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Periodic Anderson model with electron-phonon correlated conduction band
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This Rapid Communication reports dynamical mean-field calculations for the periodic Anderson model in
which the conduction band is coupled to phonons. Motivated in part by recent attention to the role of phonons
in the γ -α transition in Ce, this model yields a rich and unexpected phase diagram which is of intrinsic
interest. Specifically, above a critical value of the electron-phonon interaction, a first-order transition with two
coexisting phases develops in the temperature-hybridization plane, which terminates at a second-order critical
point. The coexisting phases display the familiar Kondo screened and local-moment character, yet they also
exhibit pronounced polaronic and bipolaronic properties, respectively.
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The periodic Anderson model (PAM) and its impurity
variant have played pivotal roles in elucidating the nature of
Kondo screening as the techniques of many-body theory have
improved.1–3 Perhaps its most noted application has been the
Kondo volume collapse scenario for understanding the unique
isostructural γ -α transition in Ce, with its very large 15%
volume change.4,5 The relative merits of this perspective versus
the Mott transition scenario6 are still under debate, although
both focus on critical 4f -electron correlation effects, and the
finite temperature predictions are rather similar.7 The PAM
exhibits a smooth crossover from a local-moment region with
Curie Weiss susceptibility (γ -like) to a region with Kondo
screened 4f moments and a paramagnetic susceptibility
(α-like), as a function of increasing hybridization between
the 4f and valence electrons.8 Although the PAM also
predicts a first-order transition given proper consideration of
the Maxwell construction of the free energy versus volume
curves,4 it requires modifications like some f -f hybridization9

so as to display a first-order phase transition with two
coexisting phases at the same hybridization in the temperature-
hybridization plane.

Over the past decade attention in the Ce literature has shifted
to an appreciation that a significant fraction of the total entropy
change across the transition may be due to phonons.10–16

However, studies focusing on the effect of phonons on the
PAM are very limited.17–21 Prior studies either are constrained
to ground-state calculation or do not explore possible phase
transitions in detail. To this end, we are motivated here
to consider the PAM with Holstein phonons.22,23 Since the
coupling of phonons to the f electrons can lead to loss of
local moments via electron condensation, we have chosen
to couple the phonons to the conduction electrons in the
present work. We find that the electron-phonon interaction
above a critical strength induces a first-order transition in the
temperature-hybridization plane for the PAM-Holstein model.
Strikingly the electron-phonon interaction also creates pola-
ronic behavior in the Kondo screened phase and bipolaronic
behavior in the local-moment phase. This intriguing phase
diagram is explored in the remainder of the present Rapid
Communication.

The Hamiltonian of the PAM-Holstein model is

H = H0 + HU + He−ph,
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where ci,σ , c
†
i,σ (fi,σ , f

†
i,σ ) are the creation and annihilation

operators of the conduction (f level) at site i and spin σ ;
nc
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i,σ fi,σ represent the occupation of

the c and f electrons, respectively; t is the nearest-neighbor
hopping; εf is the on-site energy of the f level; V is the
hybridization between conduction and localized electrons; the
on-site Hubbard interaction is U ; g is the electron-phonon
coupling; Xi is the lattice displacement at site i, and Pi is its
conjugate momentum.

Due to the absence of experimental evidence for long-range
ordering in Ce volume collapse in the primary range of
interest at room temperature and above, together with the
smooth Fermi surface we choose, dynamical mean-field theory
(DMFT)24 is employed in our simulation. We use a hypercubic
lattice in infinite dimensions with Gaussian density of states

D(ε) = 1√
πW

e−( ε
W )2

. The bandwidth W is set to 1 as the
unit of energy. In Ce the Fermi energy is about 6000 K
and the Debye frequency is 110–160 K,10,16 therefore we set
the phonon frequency ω0 = 0.01 at 1% of bandwidth. The
Hubbard interaction is U = 4.0. The total electronic density is
fixed at n = 1.8 by tuning the chemical potential, and we adjust
εf so that nf = 1 at T = 0.1 to ensure that a local moment
is present at high temperatures. Therefore all data we show
are for nf ∼ 1.0 and nc ∼ 0.8. The continuous time quantum
Monte Carlo,25 generalized for electron-phonon coupling,26 is
employed as the impurity solver.

121102-11098-0121/2013/87(12)/121102(4) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.87.121102


RAPID COMMUNICATIONS

PENG ZHANG et al. PHYSICAL REVIEW B 87, 121102(R) (2013)

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
V

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Γ

β=10
β=20
β=30
β=40

0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8 β=10
β=20
β=30
β=40
β=80

FIG. 1. (Color online) Isothermal scan of the hybridization factor
� = 〈c+

0 f0 + H.c.〉 as a function of V at g2/2k = 1.0. � increases
monotonically with V . As the temperature decreases, � vs V becomes
steeper with a diverging slope near Vc ∼ 0.96. Inset: Isothermal scan
of the hybridization factor � as a function of V at g2/2k = 0.49.
Notice that the critical behavior has disappeared.

Figure 1 displays the local hybridization factor � =
〈c+

0 f0 + H.c.〉 (here zero denotes the impurity site) as a
function of V for g2/2k = 1.0 and different values of inverse
temperature, β. As the temperature decreases, the slope of the
� vs V curve becomes progressively larger, which indicates
that the system is approaching a critical point. Interestingly,
the curves approximately cross at a critical hybridization
Vc ∼ 0.96. The inset of Fig. 1 shows � vs V at g2/2k = 0.49.
Notice that for this value of coupling the slope does not become
steeper as the temperature decreases, and the line crossing
disappears. This indicates that the corresponding susceptibility
reaches a plateau as a function of temperature. We believe
g2/2k = 0.49 is the lower bound for the critical value of the
electron-phonon coupling. For any electron-phonon coupling
smaller than 0.49, including PAM, the slope changing feature
and consequently the critical behavior are lost.

When the temperature is further decreased to T = 0.0167
(β = 60), � vs V displays a hysteresis loop as shown in Fig. 2.
The red line is obtained by starting at the large V side (V =
1.2) and using the output self-energy to initiate the simulation
for the next smaller V . On the other hand, we obtain the black
line by starting at V = 0.8 and using the output self-energy
as the input for the next larger value of V . The coexistence
of two solutions for the same value of V at T = 0.0167 is a
direct evidence of a first-order phase transition. The absence
of such a hysteresis at higher temperatures indicates that the
first-order transition ends at a second-order terminus (Vc, Tc).

For the same parameters, V = 0.96, g2/2k = 1.0, ω0 =
0.01, and U = 4.0, we also perform a series of isothermal scans
on the chemical potential to study the relationship between the
total electron density n = nc + nf and the chemical potential
μ. As long as the temperature is not below T = 0.0167,
the compressibility dn

dμ
shows no tendency to diverge. This

indicates that the phase transition here is not compressibility
driven.

In Fig. 3 we show the temperature times the local f -
orbital spin susceptibility, T · χ

ff
s , versus temperature. As T

approaches zero, T · χ
ff
s is roughly constant for V = 0.8,
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FIG. 2. (Color online) Hysteresis of � vs V for T = 0.0167,
g2/2k = 1.0. The black line represents the small V branch of the
hysteresis for which the self-energy of the previous simulation is
used to initiate the calculation for the next larger value of V . While
the red line represents the large V branch where starting with
V = 1.2, we use the output of the previous simulation to initiate
the computation at the next lower value of V . Inset: � as a function of
the DMFT iteration number n for V = 0.96, T = 0.0167. The black
(red) symbols represent the small (large) V branches.

while it goes to zero for V = 1.2. This indicates that at
V = 0.8 the f electrons display a robust local moment and
paramagnetic local susceptibility with 1/T dependence, while
at V = 1.2 the f local moments are quenched. The inset
of Fig. 3 shows the f -orbital density of states (DOS) at
T = 0.01. Notice that at V = 0.8 there is a gap across the
Fermi level, while at V = 1.2 a Kondo resonance peak appears.
The screening of the local moment in the large V region
is a consequence of the singlet formation between c and f

electrons.
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FIG. 3. (Color online) Temperature times the local f -orbital spin
susceptibility, T · χff

s , as a function of temperature for g2/2k = 1.0.
For V = 0.8 (black line), T · χff

s approaches a constant value as T →
0, indicating an unscreened moment. For V = 1.2 (red line), T · χff

s

converges to zero, indicating that the local moment is screened. Inset:
The f -electron DOS at T = 0.01. The Kondo peak found for V = 1.2
(red line) but absent for V = 0.8 (black line) is consistent with the
screening and unscreening scenarios in the main panel.
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FIG. 4. (Color online) Occupancy distribution histogram of c-
orbital P (nc) for V = 0.8 (black line) and 1.2 (red line), T = 0.0167,
and g2/2k = 1.0. For comparison, P (nc) of the PAM without
electron-phonon coupling is plotted as well: V = 0.8 (blue line) and
V = 1.2 (green line). Inset: Quasiparticle Z factor as a function of
temperature for V = 0.8 (black line) and 1.2 (red line).

The main panel of Fig. 4 shows the occupancy distribution
histogram of the c electrons, P (nc), at T = 0.0167. P (nc)
has been used to illustrate bipolaron formation.26 At V = 0.8
the c-orbital electrons are in a bipolaronic state, which is
characterized by the oscillation between zero and double
occupancy, while for V = 1.2 the c electrons are in a polaronic
state, where the occupancy oscillates between zero and one.
For the PAM, without electron-phonon coupling, the structure
of P (nc) is totally different. Here there is only one peak at
roughly the c-electron filling nc = 0.8, and P (nc) quickly
decays to zero for nc away from this filling. In the inset,
the quasiparticle fraction Z is plotted as a function of tem-
perature. The quasiparticle fraction is calculated for the lower
quasiparticle band at the Fermi level using a generalization
of the single band formulation.27 The main component of this
approach is to make the replacement dRe�(ω)

dω
|ω=0 ≈ Im�(iπT )

πT
,

which becomes exact at zero temperature. As T → 0, Z goes to
zero for V = 0.8, indicating non-Fermi-liquid behavior, while
it converges to a finite value for V = 1.2, the signature of
Fermi-liquid formation.

We find that this Kondo singlet to local-moment phase
transition remains for a large range of parameters, like
adjusting the total filling to n = 1.6, changing the Hubbard
interaction to U = 3.8, and increasing the phonon frequency
to ω0 = 0.02 and 0.05, while keeping g2/2k fixed. For these
different parameters, we find that the isothermal � vs V curves
still cross and their slopes diverge at a critical value of the
hybridization, Vc, as the temperature is decreased. We also
find that Vc changes roughly linearly with g2/2k.

In Fig. 5(a) the time integrated local f -orbital spin-
spin-correlation function, χ

ff
s , is plotted as a function of

temperature for V = 1.1,1.2, and 1.3. We identify the Kondo
scale TK as the energy where χ

ff
s falls to around half of

its low-temperature value. We find that TK changes very
little as V increases, so the line V vs TK should have
a large slope. Figure 5(b) shows the time integrated local
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FIG. 5. (Color online) (a) The f -orbital time integrated local
spin-spin correlation, χff

s , as a function of temperature for V = 1.1,
1.2, and 1.3. (b) The c-orbital time integrated local spin-spin
correlation function, χcc

s , as a function of V for different temperatures.

c-orbital spin-spin-correlation function, χcc
s vs V , at different

temperatures, where large values reflect the c-electron spin
degeneracy in the polaronic state in contrast to the small
susceptibility for the spinless bipolarons. For V < 0.96 the
curves almost overlap for all T < 0.1. In fact, the correspond-
ing c-electron occupancy histograms (not shown) show an
obvious bipolaronic double peak feature even at relatively
high temperatures like T = 0.1. If we define T ∗ as the energy
where bipolaron formation begins, then the line T ∗ vs V must
be nearly horizontal.

We have also calculated the renormalized phonon fre-
quency. At T = 0.025 it is roughly constant for hybridization
V > 0.96; however, it drops precipitously for V < 0.96,
decreasing by half when V = 0.8. This behavior softens
with increasing temperature; e.g., a more gradual decrease
begins for V < 1.2 at T = 0.1. This indicates an important
temperature dependence of the phonon properties. Indeed,
the analysis in Ref. 14 for Ce found that the temperature
dependence of the phonons was a critical factor for obtaining
a significant phonon contribution to the entropy change across
the γ -α transition.10–16

Figure 6 is a schematic summary of our findings. Two
phases, local-moment-bipolaron and Kondo singlet polaron,
are separated by a first-order transition line, which terminates
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FIG. 6. (Color online) Schematic V vs T phase diagram. The
solid black line represents the first-order phase transition, which
separates the local-moment bipolaron phase for small hybridization
V from the Kondo singlet polaron phase for large V . This first-order
transition line terminates at a second-order critical point. The red
dashed line coming out of the critical point represents the Kondo
scale TK , and the green dashed line represents the bipolaron energy
scale T ∗.
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at a second-order critical point (Vc,Tc). The positive slope
of the V vs T first-order transition line is a consequence
of a Clausius-Clapeyron-like relation where hybridization V

is the analog of pressure. There is no broken symmetry
between these two phases, as we can move adiabatically
from one to another by wandering around the critical point.
Both phases are destroyed by increasing the temperature.
In order to have such a first-order phase transition, the
electron-phonon coupling on the c band must be larger than a
certain critical value. The fact that the critical temperature is a
function of electron-phonon coupling implies that the critical
point touches zero temperature at some gc, where the first-
order phase transition becomes a quantum phase transition
tuned by V .

The DMFT calculations for the Hubbard-Holstein
Hamiltonian28–30 allow us to comment on the differ-
ence between the Mott-Hubbard + phonon model and our
PAM + phonon model. Both models predict a bipolaronic
insulating phase at some finite g, although with different
slopes as a function of increasing hybridization (f -f or
f -valence). The fundamental topological difference is that
for the Hubbard-Holstein model the γ phase (insulating) has
a first-order transformation to the bipolaronic insulating phase
with increasing g, while for the PAM-Holstein model the γ

phase (local moment) can always be evolved continuously to
the bipolaronic insulator phase.

In conclusion, when the conduction band of the PAM is
coupled to phonons, one obtains a rich and unexpected phase
diagram. Above a critical strength of the electron-phonon
coupling a first-order transition with two coexisting phases de-

velops in the temperature-hybridization plane. This transition
terminates at a second-order critical point. These coexisting
phases correspond to the familiar Kondo screened and local-
moment regions of the PAM, yet they additionally exhibit
pronounced polaronic and bipolaronic behavior, respectively.
While the PAM and its impurity variant have been paradigms
for the α-γ transition in Ce, additional electronic bands not
considered here might be needed in a generalization of the
present PAM-Holstein model to more completely explain
the volume collapse. Nonetheless, the present results suggest
that electron-phonon effects become more important in Ce at
weaker hybridization (lower pressure), that there is profound
temperature dependence to the phonons in the γ as distinct
from the α phase, and that the polaronic effects seen here are
consistent with the superconductivity observed31 in Ce at much
lower temperatures [T < O (1 K)] at pressures above 2 G Pa.
That the effects seen here are more striking in the γ phase
is no accident, as only for this phase are the characteristic
phonon energies (Debye temperature)16 comparable to the
critical energy scale of hybridization between 4f and valence
electrons (Kondo temperature).4,5
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