
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 87, 121405(R) (2013)

Electron waiting times in non-Markovian quantum transport
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We formulate a quantum theory of electron waiting time distributions for charge transport in nanostructures
described by non-Markovian generalized master equations. We illustrate our method by calculating the waiting
time distribution of electron transport through a dissipative double quantum dot, where memory effects are present
due to a strongly coupled heat bath. We consider the influence of non-Markovian dephasing on the distribution of
electron waiting times and discuss how spectral properties of the heat bath may be detected through measurements
of the electron waiting time.
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Introduction. The theory of open quantum systems is
important in many branches of physics.1 The typical scenario
consists of a small quantum system with a few degrees of
freedom coupled to a large environment. The system evolves
coherently due to its internal dynamics, but also undergoes
nonunitary evolution as it interacts with the environment.
For weak system-environment couplings, the dynamics of the
quantum system is often Markovian. However, as the coupling
increases, information about the system that leaks out into
the environment may flow back to the system at a later time,
making the evolution non-Markovian. Deterministic control
of the transition from Markovian to non-Markovian dynamics
of an open quantum system was recently demonstrated in a
quantum optical experiment.2

In electronic transport, the theory of open quantum systems
can describe nonequilibrium charge flow through nanoelec-
tronic conductors. The conductor exchanges particles with
the external electronic leads and may also interact with a
heat bath, Fig. 1. The full counting statistics of transferred
charges3–8 as well as the finite-frequency current noise9–13 have
been investigated intensively for non-Markovian transport
processes, and shot-noise measurements have revealed strong
memory effects in the transport through a quantum dot in
resonance with the Fermi level of an external electrode.14

A very recent interest in quantum transport concerns the
distribution of waiting times between consecutive charge
transfers.15–18 This line of research seems particularly rele-
vant in light of the increasing number of accurate single-
electron counting experiments.19 Theories have now been
developed to describe electronic waiting time distributions
(WTDs) for driven single-electron emitters17 and phase-
coherent conductors.18 In quantum optics, non-Markovian ef-
fects in the decay dynamics of laser-driven systems have been
examined20 and stochastic simulations are currently being used
to extract the WTDs of non-Markovian quantum systems.21 In
electronic transport, Brandes has developed a compact and
elegant method to calculate WTDs for systems described by
Markovian generalized master equations (GMEs).15

In this Rapid Communication we consider quantum trans-
port governed by a generic non-Markovian GME and derive a
general expression for the electronic WTD in Laplace space.
The GME contains the memory kernel of the transport process
and an inhomogeneity term, which accounts for memory
effects at the time, when charge detection begins. This term
has been the subject of recent theoretical investigations.12,13
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FIG. 1. (Color online) Generic quantum transport setup. A
nanoscale electronic system is connected to an environment con-
sisting of source and drain electrodes as well as a heat bath. The
applied bias drives electrons through the system from the source to
the drain electrode. The system exchanges energy with the bath, but
no particles are transferred between system and bath. The dynamics
of the system is non-Markovian due to the environment.

It typically decays on the same time scale as the memory
kernel and is not important for the long-time limit of
time-integrated quantities like the zero-frequency noise and
higher cumulants of the current, but is crucial to include
when investigating correlation functions and fluctuations at
finite times and frequencies.4,12,13 As we demonstrate below,
it must also be incorporated together with the kernel in
a consistent theory of WTDs for non-Markovian quantum
transport.

We illustrate our methodology by evaluating the WTD for
a dissipative double quantum dot (DQD) whose dynamics
is non-Markovian due to a strongly coupled heat bath. This
electronic analog of an open spin-boson problem provides
us with a microscopic model that can describe the transition
from Markovian to non-Markovian dephasing. We show how
coherent oscillations between the quantum dots are washed out
by an increasing bath temperature, which dephases electrons
as they propagate through the DQD, and we discuss WTDs
as the system-bath coupling becomes strong. We then tune
the DQD to a parameter regime, where the WTD becomes
particularly sensitive to the spectral properties of the heat bath,
in a spirit similar to proposals for detecting the high-frequency
quantum noise of a mesoscopic conductor by measuring the
noise-induced inelastic current in a nearby DQD.22 Within this
approach we demonstrate how the absorption and emission
of energy quanta to and from the heat bath can be clearly
identified in the electronic WTD.
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Non-Markovian GME. We consider a generic non-
Markovian GME of the form4,5

d

dt
ρ̂(n,t) =

∞∑
n′=0

∫ t

0
dt ′ W (n − n′,t − t ′)ρ̂(n′,t ′) + γ̂ (n,t),

(1)

describing charge transport through a nanoscale conductor as
illustrated in Fig. 1. Here ρ̂(n,t) is the reduced density matrix
of the quantum system, obtained by tracing out the external
electronic reservoirs and the heat bath. It has been resolved
with respect to the number of transferred electrons, such that
P (n,t) = Tr{ρ̂(n,t)} is the probability of having collected n

electrons in the drain during the time span [0,t].23 We assume
low electronic temperatures compared to the applied voltage
so that thermal charge fluctuations are negligible and we may
focus on the unidirectional nonequilibrium charge transport
from source to drain with n being non-negative.

The kernel W (n,t) determines the time evolution of ρ̂(n,t),
taking into account memory effects due to the electronic
reservoirs and the external heat bath. The inhomogeneity
γ̂ (n,t) describes memory effects from before t = 0, when
charge detection begins. The first term on the right-hand
side of Eq. (1) does not include such memory effects. Non-
Markovian GMEs as Eq. (1) arise in a variety of contexts, for
example, in the real-time diagrammatic technique24 and in the
Nakajima-Zwanzig projection method.25 They have recently
been investigated in connection with full counting statistics3–8

and finite-frequency noise.4,12,13 As we go on to show, they
also provide a useful starting point for calculating WTDs in
non-Markovian quantum transport.

Distribution of electron waiting times. To find the WTD,
we first solve Eq. (1) for ρ̂(n,t). To this end, we employ
an operator-valued generalization of the generating function
technique in Laplace space by introducing the transformed re-
duced density matrix ˜̂ρ(s,z) = ∑∞

n=0

∫ ∞
0 dtρ̂(n,t)sne−zt and

similarly for W̃ (s,z) and ˜̂γ (s,z).26 Within this framework,
the reduced density matrix is readily obtained as ˜̂ρ(s,z) =
G̃(s,z){ ˜̂γ (s,z) + ρ̂stat}, where G̃(s,z) = [z − W̃ (s,z)]−1 is the
resolvent of the kernel, and ρ̂stat is the stationary state.
In the distant past, the system is prepared in an arbitrary state,
but the stationary state is reached before detection of charges
begins at t = 0. The stationary state satisfies W̃ (1,0)ρ̂stat = 0
with the normalization Tr{ρ̂stat} = 1.

For stationary processes, the WTD is related to the idle
time probability �(τ ) as W(τ ) = 〈τ 〉∂2

τ �(τ ), where the mean
waiting time is determined by the average particle current as
〈τ 〉 = 1/〈I 〉.18,27 Here �(τ ) is the probability of not observing
any electrons in a time interval of length τ , [t0,t0 + τ ].
This probability is independent of t0 and we may take
t0 = 0. The average particle current is well known and reads
〈I 〉 = Tr{∂sW̃ (s,0)ρ̂stat}s=1.3–5 In Laplace space, the WTD
becomes W̃ (z) = 〈τ 〉z[z�̃(z) − 1] + 1, where �(τ = 0) =
1 and ∂τ�(τ = 0) = −1/〈τ 〉 have been used. Importantly,
the idle time probability can be expressed in terms of the
reduced density matrix as �̃(z) = P̃ (n = 0,z) = Tr{ ˜̂ρ(s =
0,z)}. Inserting the solution for ˜̂ρ(s,z), we arrive at the key
result of this section

W̃ (z) = 〈τ 〉z[z〈G̃(z)〉 − 1] + 1, (2)

with 〈G̃(z)〉 = Tr[G̃(0,z){ ˜̂γ (0,z) + ρ̂stat}]. This equation gen-
eralizes the expression by Brandes for Markovian GMEs.15

It is easy to show that our result reduces to that of Ref. 15 if
Eq. (1) is replaced by a Markovian GME. We see that the WTD
corresponding to a generic non-Markovian GME includes both
the kernel and the inhomogeneity ˜̂γ .28 To revert the WTD to
the time domain, an inverse Laplace transformation must be
performed analytically or numerically as illustrated below.

Dissipative DQD. As a concrete application of our method,
we consider charge transport through a DQD, where non-
Markovian effects occur due to a strongly coupled heat bath.
The total Hamiltonian of the setup reads

Ĥ = ĤS + ĤT + ĤL + ĤSB + ĤB, (3)

where ĤS = (ε/2)(d̂†
Ld̂L − d̂

†
Rd̂R) + Tc(d̂†

Ld̂R + d̂
†
Rd̂L) de-

scribes the left and right levels of the DQD with dealign-
ment ε and tunnel coupling Tc; tunneling between left
(right) level and left (right) lead is accounted for by ĤT =∑

k,α=L,R tk,αĉ
†
k,αd̂α + H. c.; the Hamiltonian of the leads is

ĤL = ∑
k,α=L,R εk,αĉ

†
k,αĉk,α; the coupling between the DQD

and the heat bath reads ĤSB = (d̂†
Ld̂L − d̂

†
Rd̂R)

∑
j (gj/2)(â†

j +
âj ); and ĤB = ∑

j h̄ωj â
†
j âj describes the heat bath as an

ensemble of harmonic oscillators. This is an open spin-boson
problem, where the role of the spin is played by the two
single-particle levels of the DQD which are coupled to a bath
of bosons. It is a transport problem as charges enter and leave
the pseudospin states from the voltage-biased electrodes.

We derive a non-Markovian GME for the populations
of the DQD by tracing out the electronic leads and
the heat bath.29 The reduced density matrix ρ̂(n,t) =
[ρ̂0(n,t),ρ̂L(n,t),ρ̂R(n,t),ρ̂D(n,t)]T contains the probabilities
for the DQD to be empty, having left or right dot occupied, or
to be doubly occupied. In Laplace space, the kernel reads

W̃ (s,z) =

⎛
⎜⎜⎜⎝

−�L 0 s�R 0

�L −�̃+(z) �̃−(z) s�R

0 �̃+(z) −�̃−(z) − �L − �R 0

0 0 �L −�R

⎞
⎟⎟⎟⎠ ,

(4)

where the tunneling rates between the DQD and the
leads �α(ε) = 2π

∑
k |tk,α|2δ(ε − εk,α) = �α , α = L,R, are

assumed to be constant. A large bias across the DQD ensures
that the (broadened) levels of the DQD are well inside the bias
window.30 The interdot tunneling rates

�̃±(z) = T 2
c [̃g+(z±) + g̃−(z∓)] (5)

are given by the bath-correlation functions g±(t) = e−F(∓t),
where z± = z ± iε + (�L + �R)/2 and F(t) = ∫ ∞

0 dωJ (ω)
{[1−cos(ωt)] coth(h̄ω/2kBT ) + i sin(ωt)}/ω2. Here, J (ω) =∑

j |gj |2δ(ω − ωj ) is the spectral function of the heat bath
with temperature T . We consider an ohmic bath with J (ω) =
2αωe−ω/ωc , where α is the strength of the coupling to the DQD
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FIG. 2. (Color online) Electronic waiting time distributions for a dissipative double quantum dot. (a) Coherent oscillations between the
quantum dots are visible for weak couplings to the heat bath (α = 0.01). The electrons are dephased by an increasing bath temperature which
washes out the coherent oscillations. (b) Electronic waiting time distributions beyond the weak-coupling limit. The increased coupling to the
heat bath tends to localize electrons on the quantum dots.

and ωc is a high-frequency cutoff. For strong couplings to the
heat bath, the interdot tunneling rates are valid to lowest order
in T 2

c . The inhomogeneity reads ˜̂γ (s,z) = −W̃ (1,z)ρ̂stat/z.4,13

Strong Coulomb interactions between the quantum dots may

be included by excluding the double-occupied state of the
DQD.

Non-Markovian dephasing. We evaluate the WTD in
Laplace space using Eq. (2) and find the analytic result

W̃ (z) = �L�R(z + �L + �R)2�̃+(z)

(z + �L)(z + �R)(�L + �R)[z�̃−(z) + {z + �L + �R}{z + �̃+(z)}] . (6)

In general, the electron waiting time is determined in an
interplay between the time scales associated with the incoming
electrons in the transport window and those associated with
the nanostructure. The incoming electrons are on average
separated by the mean waiting time τ̄ = h/eV , where V is
the applied voltage.18 In our example, the voltage is much
larger than the energy scales of the DQD, implying that the
mean waiting time between the incoming electrons is much
shorter than the time scales of the DQD, and τ̄ does not appear
above.

Focusing first on the uncoupled case (α = 0), we find that
the WTD in the limit of vanishing tunneling rates (�L,�R →
0) has imaginary poles at z = ±i�, where � = √

4T 2
c + ε2 is

the energy splitting of the hybridized states of the DQD, see
also Ref. 15. These poles correspond to coherent oscillations
between the quantum dot levels with period h/�. This is
clearly visible in Fig. 2(a), showing the WTDs in the time
domain. The pole structures �L/R/(z + �L/R) in Eq. (6) are
due to Poissonian charge transfers between the DQD and the
leads, which damp the oscillations. The coherent oscillations
are gradually washed out as the temperature of the heat bath
is increased and electrons are dephased as they tunnel through
the DQD.

Next, we increase the coupling to the heat bath. Markovian
dephasing in the weak-coupling limit has been discussed by

Brandes.15 Here we can take these ideas further and examine
the transition from Markovian to non-Markovian dephasing.
In Fig. 2(b), we present WTDs at zero temperature beyond the
limit of weak system-bath coupling. As the coupling increases,
the heat bath tends to localize electrons on the quantum dots
and the interdot tunneling rate becomes suppressed. For large
couplings, tunneling events are rare and uncorrelated and the
transport process essentially becomes Poissonian.

Heat bath & WTD. The DQD can be tuned to an interesting
regime, where tunneling between the quantum dots becomes
the rate-limiting step in the transport. Choosing for instance
the tunnel coupling Tc or the dealignment of the quantum dot
levels ε such that �̃−(z),�̃+(z) � �L,�R , Eq. (6) reduces to

W̃ (z) 	 �̃+(z)

z + �̃+(z)
. (7)

This result offers the possibility of directly probing spectral
properties of the heat bath (or another coupled conductor32)
through the detection of the electron waiting time, since the
bath correlation functions enter the bath-assisted hopping rate
�̃+(z). In Fig. 3 we focus on the emission and absorption of
energy to and from the heat bath as electrons tunnel from
the left to the right quantum dot. At low temperatures, there
is a clear asymmetry between the WTDs for positive and
negative dealignments, since the heat bath mainly contributes
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FIG. 3. (Color online) Electronic waiting time distributions for
dealigned levels. At low temperatures (blue lines), there is a
strong asymmetry between positive and negative dealignments. The
asymmetry diminishes at high temperatures (red lines). Red and blue
curves are obtained from Eq. (6), while the black curves follow from
the approximation in Eq. (7).

to the transport for positive detunings by absorbing energy
quanta from tunneling electrons. At high temperatures, this
asymmetry disappears as the heat bath in addition can
assist the tunneling process at negative detunings through
the emission of energy quanta. Figure 3 shows that Eq. (7)
provides an excellent approximation to the exact results based
on Eq. (6).

Conclusions. We have presented a theory of electron
waiting times for non-Markovian generalized master equations
which unifies and extends a number of earlier approaches to
waiting time distributions in the context of electronic transport.
As an illustrative example we considered electron transport
through a double quantum dot for which we examined non-
Markovian dephasing mechanisms beyond the weak-coupling
limit. We hope our method may pave the way for future
investigations of memory effects and electron waiting times,
similar to how full counting statistics and finite-frequency
noise in non-Markovian quantum transport have been popular
research topics in recent years.
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