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Orbital magnetism is studied for graphene flakes with various shapes and edge configurations using the
tight-binding approximation. In the low-temperature regime where the thermal energy is much smaller than the
energy-level spacing, the susceptibility rapidly changes between diamagnetism and paramagnetism as a function
of Fermi energy, in accordance with the energy-level structure. The susceptibility at the charge neutral point is
generally larger in armchair flake than in zigzag flake, and larger in hexagonal flake than in triangular flake.
As the temperature increases, the discrete structures due to the quantum confinement are all gone, and the
susceptibility approximates the bulk limit independently of the atomic configuration. The diamagnetic current
circulates entirely on the graphene flake at zero temperature, while in increasing temperature it is localized near
the edge with the characteristic depth proportional to 1/T . We predict that the diamagnetism of graphene can be
observed using the alignment of graphene flakes in a feasible range of magnetic field.
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I. INTRODUCTION

The recent developments in fabrication of graphene-based
systems realized a variety of graphene nanostructures, such as
graphene ribbons1–5 and graphene flakes.6–10 The electronic
band structure in these systems crucially depends on the shape
and also on the edge termination,6,11–13 giving physical prop-
erties distinct from those in bulk graphene. So far, a number
of theoretical research has been devoted to understanding the
electronic properties of graphene ribbons11–18 and graphene
flakes19–26 with various atomic configurations.

The purpose of this paper is to study the orbital mag-
netism of graphene flakes. Experimentally, the magnetic
property of graphene-based materials was investigated for
bulk graphite,27–29 nanographite,30 and exfoliated graphene
nanocrystals.31 There the susceptibility always contains a
strong diamagnetic background due to the orbital effect,
whereas it is also contributed by the spin paramagnetism,31 and
in some cases the spontaneous spin magnetic ordering28–30,32

which can be caused by the zero-energy edge states13,33,34

and atomic defects. In any case, correct understanding of the
orbital susceptibility of finite graphene systems is important
to describe the overall magnetic property in realistic graphene
systems.

Graphene has unusual electronic band structure character-
ized by the massless Dirac spectrum,35–43 and accordingly, the
orbital magnetism is significantly different from the conven-
tional Landau diamagnetism.38,44–56 The orbital susceptibility
of bulk graphene diverges when the Fermi energy resides at
Dirac point, but vanishes inside the conduction or the valence
band. Finite-size effect on this singular diamagnetism has been
theoretically studied for carbon nanotubes57–59 and graphene
ribbons.13,60 In our previous work,60 particularly, we found that
the susceptibility of graphene ribbon behaves in a complicated
manner as a function of Fermi energy, reflecting the subband
quantization imposed by the spacial confinement.

In this paper, we consider the orbital diamagnetism of lower
dimensional systems—graphene flakes as illustrated in Fig. 1.
For each case we calculate the orbital magnetic susceptibility
and the diamagnetic electric current distribution using the
tight-binding model. We find characteristic properties peculiar

to each different case, and also general tendencies independent
of the configuration. We also predict that the diamagnetism of
graphene can be observed using the alignment of graphene
flakes dissolved in a solvent under a magnetic field. The
paper is organized as follows. In Sec. II, we introduce tight-
binding Hamiltonian and the formulas to describe the orbital
magnetic effect. We calculate the magnetic susceptibility and
the diamagnetic electric current distribution for graphene
flakes in Secs. III and IV, respectively. We make a quantitative
comparison between the orbital magnetism and the spin
magnetism in Sec. V. We argue the magnetic-field alignment
effect in Sec. VI and present a brief conclusion in Sec. VII.

II. FORMULATIONS

Graphene is composed of a honeycomb lattice of carbon
atoms, where a unit cell contains A and B sublattices. We
consider four different atomic configurations of graphene
flakes as shown in Fig. 1, which are characterized by hexagonal
or trigonal shape and by armchair or zigzag edge termination.
For each case, we range the system size from a few nm to a
few tens of nm. We describe the motion of graphene electrons
using the nearest-neighbor tight-binding model for pz atomic
orbitals. The Hamiltonian is written as

H = −γ0

∑
〈n,m〉

ei2πφnmc†ncm, (1)

where −γ0 is the transfer integral, cn and c
†
n are the annihilation

and creation operators of an electron at the site n, respectively,
and 〈n,m〉 represents summation over all nearest-neighbor
sites. The parameter γ0 was experimentally estimated in the
bulk graphite as γ0 ≈ 3 eV.61 The system is under a uniform
magnetic field B perpendicular to the graphene plane, which
is incorporated by the Peierls phase φnm,

φnm = e

ch

∫ m

n

d� · A, (2)

where A(r) is the vector potential giving the magnetic field by
B = ∇ × A.

For each single graphene flake, we diagonalize Hamil-
tonian Eq. (1) and obtain a set of eigenenergies εi . The
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(a) (b)
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Hexagonal Armchair Trigonal Armchair

Hexagonal Zigzag Trigonal Zigzag

FIG. 1. Atomic structures of (a) hexagonal armchair, (b) trigonal
armchair, (c) hexagonal zigzag, and (d) trigonal zigzag graphene
flakes.

thermodynamical potential at temperature T and chemical
potential μ is written as

� = −kBT
∑

i

ln{1 + exp[(μ − εi)/kBT ]}. (3)

The magnetic susceptibility per unit area is given by

χ = − 1

S

(
∂2�

∂B2

)
μ,T

∣∣∣∣
B=0

, (4)

where S is the area of the system. To calculate this, we obtain
the eigenenergies at zero magnetic field and a small finite
magnetic field, and numerically calculate the derivative of the
thermodynamic potential.

The electric current from the site m to n is calculated by an
operator,

Jnm = −i
eγ0

h̄
(ei2πφnmc†ncm − H.c.). (5)

We obtain the expectation value of Jmn for each bond using
the eigenstates at a sufficiently weak magnetic field, where the
current amplitude behaves linearly to B.

For the later references, let us review the orbital magnetism
of the bulk graphene. The low-energy physics of graphene
electrons can be effectively described by the continuum
massless Dirac Hamiltonian37–43 and the orbital susceptibility
is calculated for this model as38,48,53

χeff(μ; T ) = −gvgs

e2v2

24πc2

1

kBT cosh2[μ/(2kBT )]
, (6)

where gv = gs = 2 are the valley and spin degeneracies,
respectively, v is the band velocity related to the transfer
integral by h̄v = √

3aγ0/2, and a ≈ 0.246 nm is the lattice
constant of graphene. At T = 0, Eq. (6) becomes a δ function,

χeff(μ; T = 0) = −gvgs

e2v2

6πc2
δ(μ). (7)

III. MAGNETIC SUSCEPTIBILITY

Figure 2 shows the susceptibility against the chemical
potential for four types of the graphene flakes with several
different temperatures. The areas of the flakes are taken to
be nearly equal to S ≈ (23.5 nm)2, which includes 1.1 × 104

of hexagonal unit cells. The horizontal and vertical axes are
scaled by

ε0 = h̄v√
S

, (8)

χ0 = gvgse
2v2

6πc2ε0
, (9)

respectively. ε0 represents the energy scale in the Dirac cone
associated with the length scale

√
S. We also calculated the

susceptibility for different system sizes and found that for each
of four types, the susceptibility and the level structure plotted
in this scale becomes almost universal as long as

√
S � a.

This is naturally expected from the fact that the low-energy
physics are well described by the Dirac Hamiltonian.

The upper figure in each panel presents the energy-level
structure at B = 0, where dashed (black) lines are nonde-
generate levels, and solid (red) lines are twofold degenerate
levels. In the low-temperature regime, kBT � ε0, we observe
that the susceptibility abruptly changes at every single energy
level, and in particular, it exhibits sharp spikes toward the
paramagnetic direction (downward in the figure) at twofold
degenerate levels. This is because the degenerate states, having
opposite magnetic moments, split linearly in magnetic field
just like spin Zeeman splitting, and induce paramagnetism
in an analogous way to spin Pauli paramagnetism. The
contribution to the orbital susceptibility (per area) from the
degenerate states at E0 is written as

χ = 2m2

S
δ(μ − E0), (10)

where ±m is the magnetic moments of the doublet. The typical
magnitude of m is shown to be

√
Sev/c, which is the only

magnetic-moment scale in the massless Dirac system.
The major difference between armchair flakes and zigzag

flakes comes from the existence of the zero-energy edge states
peculiar to the zigzag edge.11–13 In the triangular zigzag flake,
Fig. 2(d), there are a number of energy levels exactly at zero
energy,19 of which wave functions are shown to be localized at
the edge, and the degeneracy is the order of ∼√

S/a. Remark-
ably, the susceptibility in the low-temperature regime is com-
pletely flat at these levels, meaning that the edge states have ab-
solutely no contribution to the orbital magnetism. This is sim-
ply because the edge states are locked to zero energy even in the
presence of magnetic field, and never participate in the total-
energy change. In the hexagonal zigzag flake, Fig. 2(c), on
the other hand, the edge levels slightly shift from zero energy,
leading to some small contributions to the orbital susceptibility.
The energy shift arises because the edge states on neighboring
sides of the hexagon always reside at different sublattices, and
they are hybridized by some finite matrix element including
γ0. Nevertheless, the edge states do not play a significant role
in the overall behavior of the orbital magnetism.

As the temperature increases, the spikes and steps in the
susceptibility are smeared out into an oscillatory curve. The
oscillation eventually disappears in kBT /ε0 � 1, leaving a
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(a) Hexagonal Armchair (b) Trigonal Armchair

(c) Hexagonal Zigzag (d) Trigonal Zigzag
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FIG. 2. (Color online) Orbital magnetic susceptibility as a function of μ in (a) hexagonal armchair, (b) trigonal armchair, (c) hexagonal
zigzag, and (d) trigonal zigzag graphene flakes with the size of

√
S ≈ 23.5 nm. In each figure, the upper panel presents the energy spectrum,

where dashed (black) lines represent nondegenerate levels, and solid (red) lines represent twofold degenerate levels.

single diamagnetic peak at the Dirac point, which corresponds
to the thermally broadened δ function in the bulk limit, Eq. (6).
In Fig. 3, we present an extended plot of the susceptibility
curves at kBT/ε0 = 2.22 over the whole band region, for
different types of graphene flakes with

√
S ≈ 23.5 nm. The

energy axis is now scaled by absolute unit γ0. We see
that the finite-size effect almost vanishes in this temperature
regime, giving a universal curve independent of the atomic
configuration. The curves still slightly differ near the central
peak, because the level spacing around the Dirac point, which
is about ∼ε0, is not completely negligible compared to kBT at
this particular system size. This small variance would vanish
in larger flakes which satisfy kBT � ε0.

The curve is characterized by the strong diamagnetic peak
at the Dirac point and some smaller structures off the Dirac

point. The contribution from the lower-half spectrum adds
up to a paramagnetic offset to the central diamagnetic peak.56

Namely, the susceptibility near μ = 0 is approximately written
as

χ (μ; T ) ≈ χeff(μ; T ) + χpara, (11)

where χeff is given by Eq. (6), and

χpara ≈ 0.37 × gvgse
2v2

6πc2γ0
. (12)

The offset χpara is much smaller than the height of the
central peak ≈ gvgse

2v2/(24πc2kBT ), since kBT is usually
much smaller than γ0. Outside the Dirac cone region, we see
tiny Landau diamagnetism in the quadratic band bottom at
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FIG. 3. (Color online) Extended plot of the susceptibility curves
in Fig. 2 over the whole band region, for the four types of graphene
flakes at kBT/ε0 = 2.22. The energy axis is now scaled by absolute
unit γ0, in which the temperature amounts to kBT/γ0 = 0.02. Inset
shows the detail of the central peak.

μ = ±3γ0, and paramagnetism around the Van Hove singu-
larity at μ = ±γ0.53–56

To analyze the size dependence quantitatively, we plot
χ (μ = 0; T ) of hexagonal armchair flakes with different sizes
in Figs. 4(a) and 4(b). Panels (a) and (b) present the same
information but in different fashions: (a) shows χ in the
absolute units γ0 and gvgse

2v2/(6πc2γ0) for horizontal and
vertical axes, respectively, while (b) shows χ − χpara i.e.,
the contribution from the Dirac cone, with relative units ε0

and χ0 depending on the system size. In (b), we see that
the curve converges to a single universal curve as the size
increases, indicating that the physics there is well described
by effective Dirac equation. The susceptibility approaches
the bulk limit χeff in the high-temperature region kBT � ε0,
whereas in kBT � ε0 it deviates from χeff and reaches some
finite maximum value. When we consider the susceptibility of
a single graphene flake, χS, at a fixed absolute temperature,
it scales in proportion to χ0S ∝ S3/2 in the low-temperature
regime kBT � ε0, while it is just proportional to S in the
high-temperature regime kBT � ε0 where χ is equal to the
bulk limit.

The detail of the universal curve in Fig. 4(b) depends on the
flake shape and the edge configuration. In Fig. 4(c), we present
plots similar to Fig. 4(b) for four different types of graphene
flakes with the same size

√
S ≈ 23.5 nm, which is sufficiently

large to achieve the universal limit. In low temperatures, the
susceptibility tends to be larger in an armchair flake than
in a zigzag flake, and larger in a hexagonal flake than in a
trigonal flake. In the high-temperature region, on the other
hand, all the curves approach the same bulk limit. A similar
edge dependence was previously found in graphene ribbons,
where armchair ribbons generally exhibit larger diamagnetism
than zigzag ribbons.13,60
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FIG. 4. (Color online) (a) χ (μ = 0; T ) of hexagonal armchair
flakes with several different sizes, plotted in the absolute units
γ0 and gvgse

2v2/(6πc2γ0). (b) χ (μ = 0; T ) − χpara of the same
systems, plotted in the relative units ε0 and χ0. (c) Plot similar
to (b) for different types of graphene flakes with the size

√
S ≈

23.5 nm.

IV. DIAMAGNETIC CURRENT DISTRIBUTION

Figure 5 shows the diamagnetic current distribution induced
by the magnetic field in the four types of graphene flakes
of the size

√
S ≈ 23.5 nm at several different temperatures.

To visualize the global current circulation, we illustrate
continuous flux lines obtained by smoothing the original
discrete current Jmn on each bond, which is shown in the
left inset. Specifically, we find a certain potential function 


which satisfies J = ez × ∇
, and obtain the equipotential
lines of 
 as the current flux lines. At zero temperature, the
flux circulates entirely on the system reflecting the absence
of the characteristic wavelength in graphene. As temperature
becomes higher, it is going to be localized near the edge.
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FIG. 5. (Color online) Diamagnetic current distribution in different types of graphene flakes of the same size
√

S ≈ 23.5 nm at several
different temperatures. Continuous flux lines are obtained by smoothing the original discrete current on each bond, which is shown in the
left.

The current circulation of zigzag and armchair graphene
flakes are globally similar, but the flux lines of armchair
flakes exhibit some roughness while it is not observed in
zigzag flakes. This actually corresponds to the atomic-scale
current circulation in the Kekulé pattern seen in the original
current map (left inset),13 which is caused by the intervalley

(between K and K ′) hybridization peculiar to the armchair
edge.

Figure 6 shows the detailed plots of the electric current
as a function of position from the boundary to the center,
calculated for (a) the zigzag and (b) armchair flakes. The
position is labeled by the bond index defined in the inset, and

115433-5



YUYA OMINATO AND MIKITO KOSHINO PHYSICAL REVIEW B 87, 115433 (2013)

(a)

(b) Armchair

Zigzag

A B’BPosition

A B’B

kBT / ε0 = 0

1.11

2.22

4.44

kBT / ε0 = 0

1.11

2.22

4.44

hexagon
triangle

hexagon
triangle

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 10 20 30 40 50

-1

0

1

2

3

4

5

Position

A A

B

(c)

0
1

2
3

4

0

1

2

3

B’

J 
(u

ni
ts

 o
f  

B
 g

vg
se

2 v
 / 

6 π
ch

)
J 

(u
ni

ts
 o

f  
B

 g
vg

se
2 v

 / 
6 π

ch
)

FIG. 6. (Color online) Electric current as a function of position
from the boundary to the center, in (a) the zigzag and (b) armchair
flake with

√
S ≈ 23.5 nm. The position is labeled by the bond index

defined in the inset, and A and B (B′) represent the border and
the center of triangle (hexagon), respectively, which are specified
in (c). Horizontal arrows indicate λedge for kBT/ε0 = 1.11, 2.22,
and 4.44.

A and B (B′) correspond to the edge and the center of triangle
(hexagon), respectively, which are depicted in Fig. 6(c). The
current distribution is more localized to the edge when T

becomes higher, and the typical depth of the edge current
is characterized by

λedge = h̄v

2πkBT
, (13)

in accordance with the result for graphene ribbons.60

The current distribution in the atomic scale strongly
depends on the edge type. We can show that, however, the
integrated edge current approximates cχeffB independently of
the edge type, in the high-temperature regime kBT/ε0 � 2.
This is consistent with the fact that the orbital susceptibility

is then given by the bulk limit regardless of the atomic
configuration. When comparing hexagonal and triangular
flakes of the same edge type, we see that the curves are
almost completely equivalent in kBT/ε0 � 2. This suggests
that the edge current distribution in high temperature is solely
determined by the local edge configuration, independently of
the global shape.

V. COMPARISON TO SPIN PARAMAGNETISM

The orbital magnetism always competes with the spin
paramagnetism which has been neglected so far. When we
include spin Zeeman splitting, each spinless energy level at
E0 acquires the Pauli paramagnetism

χPauli = 1

S

(
g

2
μB

)2

2δ(μ − E0), (14)

where g ∼ 2 is the g factor for a graphene electron, μB =
eh̄/(2m0c) is the Bohr magneton, and m0 is the bare electron
mass. This is similar to the orbital contribution of Eq. (10) for
doubly degenerate levels, while the orbital magnetic moment
m there is now replaced with gμB/2. In the flakes of S >

(1 nm)2, μB is much smaller than the typical magnitude of m,
which is ≈ √

Sev/c, suggesting that the Pauli paramagnetic
effect is typically much smaller than the orbital effect. This
is in contrast to conventional electron systems where orbital
magnetic moment and spin magnetic moment are both of the
order of μB.62

In a zigzag graphene flake, the highly degenerate edge states
at zero energy give exceptionally large Pauli paramagnetism.
The contribution is written as

χPauli = Nedge

S

(
g

2
μB

)2

2δ(μ), (15)

where Nedge(∼√
S/a) is the number of edge states per spin.

In the low-temperature regime such that kBT � ε0, this is
dominant over the orbital effect near zero energy, since
the orbital susceptibility does not diverge at edge states as
already shown. In the high-temperature regime kBT � ε0, the
δ function is thermally broadened and it should be compared to
the bulk orbital susceptibility χeff , Eq. (6). The ratio between
two opposite components approximates60

∣∣∣∣χPauli

χeff

∣∣∣∣ ∼ 3π

gvgs

(
g

2

h̄

m0va

)2
a√
S

∼ 0.4 × a√
S

, (16)

so that the Pauli paramagnetism is negligible in a large
flake with

√
S � a. It should be noted that graphene flakes

may have lattice vacancies and/or adatoms depending on the
experimental condition, and the impurity levels given by these
defects contribute to additional Pauli paramagnetism.

We remark that several experimental studies reported
the evidence of ferromagnetic spin ordering in graphene-
based materials.28–30,32 The origin of the spontaneous spin
magnetism is still under debate, while it is supposed to be
caused by the electron-electron interaction (neglected in this
work) with the atomic defects, or highly degenerate edge
states in zigzag edges.13,33,34,63,64 Besides the spin magnetism,
the orbital magnetism itself may also be changed by the
electron-electron interaction through the modification of the
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energy band. In triangular zigzag graphene flakes, in particular,
it is predicted that the electron-electron interaction may open
an energy gap in the edge-state levels.33,34 Considering that the
edge states do not contribute much to the orbital magnetism,
this would give some minor effects on the orbital susceptibility
near zero energy.

VI. MAGNETIC FIELD ALIGNMENT OF
GRAPHENE FLAKES

The diamagnetism of graphene can be possibly observed
using the magnetic-field alignment of graphene nanoflakes
dissolved in a solvent, similarly to the experiments for the
carbon nanotube.65,66 In a magnetic field, the graphene flakes
tend to be oriented parallel to the field direction, because
the field component penetrating the graphene plane raises the
total energy due to the diamagnetism. If we assume that the
graphene flakes are planer and rigid, the condition to achieve
the alignment is roughly estimated as

1
2χB2S � kBT . (17)

For the graphene flakes
√

S ≈ 23.5 nm at T = 300 K, for
example, the required field becomes B � 9 T.

We calculate the angle distribution of graphene flakes with
various sizes using the Maxwell-Boltzmann statistics. In the
thermal equilibrium, the probability that the normal of the
graphene plane is inclined from the magnetic field by θ to
θ + dθ is written as P (cos θ )d(cos θ ), where

P (cos θ ) = exp[−βU (cos θ )]∫ 1
−1 exp[−βU (cos θ )]d(cos θ )

, (18)

with U (cos θ ) = −(1/2)χSB2 cos2 θ and β = 1/(kBT ).
Figure 7 plots the distribution function P (cos θ ) calculated for
hexagonal armchair flakes with several sizes at T = 300 K,
using χ in Fig. 4(a). We see that the alignment occurs more
strongly in larger flakes, because the magnetization of a single
flake, χSB, is greater for larger S. Note that it is not only due
to a linear factor S, but also because χ increases in larger S as
shown in Fig. 4(a).

VII. CONCLUSION

We have studied the orbital diamagnetism of the graphene
flakes with various shapes and edge configurations using the
tight-binding approximation. We found that the behavior is
significantly different depending on the relative magnitude of
the thermal broadening energy kBT to the typical energy-level
spacing ε0 = h̄v/

√
S. In the low-temperature regime where

kBT � ε0, the susceptibility as a function of Fermi energy
rapidly changes between diamagnetism and paramagnetism in
accordance with the level structure depending on the specific
atomic structure of the flake. The susceptibility at the zero
Fermi energy is found to be generally larger in armchair flakes
than in zigzag flakes, and larger in hexagonal flakes than
trigonal flakes. In the high-temperature regime kBT � 2ε0,
on the other hand, the discrete structures due to the finite-size
effect are all gone, and the susceptibility approximates the bulk
limit independently of the shape and the edge configuration of
the flake. Considering ε0 is written as 8000 K/

√
S nm using

the graphene’s band velocity, we find that the room temperature
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FIG. 7. (Color online) Angle distribution of hexagonal armchair
flakes in magnetic fields at T = 300 K.

belongs to the low-temperature regime for a flake of a few nm,
while it is in the high-temperature regime for a flake more than
50 nm.

In the low-temperature regime, the diamagnetic current cir-
culates entirely on the graphene flakes, reflecting the absence
of characteristic length scale. As the temperature increases,
the current gradually becomes to circulate only near the edge,
with the characteristic depth of λedge = h̄v/2πkBT . The local
current distribution along the cross section perpendicular to
the boundary is insensitive to the global shape of the flake, but
significantly different between armchair and zigzag edges.

We predict that the diamagnetism of graphene can be
possibly observed using the magnetic-field alignment of
graphene flakes. We estimated the angle distribution at various
magnetic fields, and found that a strong alignment can be
realized in the feasible magnetic field range for flakes of
S � (10 nm)2.
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