσ + π

2

)
+ qlσ |Ajσ |

× sin

(
αjσ + π

2

)
+ |Aj ||Al| sin(αjσ − αlσ )

]
× Re

{
G̃σ

dj dl
(ε)

}
. (22)
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The set of Eqs. (21) and (22) is the main analytical
finding of this paper. It describes the spin-dependent LDOS in
ferromagnetic hosts with two impurities localized at distinct
sites �Rj . In the absence of the last term of Eq. (21), it reduces
to the case of two decoupled systems with one impurity each.
The terms in Eq. (22), indeed, hybridize such single-impurity
problems via the mixed Green’s functions G̃σ

dj dl
(ε). Thus,

the LDOS formula encodes the single Fano factor qjσ , the
Friedel-like function Ajσ , and the new interfering term ��jlσ .

We close this section by recalling that phase αjσ is
nonzero for the quantum wire system as we will see later.
The quantities qjσ and Ajσ in the quantum wire device are,
indeed, functions that exhibit undamped oscillations as the
tip moves away from the impurities. Conversely, damped
oscillations are predicted in the metallic surface setup. In this
case, αjσ = 0, and Ajσ becomes a real function. Thus, the
quantity |Ajσ | should be read just as Ajσ in Eqs. (21) and
(22). Moreover, a ferromagnetic environment is characterized
by two spin-dependent Fermi wave numbers, namely, kF↑
and kF↓, which, at low polarization P , introduce a slight
difference between them. As a result, this feature leads to a
full LDOS ρ

↑
LDOS + ρ

↓
LDOS with spin-polarized quantum beats

that can be damped or undamped depending upon the system
dimensionality.59 We will look more closely at these features
later.

In STM experiments, in particular, within the linear-
response regime and neglecting tip-adatom coupling, the
differential conductance G = G↑ + G↓ is the observable
measured by the tip, whose spin component is given by4

Gσ = e2

h
π�tip

∫ +∞

−∞
ρσ

LDOS(ε)

[
− ∂f

∂ε
(ε − φ)

]
dε, (23)

where e is the electron charge (e > 0), �tip = πw2ρtip is the
tip-host coupling expressed in terms of the hopping term w

and the DOS ρtip for the STM probe, f is the Fermi-Dirac
distribution, and φ is the applied bias. For φ < 0, the host is
the source of electrons, and the tip is the drain. For φ > 0,
we have the opposite. It is useful to define the dimensionless
LDOS,

LDOS = ρ
↑
LDOS + ρ

↓
LDOS

ρFM↑ + ρFM↓
(24)

and the transport polarization,

PT = G↑ − G↓

G↑ + G↓ , (25)

in order to investigate the spin-polarized quantum beats as we
see in Sec. IV. Recall that, in the absence of the impurities,
the transport polarization of Eq. (25) becomes PT = P for low
enough temperatures as established by Eq. (2). In Sec. IV, we
verify that Eq. (25) oscillates around P , exhibiting two distinct
behaviors as a result of the system dimensionality—damped
spin-polarized quantum beats in the metallic surface setup and
an undamped pattern in the quantum wire device.

C. Fano and Friedel-like functions for the
metallic surface system

In this section, we calculate the expressions for the Fano
parameter [Eq. (19)] and the Friedel-like function [Eq. (20)]

in the metallic surface case where no manifestation of electron
focusing occurs. This calculation was previously performed in
the single-impurity problem,4 and now we present an extension
applied to the double-impurity system. We begin by taking into
account the linear dispersion relation,

εkσ = k−1
FσDσ (k − kFσ ), (26)

which depends on the expression,

kF↓ =
√

1 − P

1 + P
kF↑ (27)

determined from Eq. (3) and on the bottom band Dσ =
D + σ� with D as the unpolarized half-width and � as
the Stoner splitting.35 In particular, for a small polarization
P , Eq. (27) results in slightly different Fermi wave numbers
and, consequently, in spin-polarized quantum beats in the full
LDOS as we will see.

In order to solve Eq. (20), we assume
φ�k( �R) = eikR cos θk for the electronic 2D wave function and

use

J0(ξ ) = 1

2π

∫ 2π

0
eiξ cos θk dθk, (28)

the angular representation for the zeroth-order Bessel function.
Thus, in the wideband limit |ε| 
 Dσ with the flat-band DOS,

ρFMσ = S
N2π

{
k

(
dεkσ

dk

)−1}
k=kFσ

(29)

expressed in terms of the spin-dependent Fermi wave number
kFσ , the periodicity area S in the host, and by using Vj �k = V ,
we find

Ajσ = ρFMσ

ρ0
V J0(kFσ R̃) ≡ A2D

jσ (30)

for the Friedel-like function with R̃ = | �R − �Rj | as the relative
coordinate of the STM tip with respect to the j th impurity.
Notice that, according to Eq. (20), phase αjσ is zero and
Eq. (30) is a real quantity. In the case of the Fano parameter,
we start defining the advanced Green’s function,

Ḡjσ = 1

N
∑

�k

Vj �kφ
∗
�k ( �Rj )φ�k( �R)

ε − ε�kσ − iη
, (31)

by assuming the spin and energy dependencies in the
Lorentzian shape,

Vj �kσ = V
�2

�2 + ε2
kσ

, (32)

in order to obtain an analytical solution for qjσ via a regular-
ization procedure.4 Later on, we take the limit � � |εkσ | to
show that Eq. (32) recovers the case Vj �kσ = V . Thus, we can
write the identities,

qjσ = 1

πρ0
Re{Ḡjσ } ≡ q2D

jσ , (33)

and

A2D
jσ = 1

πρ0
Im{Ḡjσ }, (34)
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which allow us to close the calculation. Equations (33) and
(34) imply the relation,

q2D
jσ = 1

πρ0
Ḡjσ − iA2D

jσ . (35)

As the Friedel function is already known from Eq. (30),
the quantity 1

πρ0
Ḡjσ (ε,R) provides a relationship for the Fano

parameter. To this end, we can write

1

πρ0
Ḡjσ = 1

2

ρFMσ

ρ0
V

2∑
l=1

Ḡj lσ , (36)

with Ḡj lσ (ε,R) obeying the following integral representation:

Ḡj lσ = 1

π

∫ +∞

−∞
dεkσ

�2

�2 + ε2
kσ

1

ε − εkσ − iη
H

(l)
0 (kR̃).

(37)

In the equation above, we have used, for the sake of sim-
plicity, Eq. (26) and the Hankel functions H

(1)
0 (ξ ) = J0(ξ ) +

iY0(ξ ) and H
(2)
0 (ξ ) = J0(ξ ) − iY0(ξ ). Looking at Eq. (37), we

calculate the integral Ḡj1σ by choosing a counterclockwise
contour over a semicircle in the upper half of the complex
plane, which includes the simple pole εkσ = +i�. Applying
the residue theorem, we obtain

Ḡj1σ = H
(1)
0 (k�R̃)

�

ε − i�
, (38)

with k� = kFσ (1 + i �
Dσ

). For the evaluation of Ḡj2σ , we used
a clockwise contour over a semicircle in the lower-half plane,
including the poles εkσ = ε − iη and εkσ = −i�, which yields

Ḡj2σ = 2iH
(2)
0 (kεR̃)

�2

�2 + ε2
+ �

ε + i�
H

(2)
0 (k∗

�R̃), (39)

with kε = kFσ (1 + ε
Dσ

). Taking the property H
(2)
0 (ξ ) =

[H (1)
0 (ξ ∗)]∗ for the second term in Eq. (39) into account,

Eq. (36) becomes

1

πρ0
Ḡjσ = ρFMσ

ρ0
V

[
iH

(2)
0 (kεR̃)

�2

�2 + ε2

+ Re

{
H

(1)
0 (k�R̃)

�

ε − i�

}]
. (40)

Explicit calculation of the terms in the brackets of Eq. (40)
leads to

iH
(2)
0 (kεR̃)

�2

�2 + ε2
= iJ0(kFσ R̃) + Y0(kFσ R̃) (41)

and

Re

{
H

(1)
0 (k�R̃)

�

ε − i�

}
= −Y0(kFσ R̃), (42)

where we have assumed |ε| 
 Dσ , � 
 Dσ , and � � |ε|.
In order to ensure the limit Vj �k = V in Eq. (32), we perform
the substitution of Eqs. (30), (40), (41), and (42) in Eq. (35),
showing that

q2D
jσ = 0 (43)

for any value of kFσ R̃.

To summarize, the zero value of the Fano parameter given
by Eq. (43) and the zeroth-order Bessel function J0(kFσ R̃)
found in Eq. (30) lead to long-range damped spin-polarized
quantum beats in the full LDOS. This feature is discussed in
Sec. IV.

D. Fano and Friedel-like functions for the quantum wire system

Here, we determine the Fano parameter in Eq. (19) and
the Friedel-like function in Eq. (20) for the quantum wire
case. Following Weismann,49 we use φ�k( �R) = eikR as the
electron wave function in which the direction introduced by �R
defines the STM tip-impurity distance where electron focusing
manifests. We also use the dispersion relation,

εkσ = h̄2k2

2m
− Dσ (44)

measured with respect to the bottom band Dσ and the flat DOS,

ρFMσ = L
N2π

(
dεkσ

dk

)−1

k=kFσ

= L
N2π

m

h̄2kFσ

, (45)

with m as the effective electron mass and L as the length
of periodicity in the wire. Additionally, in the wideband
limit |ε| 
 Dσ , we find the following complex Friedel-like
function:

Ajσ = V
ρFMσ

ρ0
eikFσ R̃ ≡ A1D

jσ (46)

characterized by a spin-dependent phase αjσ = kFσ R̃. This
phase results in undamped oscillatory behavior as a function
of R̃ = | �R − �Rj |, which also appears in q1D

jσ . Thus, we take
Eqs. (44) and (45) into account rewriting Eq. (19) as

qjσ = V

πρ0N
∑

�k

eikR̃

ε − εk

= 2V
L

ρ0 Nπ

m

h̄2 I ≡ q1D
jσ , (47)

with

I = − 1

2π
P

∫ +∞

−∞

eikR̃

k2 − k2
ε

dk = sin(kFσ R̃)

2kFσ

, (48)

in the limit |ε| 
 Dσ and with P as the principal value. Finally,
we obtain the Fano factor,

q1D
jσ = 2V

ρFMσ

ρ0
sin(kFσ R̃), (49)

which also presents spin-dependent Fermi wave numbers kF↑
and kF↓ as in Eq. (46). Here, they are still connected via
Eq. (27), thus, leading to undamped spin-polarized quantum
beats in the full LDOS.

III. CALCULATION OF THE IMPURITY
GREEN’S FUNCTION

In the present section, we calculate G̃σ
dj dl

(ε) (j,l = 1,2) that
appear in Eqs. (21) and (22) for the LDOS. To handle the
interacting term of the Hamiltonian, we adopt the Hubbard I
approximation,55 which provides reliable results at tempera-
tures above the Kondo temperature.55 We begin by repeating
the equation-of-motion approach for these Green’s functions,
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which results in

(ε − ε̃jdσ + i�jjσ )G̃σ
dj dj

= 1 + Uj G̃djσ ndj σ̄ ,djσ

+ (
�R

ljσ − i�ljσ

)
G̃σ

dldj
, (50)

and

(ε − ε̃ldσ + i�llσ )G̃σ
dldj

= UlG̃dlσ ndl σ̄
,djσ

+ (
�R

jjσ − i�jjσ

)
G̃σ

dj dj
, (51)

where ε̃jdσ = εjd + �R
jjσ for l �= j . In the equation above,

G̃dlσ ndl σ̄
,djσ

is a higher-order Green’s function obtained from
the time Fourier transform of

Gdlσ ndl σ̄
,djσ

(t) = − i

h̄
θ (t)Z−1

FM

×
∑

n

e−βEn〈n|[dlσ (t)ndl σ̄ (t),d†
jσ (0)]+|n〉,

(52)

with ndl σ̄ = d
†
lσ̄ dlσ̄ being the number operator of the lth

impurity with spin σ̄ (opposite to σ ). Here,

�R
ljσ = 1

N
∑

�k

V ∗
j �kVl�kφ�k( �Rj )φ∗

�k ( �Rl)

ε − ε�kσ

(53)

represents the real part of the noninteracting self-energy �ljσ

and

�I
ljσ = −�ljσ

= − 1

N π
∑

�k
V ∗

j �kVl�kφ�k( �Rj )φ∗
�k ( �Rl)δ(ε − ε�kσ ) (54)

describes the corresponding imaginary part, which plays the
role of a generalized Anderson parameter �ljσ . In order to
close the system of Green’s functions in Eqs. (50) and (51),
we first take the time derivative of Eq. (52) and then perform
the time Fourier transform. With that, we obtain

(ε+ − εld − Ul)G̃dlσ ndl σ̄
,djσ

= δlj 〈ndl σ̄ 〉 +
(

−
∑

�k

1√
N

Vl�kφ
∗
�k ( �Rl)

)
G̃

c
†
�kσ̄

dlσ̄ dlσ ,djσ

+
( ∑

�k

1√
N

V ∗
l�kφ�k( �Rl)

)
G̃

c�kσ d
†
lσ̄ dlσ̄ ,djσ

+
( ∑

�k

1√
N

V ∗
l�kφ�k( �Rl)

)
G̃

d
†
lσ̄ c�kσ̄ dlσ ,djσ

, (55)

which also depends on new Green’s functions on the same
order of G̃dlσ ndl σ̄

,djσ
and on the average occupation number

〈ndl σ̄ 〉, that is, calculated as

〈ndl σ̄ 〉 =
∫ +∞

−∞
dε

{
− 1

π
Im(G̃ σ̄

dldl
)

}
f (ε). (56)

Within the Hubbard I approximation, we truncate the
Green’s functions G̃

c
†
�kσ̄

dlσ̄ dlσ ,djσ
and G̃

d
†
lσ̄ c�kσ̄ dlσ ,djσ

according to

the decoupling scheme,

G̃
c
†
�kσ̄

dlσ̄ dlσ ,djσ
� 〈c†�kσ̄

dlσ̄ 〉G̃σ
dldj

, (57)

G̃
d
†
lσ̄ c�kσ̄ dlσ ,djσ

� 〈c†�kσ̄
dlσ̄ 〉G̃σ

dldj
, (58)

and apply the equation-of-motion approach to G̃
c�kσ d

†
lσ̄ dlσ̄ ,djσ

. In
order to cancel the second term with the last one in Eq. (55),
we simultaneously combine the approximations in Eqs. (57)
and (58) with the property,∑

�k

1√
N

Vl�kφ
∗
�k ( �Rl) =

∑
�k

1√
N

V ∗
l�kφ�k( �Rl), (59)

which is only fulfilled on a metallic surface system, whereas,
for the quantum wire, it holds in the side-coupled geometry
�Rl = �Rj = �0. Bearing this in mind, we can rewrite Eq. (55) as

follows:

(ε − εld − Ul + iη)G̃dlσ ndl σ̄
,djσ

= δlj 〈ndl σ̄ 〉 +
(∑

�k

1√
N

V ∗
l�kφ�k( �Rl)

)
G̃

c�kσ d
†
lσ̄ dlσ̄ ,djσ

. (60)

Once again, employing the equation-of-motion approach for
G̃

c�kσ d
†
lσ̄ dlσ̄ ,djσ

, we find

(ε+ − ε�kσ )G̃
c�kσ d

†
lσ̄ dlσ̄ ,djσ

= Vl�k
1√
N

φ∗
�k ( �Rl)G̃dlndl σ̄

,djσ

+
∑

�q
V ∗

l �q
1√
N

φ�q( �Rl)G̃c�kσ d
†
lσ̄ c�qσ̄ ,djσ

−
∑

�q
Vl �q

1√
N

φ∗
�q ( �Rl)G̃c

†
�qσ̄

dlσ̄ c�kσ ,djσ

+
∑
j̃ �=l

Vj̃ �k
1√
N

φ∗
�k ( �Rj̃ )G̃dj̃σ ndl σ̄

,djσ
.

(61)

Here, we continue with the Hubbard I scheme, proceeding
as in Eqs. (57) and (58) by making the following approxima-
tions:

G̃
c�kσ d

†
lσ̄ c�qσ̄ ,djσ

� 〈d†
lσ̄ c�qσ̄ 〉G̃c�kσ djσ

, (62)

G̃
c
†
�qσ̄

dlσ̄ c�kσ ,djσ
� 〈d†

lσ̄ c�qσ̄ 〉G̃c�kσ djσ , (63)

G̃dj̃σ ndl σ̄
,djσ

� 〈ndl σ̄ 〉G̃σ
dj̃ dj

, (64)

and replacing Eq. (59) in Eq. (61) to show that

G̃
c�kσ d

†
lσ̄ dlσ̄ ,djσ

=
Vl�k

1√
N φ∗

�k ( �Rl)

(ε+ − ε�kσ )
G̃dlndl σ̄

,djσ

+
∑

j̃ �=l Vj̃ �k
1√
N φ∗

�k ( �Rj̃ )

(ε+ − ε�kσ )
〈ndl σ̄ 〉G̃σ

dj̃ dj
. (65)

To close the original setup of Green’s functions in Eqs. (50)
and (51), we substitute Eq. (65) in Eq. (60) and obtain(

ε − εld − Ul + i�0
llσ

)
G̃dlσ ndl σ̄

,djσ

= δlj 〈ndl σ̄ 〉 + 〈ndl σ̄ 〉
∑
j̃ �=l

[
�R

j̃lσ
(ε) − i�j̃ lσ

]
G̃σ

dj̃ dj
, (66)
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where

�0
llσ = π

1

N
∑

�k
|Vl�k|2δ(ε − ε�kσ ), (67)

which allows us to determine all the necessary Green’s
functions for the LDOS. Thus, to solve the system composed
by Eqs. (50), (51), and (66), we now assume the side-coupled
geometry �Rl = �Rj = �0 with symmetric couplings Vj �k = Vl�k
[see Fig. 1]. By adopting the wideband limit, for the sake
of simplicity, from Eqs. (53), (54), and (67), we verify
that �R

jjσ = �R
ljσ = 0 and �jjσ = �ljσ = �0

llσ = �σ = �
ρFMσ

ρ0

depend on the standard Anderson parameter � = πV 2ρ0 (see
Ref. 60 for a precise definition of the wideband limit). We also
consider the infinite Coulomb correlation limit (U1 = U2 →
∞). A geometry with �Rl �= �Rj �= �0 and beyond the wideband
approximation will be published elsewhere. Thus, the direct
Green’s function for the impurity j = 1 reduces to the form

G̃σ
d1d1

(ε) = 1 − 〈nd1σ̄ 〉
ε − ε12dσ + i�̄12σ

, (68)

where

ε12dσ = ε1d + �̄12σ (ε) (69)

represents a renormalized energy level dressed by the real part
of the nondiagonal self-energy,

�̄12σ (ε) = −(1 − 〈nd1σ̄ 〉)(1 − 〈nd2σ̄ 〉) (ε − ε2d )

(ε − ε2d )2 + �2
σ

�2
σ ,

(70)

and

�̄12σ = �σ − (1 − 〈nd1σ̄ 〉)(1 − 〈nd2σ̄ 〉)�σ

× �2
σ

(ε − ε2d )2 + �2
σ

(71)

is an effective hybridization function. The mixed Green’s
function G̃σ

d2d1
(ε) becomes

G̃σ
d2d1

(ε) = −i�σ

{
1 − 〈nd2σ̄ 〉

(ε − ε2d + i�σ )

}
G̃σ

d1d1
(ε). (72)

Notice that the other Green’s functions G̃σ
d2d2

and G̃σ
d1d2

can be
derived by swapping 1 ↔ 2 in Eqs. (68) and (72).

IV. NUMERICAL RESULTS

A. Numerical parameters

Here, we present the results obtained via the formulation de-
veloped in the previous section. The energy scale adopted is the
Anderson parameter �. We employ the following set of model
parameters: � = 0.2 eV, ε1d = −10�, and ε2d = −4.5�.15,21

Such values correspond to a Kondo temperature TK ≈ 50 K
found in the system Co/Cu(111) with Coulomb interaction
U = 2.9 eV.13,15,19 Thus, the Hubbard I approximation is
employed with T = �/10kB = 231.1 K just to avoid Kondo
physics. Defining kF↑ = kF , we measure the lateral distance
R between the STM tip and the impurities in units of k−1

F

by introducing the dimensionless parameter kF R [see Fig. 1].
Finally, in order to generate spin-polarized quantum beats in
the LDOS, we substitute Eq. (2) with P = 0.1 in Eq. (27).

B. Metallic surface

We begin the analysis in the metallic surface apparatus by
dividing our paper into regions we call short, intermediate, and
long ranges. The short-range limit presented in Fig. 2(a) reveals
that the LDOS, given by Eq. (24) as a function of energy,
exhibits two Fano antiresonances. Each one corresponds to
the discrete levels of the adatom (j = 1) and the subsurface
impurity (j = 2). The main feature in this situation is that
the Fano profile conserves its line shape when the dimen-
sionless parameter kF R is changed. Additionally, this profile
is suppressed for increasing distances, tending to the DOS
background of the host.

In Fig. 2(b), we look at how the LDOS evolves with kF R

exactly at the Fano antiresonance ε = εd1 = −10�. At the host
site (kF R = 0), the LDOS presents a depletion. Such a dip in
the LDOS is a result of charge screening around the impurities
by conduction electrons, which suppresses the LDOS of the

M

FIG. 2. (Color online) In both panels, we use kBT = 0.1�.
(a) LDOS [Eq. (24)] of a metallic surface with P = 0.1 as a
function of ε/� for different values of kF R in the short-range
limit [see panel (b)]. The Fano profile presents two antiresonances
placed at ε = ε1d = −10� and ε = ε2d = −4.5�, which display an
evanescent behavior for increasing distances. (b) Keeping the energy
at ε = −10�, Friedel oscillations appear in the LDOS.
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M

FIG. 3. (Color online) In both panels, we use kBT = 0.1�.
(a) LDOS [Eq. (24)] of a metallic surface with P = 0.1 as a
function of ε/� for different values of kF R in the long-range
limit [see panel (b)]. The Fano profile presents two antiresonances
placed at ε = ε1d = −10� and ε = ε2d = −4.5�, which display
an oscillatory behavior for increasing distances. (b) Damped spin-
polarized quantum beats emerge in the LDOS as a function of kF R

with ε = ε1d = −10�.

host. Beyond the adatom position, the LDOS is, indeed,
dictated by Friedel oscillations, which also lead to a strong
decay in the long-range limit [see Fig. 2(b)]. The evanescent
feature of the LDOS is a result of the interplay between
the Friedel-like expression A2D

jσ and the Fano parameter q2D
jσ .

These quantities are governed by Eqs. (30) and (43) where the
former evolves spatially according to the zeroth-order Bessel
function J0. Such damping in the LDOS has already been
observed experimentally in a system composed by an Fe host
and a Co adatom.5

In Fig. 3(a), we plot the Fano line shape in the long-range
regime (kF R > 15). The same dips at ε = −10� and ε =
−4.5� are observed as in the short-range limit [Fig. 2(a)].
However, a contrasting feature is found between these two
limits. Whereas, in the short-range case, the dips become
suppressed as kF R increases, in both regions of intermediate
and long ranges, the dip oscillates with kF R. This is a result
of the oscillatory profile observed in the LDOS for increasing
kF R [see Fig. 2(b)]. In the long-range limit, the oscillations
of the dip can be more clearly visualized in Fig. 3(b) where
we show the LDOS at ε = εd1 = −10�. A peculiar beating is

observed in the LDOS due to the slightly different Fermi wave
numbers [see Eq. (27)].

C. Quantum wire

Figure 4(a) shows the LDOS plotted against energy for
different kF R values in the short-range limit. For the STM
tip at kF R = 0, the LDOS shows the two-dip structure already
observed in Fig. 2(a). In contrast, as kF R increases, the antires-
onances change to resonances, passing through intermediate
profiles (asymmetric Fano line shapes). We emphasize that this
behavior in the LDOS was recently observed in the experiment
performed by Prüser et al. with atoms of Fe and Co beneath
the Cu(100) surface.45

In Fig. 4(b), we observe the evolution of the LDOS with
kF R. Nonevanescent oscillations occur, modulated by an
amplitude beating. This undamped behavior is encoded by
Eqs. (46) and (49) for Friedel-like oscillations (A1D

jσ ) and Fano
interference (q1D

jσ ), respectively. These quantities are simple
trigonometric functions without damping. This feature is due
to the absence of an extra dimension for the scattering of the

Q

FIG. 4. (Color online) (a) LDOS [Eq. (24)] at kBT = 0.1� of a
quantum wire with P = 0.1 as a function of ε/� for different values
of positions kF R. Fano profiles appear around ε = ε1d = −10� and
ε = ε2d = −4.5�. This pair of antiresonances (black line) can be
tuned to resonances (green line) by moving the STM tip laterally.
(b) In opposition to the metallic surface device, undamped spin-
polarized quantum beats in the LDOS at ε = ε1d = −10� manifest.
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electronic wave. On the other hand, in 2D, this propagation is
spread in a plane leading to a spatial decay in the LDOS. Thus,
the amplitude of the undamped beats is much larger than in
the metallic surface device. This means that, in such cases, the
LDOS signal can be more easily resolved experimentally.

D. Transport polarization

Another quantity we investigate is the spin polarization
given by Eq. (25). As the differential conductance of Eq. (23)
is a function of the spin-dependent LDOS ρσ

LDOS of Eq. (21),
the ferromagnetic hosts filter electrons that tunnel into (or
out of) the STM tip. This filtering is dominated by the
majority-spin component. Thus, devices without impurities
behave as spin filters with a spatially uniform polarization that
coincides with the value given by Eq. (2). Here, we adopt
P = 0.1. Due to the impurities in the side-coupled geometry
and the host dimensionality, this polarization is perturbed
in two different forms. In both the metallic surface and the
quantum wire as we can see in Figs. 5(a) and 5(b) with applied
bias φ = ε1d = −10�, the polarization oscillates around PT =

M

Q

FIG. 5. (Color online) Transport polarization of the ferromag-
netic hosts [Eq. (25)] at kBT = 0.1� and applied bias φ = ε1d =
−10�. (a) Damped spin-polarized quantum beats appear in the
polarization of the metallic surface device. (b) Undamped types
occur in the polarization of the quantum wire. In both situations, we
have a spatially resolved spin filter with a polarization that oscillates
around P = 0.1. In the quantum wire case, this oscillation is more
pronounced.

P = 0.1. Unlike the metallic surface system where small
deviations with damping occur, the electron-focusing effect
in the quantum wire leads to undamped and pronounced
oscillations. The polarization in the latter case does not
exceed PT ≈ +0.62 or fall below PT ≈ −0.5. Therefore, the
polarized current through the junction formed by the STM tip
and the surface alternates from spins up (+0.62) to down
(−0.5) depending on the tip position. Additionally, along
this probing direction, the polarization not only can invert
the orientation of the majority-spin component, but also can
become zero at some sites where locally, the unbalance of
spins is totally suppressed. As a result, we have a tunneling
current without polarization in specific positions on the sample
surface. On the other hand, as we can see in Fig. 5(a), the
amplitude of the beats in the metallic surface polarization is
extremely suppressed and does not change its signal (PT > 0).
Thus, the quantum wire operates as a spatially resolved spin
filter with a higher efficiency.

V. CONCLUSIONS

In order to investigate a ferromagnetic system with two
impurities, we have calculated the LDOS and the spin polariza-
tion of hosts in two different dimensionalities. Impurities in the
side-coupled geometry, as outlined in Fig. 1, were taken into
account. We analyzed both a metallic surface and a quantum
wire described by the two-impurity Anderson model in the
picture of a spin-polarized electron gas with impurities away
from the Kondo regime. We presented a model in which an
unperturbed 1D electron host in the presence of localized states
produces undamped behavior in the LDOS Fano profile [see
Figs. 4(a) and 4(b)], similar to that observed experimentally.45

In contrast, our 2D model revealed a damped oscillatory
behavior [Figs. 2(a), 2(b), 3(a), and 3(b)]. We demonstrated
that these opposed features originated from the interplay
between the Friedel-like function and the Fano parameter,
which assumed different functional forms according to the
host dimensionality. Keeping the energy fixed and tuning the
STM tip position, we verified the emergence of spin-polarized
quantum beats in the LDOS given by Eq. (24) as well as
in the transport polarization of Eq. (25). Such an effect is
due to interference between the slightly different Fermi wave
numbers kF↑ and kF↓ [Eq. (27)] in the LDOS, achievable
in hosts with low spin polarizations. Therefore, the quantum
wire setup behaves as a spatially resolved spin filter with a
high efficiency as we can see in Fig. 5(b). Away from the
adatom, this device can magnify or can locally invert the
original spin orientation of the host, also displaying sites
where this polarization is completely quenched. As a possible
experimental implementation of this apparatus, we suggest
the systems investigated by Prüser.45 Such setups present the
same one-dimensional character as our effective quantum wire
model.
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(2004).
31J. Martinek, M. Sindel, L. Borda, J. Barnaś, R. Bulla, J. König,
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(2009).

49A. Weismann, Ph.D. thesis, Georg-August-Universität zu
Göttingen, 2008.

50S. Lounis, Ph.D. thesis, Rheinisch-Westfälische Technische
Hochschule (RWTH) Aachen, 2007.

51A. Stroppa, X. Duan, M. Peressi, D. Furlanetto, and S. Modesti,
Phys. Rev. B 75, 195335 (2007).

52F. M. Souza, Phys. Rev. B 76, 205315 (2007).
53P. Trocha, Phys. Rev. B 82, 115320 (2010).
54P. W. Anderson, Phys. Rev. 124, 41 (1961).
55H. Haug and A. P. Jauho, Quantum Kinetics in Transport and Optics

of Semiconductors, Springer Series in Solid-State Sciences Vol. 123
(Springer, New York, 1996).

56The occupancy of the impurities can strongly depend on the
positions of the levels εjd . In our calculations, we adopt εjd much
smaller than the Fermi level, so the self-consistent calculation yields
occupations close to unity (single occupancy).

57E. C. Stoner, Proc. R. Soc. London, Ser. A 169, 339 (1939).
58F. M. Souza, J. C. Egues, and A. P. Jauho, Braz. J. Phys. 34, 565

(2004).
59Quantum dot systems may also display a beating pattern, in

particular, if one considers two alternate dot levels with slightly
different frequencies. In this case, quantum beats appear in the
electrical current as a function of time (see Refs. 52 and 53).

125104-10

http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/10.1103/RevModPhys.82.2257
http://dx.doi.org/10.1103/RevModPhys.82.2257
http://dx.doi.org/10.1103/PhysRevB.85.165109
http://dx.doi.org/10.1103/PhysRevB.82.020406
http://dx.doi.org/10.1088/0953-8984/21/9/095003
http://dx.doi.org/10.1088/0953-8984/21/9/095003
http://dx.doi.org/10.1016/j.physe.2009.05.006
http://dx.doi.org/10.1126/science.280.5363.567
http://dx.doi.org/10.1103/PhysRevB.61.9036
http://dx.doi.org/10.1103/PhysRevB.63.085404
http://dx.doi.org/10.1038/35000508
http://dx.doi.org/10.1038/35000508
http://dx.doi.org/10.1103/PhysRevB.64.165412
http://dx.doi.org/10.1103/PhysRevLett.88.096804
http://dx.doi.org/10.1103/PhysRevLett.95.166601
http://dx.doi.org/10.1103/PhysRevLett.97.156102
http://dx.doi.org/10.1103/PhysRevLett.97.156102
http://dx.doi.org/10.1103/PhysRevLett.99.256601
http://dx.doi.org/10.1103/PhysRevLett.99.256601
http://dx.doi.org/10.1103/PhysRevB.76.155427
http://dx.doi.org/10.1103/PhysRevB.76.155427
http://dx.doi.org/10.1103/PhysRevLett.97.076806
http://dx.doi.org/10.1103/PhysRevLett.85.2557
http://dx.doi.org/10.1103/PhysRevLett.85.2557
http://dx.doi.org/10.1038/nphys1072
http://dx.doi.org/10.1088/0953-8984/21/5/053001
http://dx.doi.org/10.1088/0953-8984/21/5/053001
http://dx.doi.org/10.1103/PhysRevLett.104.187202
http://dx.doi.org/10.1103/PhysRevLett.105.246401
http://dx.doi.org/10.1103/PhysRevLett.105.246401
http://dx.doi.org/10.1103/PhysRevB.84.125439
http://dx.doi.org/10.1103/PhysRevB.82.233401
http://dx.doi.org/10.1103/PhysRevB.82.233401
http://dx.doi.org/10.1103/PhysRevLett.89.286803
http://dx.doi.org/10.1103/PhysRevLett.89.286803
http://dx.doi.org/10.1103/PhysRevB.78.045305
http://dx.doi.org/10.1103/PhysRevB.78.045305
http://dx.doi.org/10.1103/PhysRevLett.91.247202
http://dx.doi.org/10.1103/PhysRevLett.91.127203
http://dx.doi.org/10.1103/PhysRevLett.92.056601
http://dx.doi.org/10.1103/PhysRevLett.92.056601
http://dx.doi.org/10.1103/PhysRevB.72.121302
http://dx.doi.org/10.1103/PhysRevB.72.121302
http://dx.doi.org/10.1103/PhysRevB.71.245116
http://dx.doi.org/10.1103/PhysRevB.73.193312
http://dx.doi.org/10.1126/science.1102068
http://dx.doi.org/10.1103/PhysRevB.76.045321
http://dx.doi.org/10.1063/1.2820445
http://dx.doi.org/10.1063/1.2820445
http://dx.doi.org/10.1103/PhysRevB.77.081302
http://dx.doi.org/10.1038/nature07878
http://dx.doi.org/10.1038/nphys931
http://dx.doi.org/10.1038/nphys931
http://dx.doi.org/10.1103/PhysRevB.81.115445
http://dx.doi.org/10.1103/PhysRevB.83.113306
http://dx.doi.org/10.1103/PhysRevLett.106.126602
http://dx.doi.org/10.1103/PhysRevLett.106.126602
http://dx.doi.org/10.1103/PhysRevLett.107.176808
http://dx.doi.org/10.1103/PhysRevB.84.035445
http://dx.doi.org/10.1103/PhysRevB.84.035445
http://dx.doi.org/10.1103/PhysRevLett.108.166604
http://dx.doi.org/10.1103/PhysRevLett.108.166604
http://dx.doi.org/10.1038/nphys1876
http://dx.doi.org/10.1103/PhysRevB.83.035427
http://dx.doi.org/10.1103/PhysRevB.83.035427
http://dx.doi.org/10.1126/science.1168738
http://dx.doi.org/10.1126/science.1168738
http://dx.doi.org/10.1103/PhysRevB.75.195335
http://dx.doi.org/10.1103/PhysRevB.76.205315
http://dx.doi.org/10.1103/PhysRevB.82.115320
http://dx.doi.org/10.1103/PhysRev.124.41
http://dx.doi.org/10.1098/rspa.1939.0003
http://dx.doi.org/10.1590/S0103-97332004000400007
http://dx.doi.org/10.1590/S0103-97332004000400007


DIMENSIONALITY EFFECTS IN THE LOCAL DENSITY . . . PHYSICAL REVIEW B 87, 125104 (2013)

60The wideband limit consists of (i) neglecting the real part of
the tunneling self-energy �R

ljσ (level shift) and (ii) assuming
that the linewidths �ljσ are energy-independent constants (see
Ref. 55). To summarize, the metallic behavior of the hosts lies
in the vicinity of the Fermi level, which ensures the aforemen-

tioned assumptions. Thus, we can safely extrapolate to infinity
the limits of the integral in Eq. (56) to calculate 〈ndl σ̄ 〉 (see
Ref. 61).

61A. P. Jauho, N. S. Wingreen, and Y. Meir, Phys. Rev. B 50, 5528
(1994).

125104-11

http://dx.doi.org/10.1103/PhysRevB.50.5528
http://dx.doi.org/10.1103/PhysRevB.50.5528



