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Scale invariance of a diodelike tunnel junction
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We measure the current vs voltage (I -V ) characteristics of a diodelike tunnel junction consisting of a sharp
metallic tip placed at a variable distance d from a planar collector and emitting electrons via electric-field assisted
emission. All curves collapse onto one single graph when I is plotted as a function of the single scaling variable
V d−λ, d being varied from a few mm to a few nm, i.e., by about six orders of magnitude. We provide an argument
that finds the exponent λ within the singular behavior inherent to the electrostatics of a sharp tip. A simulation
of the tunneling barrier for a realistic tip reproduces both the scaling behavior and the small but significant
deviations from scaling observed experimentally.
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I. INTRODUCTION

The physical process leading to the emission of electrons
from a sharp metallic tip placed at a well defined distance d

from a planar electrode depends on d. If d is less than about
1 nm the current is produced by direct tunneling between
emitter tip and planar collector.1 This type of tunnel junction
is used, e.g., in scanning tunneling microscopy2 (STM). At
larger distances, the current is dominated by electric-field
assisted tunneling of electrons into the region between emitter
and collector through the classically forbidden zone.1,3,4

This is the type of junction underlying, e.g., an instrument
called the topographiner5,6—a precursor of STM technology—
and is the elementary building block of recent and less
recent developments in nanoelectronics.7 The quantitative
description of electric-field assisted tunneling, originating
within the birth of quantum mechanics, is based on the
Fowler-Nordheim equation1,8–11 (FN) (see, e.g., Ref. 12 for a
summary of recent developments), although recent emitters—
such as, e.g., carbon nanotubes, silicon nanowires, and metallic
nanowires-graphene hybrid nanostructures13–15—as opposed
to the “older ones”16—are almost atomically sharp and thus
differ essentially in their geometry from the planar electrode
geometry underlying the FN equation. For such field emitters,
the potential drop within the tunneling barrier is nonlinear
and simulations have revealed that the FN equation must be
modified to take such nonlinearities into account.17,18

In this paper we systematically measure the current-voltage
characteristics of a junction in the electric-field assisted
regime, whereby the distance d between tip and collector
is varied from a few mm to a few nm. We observe that the
family of curves describing the current I as a function of the
two independent variables V and d can be “collapsed” onto
one single scaling curve when I is plotted as a function of
the single scaling variable V d−λ. This collapsing by a power
law of d implies that the physical law governing the flow of
current is invariant with respect to changes of the length scale
d. We argue that the exponent λ originates within the solution

of the Laplace equation of electrostatics in the vicinity of a
singular point and undergoes crossovers to different values
depending on whether d is comparable to the total length L

of the tip, d � L, and, finally, whether d is comparable to
the radius of curvature of the tip (see Fig.1). Both the scaling
behavior and small but significant deviations from it observed
in experiments are reproduced by a model which assumes the
electrostatic potential of a realistic tip within the classically
forbidden region.

II. EXPERIMENTAL METHODS

A schematic view of the experimental setup is sketched in
Fig. 1. The tip is biased with a negative voltage with respect
to the anode, so that field emitted electrons flow from the tip
into the anode. Our tips are fabricated starting with a tungsten
wire with a few mm length and 250 μm diameter. The last
few hundreds of μm close to one end of the wire are etched
electrochemically to assume a cuspidal profile which, in the
final few μm toward the apex, resembles very much a cone with
a full angle of aperture between ≈6◦ and ≈12◦. A rounding of
the cone tip limits its sharpness to ≈5 nm radius of curvature
(at best) but it can be as large as ≈30 nm, depending on the
details of the tip preparation in an ultrahigh vacuum.6 For
the experiments with d in the sub-nm to ≈2000 nm range (d
being the distance between the apex of the tip and the anode),
the collecting plane is a W(110) or a Si(111) single-crystal
surface, prepared with standard surface techniques in a base
pressure of ≈10−11 mbar. The quality of the tip and the surface
topography of the anode are tested by performing standard
STM imaging.2,19 By mounting the tip onto a piezocrystal, that
can move the tip perpendicularly to the surface, the distance d

between tip and planar anode can be varied. The approach of
the tip to the anode to reach STM-imaging distances (sub-nm)
is used to define the origin of the d scale. The STM image of
the W(110) surface consists of a few tens of nm wide terraces
separated by monoatomic steps, which are known to have a
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FIG. 1. Schematic view of the experimental setup. L ≈ 2 mm is
the total length of the field emitter while t ≈ 250 μm is the length
of the tip. The current I , the voltage V , and the distance d are the
tunable experimental parameters. (r, θ ) are the polar coordinates used
in the definition of the electrostatic potential �(d,r, cos θ ).

height of 0.2 nm. This value is used to calibrate d up to d ≈
2000 nm, which is the largest displacement we can obtain using
our piezocrystal drive. The piezocrystal derived value of d was
also double checked by an optical sensor device, integrated
ad hoc into our homemade STM microscope for the purpose
of making sure that the piezoreading of d is also reliable at
distances much larger that the STM imaging distance. Notice
that experiments involving d ranging from several μm to mm
are performed by moving the tip with a mechanically driven
positioner. In this case, the origin of the d scale is established
by detecting the Ohmic contact between the tip and the anode
after the data acquisition.

III. RESULTS

A. Experimental evidence of scaling

Figure 2 shows scaling plots in three different ranges
of values for d. On the left, one finds the family of I -V
characteristics measured within a given d range (color coded
along the vertical column). On the right, all I vs V graphs are
brought to almost collapse (within experimental noise) onto
one single I vs V R(d) reference curve. This means that one en-
tire I -V curve at a given distance d is mapped onto a reference
I -V curve (which can be chosen arbitrarily) by multiplying all
voltages by the same number R(d) (scaling factor), plotted in
the inset on the right figures. The scaling factor R(d) depends
on d but not on I and behaves approximately as a power
law d−λ [see the red continuous curve through the graphs of
R(d)]: This means that the current flowing obeys a scaling law
of the type I = I(V d−λ), i.e., it is a generalized homogeneous
function of V and d (Ref. 20), I(x) being the scaling function.
The exponent λ depends on the range of d: it crosses over from
λ ≈ 0.71 [Fig. 2(a), d = 850–3000 μm] to ≈0.27 [Fig. 2(b),
d = 15–1600 μm] to about 0.22 [Fig. 2(c), d = 3–300 nm].

The same set of experimental data can be represented in
a V -d diagram as, e.g., in Fig. 3 (left). In a V vs d plot the
distance is varied and the voltage is changed in such a way that
the current flowing is kept constant over the whole V -d curve.
The family of curves in Fig. 3 (left) can be collapsed onto one
single graph [Fig. 3 (right)] by multiplying the voltage V by
a factor R(I ), common to all distances, plotted in the inset.
R(I ) can be described by a power law R(I ) ∝ I−μ as well,
with μ ≈ 0.03–0.04, signifying that d depends on one scaling
variable, i.e., d = D(V I−μ), D(y) being the scaling function.
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FIG. 2. (Color) Left: Family of I -V curves in the ranges:
(a) 0.84–2.84 mm, (b) 15–1605 μm, and (c) 3–300 nm. Right: The
curves on the left are made to collapse onto the curve corresponding
to d = 0.84 mm, 14 μm, and 300 nm, respectively, by multiplying
the voltage with a number R(d), plotted in the insets on the right.
The continuous red curves through R(d) in the insets are a power
law ∝ d−λ with λ = 0.71, 0.27, and 0.22, respectively. The variable
d is color coded along the vertical bar on the right. The anode used
to acquire the data in the top and middle figure was a stainless steel
sphere with about a 1 cm diameter. The alternative horizontal scale
in (c) (right) is explained in the text.
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FIG. 3. (Color) Left: family of V -d curves [data taken from
Fig. 2(c)] in the range 0.2 to 300 nA, respectively, each curve
corresponding to a given current (color coded along the vertical
bar). Right: The family of curves is collapsed onto one single curve
corresponding to I = 2.3 nA by multiplying the voltage with a
number R(I ), plotted in the inset.

115436-2



SCALE INVARIANCE OF A DIODELIKE TUNNEL JUNCTION PHYSICAL REVIEW B 87, 115436 (2013)

B. The scaling functions

By setting the scaling variable V d−λ = const (namely,
fixing the current) one obtains d ∝ V 1/λ, i.e., D(y) ∝ y1/λ or,
equivalently, V ∝ dλ. One could proceed similarly to obtain
I(x) from V I−μ = const. However, being aware that, in
practice, it is almost impossible to distinguish a power law
I−μ from ln(1/I) (Ref. 21), when μ is very small, we prefer
to use V ln(1/I) = const to obtain the scaling function I(x) ∝
exp(−1/x): This functional dependence is more established
in the literature dealing with quantum tunneling1,8,9 because
it is directly related to the quantum-mechanical transmission
coefficient.

C. Experimental determination of the exponent λ

Collapsing of I -V curves has been occasionally encoun-
tered in experiments [e.g., in the range 0.1–0.8 mm (Ref. 22)],
as well as a power-law dependence on d with λ = 0.19 in
the 2–14 μm range.23 However, the systematic collapsing,
accompanied by the emergence of characteristic exponents
describing entire sets of graphs over wide ranges of d, needs
justification. To avoid the crossover observed when d enters a
range comparable to the length L of the emitter, we performed
experiments in the range d � L (remarkably, the same
crossover appeared in finite-elements simulations of a similar
junction24). Figure 4 summarizes experimental V -d curves. In
a typical experiment, the field-emitter current is set to some
prefixed value. The distance d is then varied and the voltage
required to keep the current at the prefixed value is measured.
In this way, one produces a family of V -d curves at selected
currents. In the range d � 10 nm, the observed linearity (in
the log-log plot) is a manifestation of a power-law behavior
∝ dλ. Most of our data in this range of d give an exponent
λ ≈ 0.2 ± 0.05, with some exceptions reaching values up to
≈0.35 (see the top graph). This means that the exponent is
probably not universal but concentrates around a value of
about 0.2. A systematic downward bending of the graphs in the
range d < 10 nm also emerges from Fig. 4, which indicates
a crossover to a possibly different power-law regime with a
larger exponent. Thus, these experiments can be summarized
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FIG. 4. (Color) Summary of V -d curves at 0.2 nA in a log10 V

vs log10 d plot, d from ≈3 nm to ≈2000 nm. The curves have been
shifted along the vertical scale relative to each other for clarity.

as indicating a power-law exponent λ ≈ 0.2 ± 0.05, in the
range 10 � d � 2000 nm, with a crossover toward larger
values in the range d � 10 nm.

D. The origin of the exponent λ

Our working hypothesis for explaining the appearance of
λ and the measured value is that keeping a constant current
is equivalent to keeping a constant electrostatic potential
within the classically forbidden region.4 This is because the
electrostatic potential �(x) within the classically forbidden
region determines the transmission probability through the
classically forbidden region via the quantum-mechanical
Gamov exponent, which in its simplest version can be written
as

√
8m
h̄

∫ x2

x1

√
ϕ− | e�(x) |dx (ϕ is the work function of the

tip, x is the spatial coordinate along the tip axis, and the
spatial integration is performed between the classical turning
points xi). We search for a hypothetical scaling behavior of
the electrostatic potential for the simple case of a tip (set for
convenience to zero potential) with conical shape positioned
in front of a plane set at a constant potential V > 0 and at a
variable distance d. Defining as (r, θ ) the variables describing
the distance from the tip of the cone and, respectively, the polar
angle measured with respect to the cone axis (see Fig. 1), the
potential in the vicinity of the tip reads25

�(d,r, cos θ ) ∼= V Aλ1 (d)rλ1Pλ1 (cos θ ). (1)

Rigorously, Eq. (1) gives the first term of an infinite sum.
Pλ1 (cos θ ) is a Legendre function of the first kind and of
order λ1. The exponent λ1 is the smallest positive real
number for which the boundary condition Pλ1 (cos β) = 0 is
fulfilled, β being the polar angle describing the cone surface
(π/2 < β < π ). The denumerable infinite set of nonleading
terms are labeled by the numbers λi > λ1. The coefficients
Aλi

(d) are determined by the boundary condition �(d,r =
d/ cos θ, cos θ ) = V , with θ ∈ [0,π/2].

Statement. The coefficients Aλi
fulfill the scaling property

Aλi
(d) = Aλi

(1)d−λi . (2)

Proof. We notice that �(1,r/d, cos θ ) fulfills the same
Laplace equation and boundary conditions as �(d,r, cos θ ).
As the solution of the Laplace equation fulfilling given
boundary conditions is unique, we can set �(d,r, cos θ ) =
�(1,r/d, cos θ ). The scaling property Eq. (2) follows imme-
diately. �

Equation (2), combined with Eq. (1), states that varying
d does not affect the potential �(r,θ,d) close to the apex
of the cone if the applied voltage V is changed in such a
way that V Aλ1 is independent of d. In virtue of the scaling
property Eq. (2), V Aλ1 = const is equivalent to V ∝ dλ1 , with
an exponent defined by the electrostatic boundary condition on
the cone surface. Indeed, our field emitters end with an almost
conical profile,6 with a full angle of aperture of typically 6◦
to 12◦. This leads to λ1 in the range 0.14–0.17,25 i.e., close
to the value λ ≈ 0.2 measured for a large number of field
emitters. Notice that close to the apex the cone singularity is
removed by rounding and/or the formation of a small sphere,
with radius of curvature r0 that can vary from about 4 to
5 nm at the best to some tens of nm for the bluntest field
emitters.6 The question arises whether the power-law scaling
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in Eq. (2) expected for a cone remains valid for realistic
tips and what values of λ1 should be used. We point out
that the scaling with d of Eqs. (1) and (2) for r0 � d � L

is “protected” by Saint-Venant’s principle.26 Applied to the
present problem, that principle states that if the rounding of
the singularity is local enough, the term in Eq. (1) (containing
some cutoff length of the order of r0) remains the leading
one. Only when d approaches values comparable to the radius
of curvature can we expect the remaining terms λi > λ1 to
play a role and to produce a crossover to a different solution.
We verified the robustness of the conical power-law exponent
by explicitly treating the problem of a tip with various typical
geometries. For a hyperboloid of revolution, we find that when
d is sufficiently large, the exponent λ1 is determined by the
angle between the axis of the hyperboloid and the asymptotes
of the hyperboloid—just as in the conical case. When the
plane approaches the tip, the power law with exponent λ1

crosses over to a power law with exponent 1 (typical of a planar
capacitor), via a log d behavior close to the confocal plane.27

We find, extending the work of Miskovsky et al.,28 the same λ1

and λ1 → 1 crossover for a plane in the vicinity of a tip with
cuspidal shape, which is ultimately the true physical shape of
our field emitters up to a few tens of μm away from the apex.
For a plane in the vicinity of a paraboloid of revolution we
have λ1 = 0 (meaning a log d dependence) and no crossover.
We have also extended the results of Hall29 and Dyke et al.16

to deal with a conical tip terminated by a small sphere and
placed in the vicinity of a planar anode at variable d: we
found the same λ1 and λ1 → 1 crossover. Finally, we have
verified the λ1 → 1 crossover numerically and analytically
within a simple model mimicking the rounded conical tip with
a sequence of small spheres of increasing radius.30 We point
out that our working hypothesis for explaining λ1 completely
neglects the charge existing within the region of space between
the apex of the tip and the planar anode—if this charge is
large, one enters the “screening” regime, in opposition to the
electrostatic regime underlying our hypothesis. The boundary
between those regimes is not sharp, but our data seem to
indicate that the electrostatic regime dominates in the range
of currents used in the present paper. In the screening regime,
different values for the exponent λ1 (Ref. 31) are expected.

E. The scaling variable V R(d)

At any distance, the rounding of the tip introduces a
linear component of the potential in the vicinity of the tip
apex, which produces a finite electric field at the tip apex
F

.= −∂�/∂r|r≈r0 pointing along the tip axis. Remarkably, F

transforms as V d−λ1 and can, therefore, be associated with
the scaling variable V R(d) [see the alternative horizontal
scale in Fig. 2(c)]. The scaling of the I -V characteristics
to a reference curve is therefore equivalent to assigning the
same field F to junctions with different d. For determining F

we have performed V -d experiments using tips with various
radii of curvature, Fig. 5, with the aim of detecting the
straight, planar-capacitor-like V -d section in the vicinity of
d = 0. For microscopy imaging, the tips were removed from
the ultrahigh vacuum environment where V -d curves were
previously taken. The data of Fig. 5 indicate that, when the
radius of curvature is small (typically 5–16 nm, data points
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FIG. 5. (Color) Top shows electron microscopy images of the tips
used to obtain the V -d curves at 0.2 nA, the initial section of which
is shown at the bottom.

+,×,◦,�,�), a strong curvature persists, even in the close
vicinity of d = 0. For such “sharp” field emitters, therefore,
we can only conclude that the electric field at the apex is
F � V/d. However, our simulations30 indicate that, with a
larger radius of curvature, a larger voltage is required to
draw a given current, so that a wider initial section of the
graph might emerge, that can be considered straight enough
to obtain a reliable value of the electric field from the planar
capacitor expression. We fabricated field emitters with larger
radii of curvature which allowed us to estimate the electric
field F = 4.2 ± 0.5 V(nm)−1 for a current of 0.2 nA from a
linear fit of the section in the range d � 10 nm of the • curve.

F. The tunneling barrier

Figures 6(a) to 6(c) plot experimental I -V curves, taken in
the 3–300 nm range, within a log10(I/F 2) vs 1/F diagram.
These plots reveal that (i) for a given field the current acquires
approximately the same value, independently of d, reiterating
the scaling behavior reported in Fig. 2. The data also reveal
(ii) a small but detectable downward curvature of the graphs
accompanied by (iii) a small but detectable noncollapsing in
the range of small currents. Figure 6(d) reports simulations
of the tunneling process at variable d (Ref. 30). The tip
was simulated with a set of small spheres aligned along the
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FIG. 6. (Color) (a)–(c) Experimental log10(I/F 2) vs 1/F dia-
gram for three different tips in the 3–300 nm range. I is given
in nA and F in V (nm)−1. The straight lines are linear fits to the
experimental data. The data of Fig. 4(a) are those of Fig. 2(c).
(d) Computed log10(J/F 2) vs 1/F for a field emitter with a radius of
curvature of 4 nm at different d . The field-emission current density
J was computed as described in Ref. 30. The dashed-dotted line
is the standard Fowler-Nordheim plot.10 In the inset, the potential
energy e� is plotted as a function of the distance r from the the tip,
showing an “upward” curvature that effectively increases the width
of the tunneling barrier with increasing d [electric field at the apex is
set to 4 V (nm)−1].

direction perpendicular to the planar anode and with increasing
radius of curvature. The topmost sphere determines the radius
of curvature, the following ones with increasing diameter
mimic the angle of aperture of the cone. The plot of Fig. 6(d)
shows the computed current density J versus electric field in a
log10(J/F 2) vs 1/F diagram, for different distances d. Evident
from Fig. 6(d) are the three aspects observed experimentally
in Figs. 6(a) to 6(c), namely, that (i) the graphs for different
d almost coincide (scaling), (ii) the graphs are slightly curved
downward, in agreement with the results of Refs. 17 and 18 for
tips with similar radii of curvature, and that (iii) the downward
curvature of the graphs toward small electric fields increases
with distance d. The origin of these three aspects seems to be
the behavior of the electrostatic potential in the vicinity of the
tip; see the inset of Fig. 6(d). In fact, the inset shows that for a

given electric field F

(i) the spatial dependence of the electrostatic potential is
almost independent of d,

(ii) the spatial dependence of the potential has an upward
curvature that effectively widens the classically forbidden
region, as pointed out in Refs. 17 and 18 and that

(iii) for increasing r the d dependence of �(r) becomes
more pronounced.

A quantitative comparison between the experimental data
of Figs. 6(a) to 6(c) and the simulation results of Fig. 6(d)
can be done on the base of the average slope of the graphs
within the range of fields 0.16 < 1/F < 0.3 (1/F in units of
nm V−1). We speak of “average” slope because the graphs in
Figs. 6(a) to 6(c) as well as the simulations in Refs. 17 and 18
and Fig. 6(d) have a slight downward curvature that makes
the slope dependent on F . We use, as unit for the slope, the
original expression by FN for an exact triangular barrier:9,10

− 4 log10(e)
3

√
2m
eh̄

ϕ3/2 (ϕ = 4.5 eV in the present paper3). The
average (multiplicative) slope correction factor derived from
Figs. 6(a) to 6(c) falls in the range 1.2–1.5, to be compared
with the range 1.15–1.44 for r0 = 8–4 nm (Ref. 18), 1.43 ±
0.1 for r0 = 4 nm [our simulations, Fig. 6(d)], and ≈0.95,
recommended for the triangular FN tunneling junction with
image potential correction.10,12

IV. SUMMARY

We have provided experimental evidence for the scale
invariance of a tunnel junction with respect to changes of a
characteristic length from nm to mm. We have also provided
an explanation of this phenomenon in terms of electrostatics
of sharp boundaries. A simple model of electric-field assisted
tunneling using a “realistic” tip geometry reproduces the
essential features observed experimentally. The accuracy of
the data collapsing is remarkably high, taking into account
that the notion of scale invariance is certainly better known in
sciences20 other than solid-state devices. The (almost) scale
invariant electric-field assisted tunneling regime described
in the present paper is essentially different from the direct-
tunneling (STM) regime,2 achieved when d is in the sub-nm
range, marked by the appearance of a characteristic length1

and by almost linearity of I -V characteristics.3
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