
PHYSICAL REVIEW B 87, 115422 (2013)

New Dirac points and multiple Landau level crossings in biased trilayer graphene
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Recently a new high-mobility Dirac material, trilayer graphene, was realized experimentally. The band structure
of ABA-stacked trilayer graphene consists of a monolayer-like and a bilayer-like pair of bands. Here we study
electronic properties of ABA-stacked trilayer graphene biased by a perpendicular electric field. We find that
the combination of the bias and trigonal warping gives rise to a set of new Dirac points: In each valley, seven
species of Dirac fermions with small masses of order of a few meV emerge. The positions and masses of the
emergent Dirac fermions are tunable by bias, and one group of Dirac fermions becomes massless at a certain
bias value. Therefore, in contrast to bilayer graphene, the conductivity at the neutrality point is expected to show
nonmonotonic behavior, becoming of the order of a few e2/h when some Dirac masses vanish. Further, we
analyze the evolution of the Landau level spectrum as a function of bias. The emergence of new Dirac points in
the band structure translates into new threefold-degenerate groups of Landau levels. This leads to an anomalous
quantum Hall effect, in which some quantum Hall steps have a height of 3e2/h. At an intermediate bias, the
degeneracies of all Landau levels get lifted, and in this regime all quantum Hall plateaus are spaced by e2/h.
Finally, we show that the pattern of Landau level crossings is very sensitive to certain band structure parameters,
and can therefore provide a useful tool for determining their precise values.
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I. INTRODUCTION

Single- and multiple-layer graphene materials are gapless
2D semimetals with unusual band structure, in which low-
energy excitations have nontrivial Berry phases.1 In particular,
low-energy excitations in graphene are two species (valleys)
of massless Dirac-like fermions with linear dispersion and
Berry phase π . The excitations in bilayer graphene are chiral
fermions with a parabolic dispersion relation and a Berry
phase of 2π .1 The unusual nature of excitations underlies
fundamental phenomena found in these materials, including
Klein tunneling, weak antilocalization, anomalous quantum
Hall effects, as well as novel symmetry-broken states in high
magnetic field.1

One important distinct feature of bilayer graphene (as
compared to monolayer graphene and other 2D electron
systems) is a unique tunability of its band structure. By
applying a perpendicular electric field2–4 which induces an
asymmetry between the top and bottom layer, it is possible to
induce a band gap of up to 250 meV.4 Thus, bilayer graphene
can be turned into a semiconductor with a widely tunable band
gap, which makes it attractive for various device applications,
and provides a way to study chiral carriers in new regimes.

Very recently, a new carbon-based semimetal, trilayer
graphene, has been realized experimentally.5–8 Experimentally
studied trilayer graphene samples had a high mobility and
exhibited the quantum Hall effect (QHE). Inspired by these
experiments, in this paper we study the effect of a perpen-
dicular electric field on the electronic properties of trilayer
graphene. First, we aim to understand how the band structure
of trilayer graphene transforms under bias, and to explore new
possibilities offered by its tunability. Second, we would like
to develop an understanding of Landau level (LL) evolution
and LL crossings under bias. Given that the band structure
of trilayer graphene is quite complicated, it is necessary to

first understand single-particle effects in LL evolution, before
addressing interaction phenomena, including quantum Hall
ferromagnetism and fractional QHE.

Depending on the stacking (ABA or ABC), the band
structure of trilayer graphene can be very different.7,9–12

Throughout the paper, we will focus on the case of Bernal-
stacked (ABA) trilayer graphene.5,6 In the absence of bias,
the band structure of ABA-trilayer graphene can be viewed
as a combination of independent overlapping monolayer-like
(Berry phase π ) and bilayer-like bands (Berry phase 2π ).9,13–15

Both bands are gapped, in contrast to gapless monolayer and
bilayer graphene; however, the monolayer-like and bilayer-like
gaps are overlapping such that there is no band gap. In contrast,
ABC-stacked trilayer graphene has Dirac points with cubic
band touching and Berry phase 3π ,10,11 split by different
symmetry-breaking terms.

Previously, it was noted that perpendicular electric field
completely transforms the band structure of trilayer graphene,
hybridizing the monolayer-like and bilayer-like bands,9,16 and
generally opening only a small band gap. Here we explore
the transformation of the band structure in detail. Most
interestingly, we find that as a result of trigonal warping, at
bias ∼0.5 V/nm,17 seven new Dirac points (DPs) emerge
in each valley. One of the DPs is situated at the K+ (K−)
point in the Brillouin zone; the remaining six consist of two
groups of three, related to each other by 2π/3 rotations. The
emergent Dirac fermions are massive, with both their mass
and velocity being tunable by an electric field. At electric
field ∼0.9 V/nm,17 the band gap closes for three DPs. For
higher bias the mass of these DPs changes sign, and overall
gap increases monotonically.

We analyze the evolution of LLs under bias, finding a
very complex pattern of levels crossings and splittings. We
illustrate the extreme sensitivity of this pattern with respect
to band structure parameters. Even small variations of certain
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parameters change the pattern of crossings at small bias. There-
fore, the Landau level crossings should provide a useful tool for
precise determination of the band structure parameters, which
are still a subject of debate.5,18 The transformation of the band
structure at high bias leads to an emergent threefold degeneracy
of some Landau levels in magnetic field. It is worth noting that
the evolution of LLs with bias has been previously discussed
by McCann and Koshino in Ref. 13, who, however, considered
an idealized model that neglected several smaller hopping
parameters (see also Ref. 19). Here we consider the full
tight-binding model,5 finding that the smaller parameters play
an important role in determining the pattern of LL crossings.

Our results also imply that single-particle physics in ABA

trilayer graphene is much more complicated as compared
to other chiral materials, such as monolayer and bilayer
graphene, and it should be understood before addressing the
interaction effects. On the positive side, the tunability of the
band structure may prove advantageous in studying and tuning
correlated states, including fractional quantum Hall states,20,21

as discussed in the end of the paper.
The rest of the paper is organized as follows: In the next

section we introduce the tight-binding description for the
ABA-stacked trilayer graphene and review decoupling of its
band structure into monolayer-like and bilayer-like blocks.9

In Sec. III we discuss the evolution of the band structure as
a function of perpendicular electric field. The Landau level
spectrum as a function of magnetic field and electric field
is studied in Sec. IV. Finally, in Sec. V, we provide a brief
summary of our results and present a broader outlook.

II. MODEL AND REVIEW OF UNBIASED CASE

In this section, we introduce the tight-binding model
of the ABA-stacked trilayer graphene and briefly review
the derivation of low-energy effective Hamiltonian in the
absence of bias following Ref. 9. We will discuss that in the
absence of the perpendicular electric field (also referred to
as the displacement field), the band structure can be viewed
as two independent bands: one bilayer-graphene-like and the
other monolayer-graphene-like.9,13–15

A. Tight-binding model

In order to describe the band structure of the unbi-
ased trilayer graphene, we adopt the standard Slonczewski-
Weiss-McClure parametrization of the tight-binding model.18

Corresponding tight-binding parameters are schematically
illustrated in Fig. 1. Six tight-binding parameters γ0 . . . γ5

describe hopping matrix elements between different atoms:

Ai ↔ Bi : γ0, B1,3 ↔ A2 : γ1, (1a)

A1 ↔ A3 : 1
2γ2, A1,3 ↔ B2 : γ3, (1b)

A1,3 ↔ A2

B1,3 ↔ B2
: −γ4, B1 ↔ B3 : 1

2γ5, (1c)

where Ai (Bi) refers to an atom from the A (B) sublattice, and
index i = 1 . . . 3 labels three layers (see Fig. 1 for notation
of sublattices). In addition, parameter δ accounts for an extra
on-site potential for B1, A2, and B3 sites, which are on top of
each other. The values of different tight-binding parameters
are far from being settled. In particular, the authors of Ref. 5

γ1

γ2

γ3

γ4

γ5

γ0

−Δ1 + Δ2

−2Δ2

Δ1 + Δ2E

par. value

γ0 3.1 eV

γ1 0.39 eV

γ2 -0.028 eV

γ3 0.315 eV

γ4 0.041 eV

γ5 0.05 eV

δ 0.046 eV

FIG. 1. (Color online) Schematic view of the lattice structure of
the ABA-stacked trilayer graphene (left) and values of corresponding
tight-binding parameters adopted from Ref. 5 (right). Red (blue)
atoms belong to A (B) sublattice of the corresponding layer. Next to
each layer, the potential energy of electrons expressed via parameters
�1 and �2 is shown.

used experimentally determined higher LLs crossings to
refine the values of tight-binding parameters. Corresponding
values are listed in Fig. 1 and will be used in what follows.

The effect of an external perpendicular electric field
(displacement field) can be described by including additional
on-site potentials for different layers U1 . . . U3.9,22–24 It is
convenient to introduce parameters

�1 = (−e)
U1 − U2

2
, �2 = (−e)

U1 − 2U2 + U3

6
. (2)

Physically, parameter �1 is responsible for the potential
difference between top and bottom layers which is caused
by the application of the displacement field to the sample.
Parameter �2 describes the deviation of potential on the middle
layer from the mean of the potentials on the top and bottom
layers. As we shall discuss below, nonzero parameter �2 can
emerge when screening is taken into account and the potential
distribution is calculated self-consistently. In principle, even
without bias, a nonzero value of �2 is allowed by symmetry. In
what follows we will demonstrate that the LL crossing pattern
is very sensitive to precise value of �2.

For our analysis below, it will be convenient to separate the
Hamiltonian of the unbiased trilayer, H0, from terms related
to the potential imbalance between layers,

H = H0 + H�1 + H�2 . (3)

In the momentum representation, the tight-binding Hamil-
tonian can be written in a compact matrix form, with
different components corresponding to the wave function
amplitudes on the six sublattices. Let us choose the basis
{A1,B1,A2,B2,A3,B3}. In this basis, the three terms in the
Hamiltonian can be written as

H0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 γ0t
∗
k γ4t

∗
k γ3tk γ2/2 0

γ0tk δ γ1 γ4t
∗
k 0 γ5/2

γ4tk γ1 δ γ0t
∗
k γ4tk γ1

γ3t
∗
k γ4tk γ0tk 0 γ3t

∗
k γ4tk

γ2/2 0 γ4t
∗
k γ3tk 0 γ0t

∗
k

0 γ5/2 γ1 γ4t
∗
k γ0tk δ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

H�1 = diag(�1,�1,0,0, − �1, − �1), (5)

H�2 = diag(�2,�2, − 2�2, − 2�2,�2,�2). (6)
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In Eq. (4) we used tk as a short-hand notation for a sum over
nearest neighbors in a single honeycomb lattice:

tk =
3∑

j=1

eik·aj = −1 − 2e
√

3iky/2 cos
kx

2
, (7)

where a1 = (0,1/
√

3), a2,3 = (∓1/2, − 1/2
√

3), are vectors
connecting an A1 site to its nearest neighbors, and momenta
are measured in units of inverse lattice constant, a = 2.46 Å.

To obtain an effective low-energy Hamiltonian, we expand
Eq. (4) in the vicinity of K+ and K− points, located at position
(±4π/3,0) in the hexagonal Brillouin zone. This expansion
reduces to replacing γitk → viπ , where

π = ξkx + iky, h̄vi =
√

3

2
aγi, (8)

with ξ = ±1 for K+ and K− points, respectively.

B. Effective Hamiltonian of unbiased trilayer graphene

In the absence of external bias, the band structure of the
Hamiltonian (3) consists of monolayer-like and bilayer-like
bands, as shown by Koshino and McCann.13 To illustrate the
decoupling of the Hamiltonian, we consider a different basis,{

A1 − A3√
2

,
B1 − B3√

2
,
A1 + A3√

2
,B2,A2,

B1 + B3√
2

}
. (9)

In the new basis, the sum of two terms, H0 + H�2 (�2 is
allowed by symmetry even in the absence of electric field)
acquires a block-diagonal structure,

H0 + H�2 =
(

HSLG 0

0 HBLG

)
, (10)

where the monolayer-like and bilayer-like blocks are defined
as

HSLG =
(

�2 − γ2

2 v0π
†

v0π − γ5

2 + δ + �2

)
, (11a)

HBLG =

⎛
⎜⎜⎜⎜⎝

γ2

2 + �2

√
2v3π −√

2v4π
† v0π

†
√

2v3π
† −2�2 v0π −√

2v4π

−√
2v4π v0π

† δ − 2�2

√
2γ1

v0π −√
2v4π

† √
2γ1

γ5

2 + δ + �2

⎞
⎟⎟⎟⎟⎠.

(11b)

The effective Hamiltonian of the bilayer-like sector can
be simplified further by noting that the low-energy states
predominantly reside on A1 + A3 and on B2 sublattices.
The higher energy bands, which reside mostly on sublattices
B1 + B3,A2 have a large band gap of order ±√

2γ1 ∼ 0.5 eV.
Taking into account virtual excitations to these bands, one
obtains an effective 2 × 2 Hamiltonian of the bilayer-like
band:25

HBLG ≈ H
(0)
BLG + H

(1)
BLG, (12)

where H
(0)
BLG is the leading approximation,

H
(0)
BLG = − 1

2m

(
0 π †2

π2 0

)
,

1

2m
= v2

√
2γ1

, (13)

and H
(1)
BLG describes various corrections:

H
(1)
BLG =

√
2v3

(
0 π

π † 0

)
+

(
γ2/2 + �2 0

0 −2�2

)

+ v2

2γ1

(
(δ − 2�2)π †π 0

0 (γ5/2 + δ + �2)ππ †

)
.

(14)

Note that in the above expression for H
(1)
BLG we omitted terms

which renormalize mass in H
(0)
BLG [Eq. (13)]. Also, the last term

in Eq. (14) does not include contributions which come with an
additional small parameter γ1γ4/(γ0δ) ≈ 0.11.

Therefore, in the limit when there is no electric field
(�1 = 0), the band structure of ABA-stacked trilayer graphene
has SLG and BLG sectors which are decoupled from each
other. The resulting band structure of the unbiased trilayer is
illustrated in Fig. 2(a).

When a displacement field is applied, the reflection sym-
metry between the top and bottom layer is broken and the H�1

appears in the Hamiltonian (note that electric field also affects
�2, which, in general, should be calculated self-consistently;
see below). In the rotated basis (9) this term corresponds
to hybridization between the monolayer-like and bilayer-like
blocks and has the form

H�1 =
(

0 Hhyb

HT
hyb 0

)
, Hhyb =

(
�1 0 0 0

0 0 0 �1

)
.

(15)

As a next step, we will discuss the evolution of the bands
resulting from this hybridization.

III. BAND STRUCTURE EVOLUTION UNDER BIAS: A
NEW SET OF DIRAC POINTS

An electric field completely changes the low-energy prop-
erties of trilayer graphene, hybridizing the monolayer- and
bilayer-like bands. In this section we shall study how the bands
transform as bias increases. We will see that at relatively small
bias, there is a complex interplay of terms induced by electric
field and smaller trigonal warping terms in the Hamiltonian,
which gives rise to rather flat low-energy bands. At higher bias
(�1 � 0.1 eV), a new set of Dirac points emerges: There are a
total of seven DPs in each valley, one of them situated at K±,
and two groups of three related by rotational symmetry. The
positions, mass gaps, as well as velocities of these DPs change
as a function of bias.

Since analytical treatment is no longer possible, we resort
to numerical diagonalization of the tight-binding Hamilto-
nian (4). The evolution of the band structure in valley K+ as �1

is changed from zero to 0.25 eV is illustrated in Fig. 2. Notice
that the band structure in the K− valley is related to that in
the K+ valley by the time-reversal symmetry. Throughout this
section, we will put �2 = 0, because �2 is expected to be of the
order of several meV, and we find that it cannot qualitatively
change the band structure. We emphasize, however, that �2

will play an important role for the LL spectrum and LL crossing
pattern in Sec. IV.
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(a) Δ1 = 0 (b) Δ1 = 0.025 eV (c) Δ1 = 0.05 eV

(d) Δ1 = 0.15 eV (e) Δ1 = 0.18 eV (f) Δ1 = 0.25 eV

(g) Δ1 = 0.2 eV

FIG. 2. (Color online) Evolution of the band structure of trilayer graphene with bias �1. The bands in the vicinity of K+ point in the
Brillouin zone are shown as a function of ka, where k describes momentum relative to the K+ point. Solid (dashed) lines correspond to k
parallel to the x axis (y axis). At zero bias [panel (a)], red and blue lines describe monolayer-like and bilayer-like bands. At nonzero bias the
monolayer-like and bilayer-like bands hybridize and no clear distinction can be made between them. As a result of this hybridization, one pair
of bands moves to higher energies. The other pair of bands undergoes a series of transformations which lead to seven emergent Dirac points at
higher bias �1 � 0.1 meV. The positions of these Dirac points in the Brillouin zone are illustrated in panel (g).

The band structure in the absence of bias, Fig. 2(a), consists
of a monolayer-like band (shown in red) and a trigonally
warped bilayer-like band (shown in blue). Relatively small
bias �1 ≈ 0.025 eV in Fig. 2(b) turns out to be sufficient
to hybridize bands; a electron-like and a hole-like band which
used to be of monolayer type drift away to higher energies. The
band gap for these bands becomes of the order 0.03 eV already
at �1 = 0.025 eV, which means that they will be essentially
irrelevant for the low-energy properties.

As the bias is increased further [�1 = 0.05 eV in Fig. 2(c)],
the two remaining bands stay close to the neutrality point, and
they are separated by a small band gap of the order of a few
tens of meV. Near the K points, the bands have a complicated
dispersion relation and trigonal warping is important. One
notable feature is that the hole-like band is nearly flat in the
vicinity of the K+ point.

When �1 becomes larger than 0.1 eV, the evolution of
the bands leads to seven new Dirac points: one at the K+
point, and six situated off-center. The off-center DPs consist of
two groups of three, related by threefold rotational symmetry.
All Dirac points are generally split by a small mass. The
locations and splittings of the emergent DPs for �1 = 0.2 eV
are illustrated in Fig. 2(g). In the interval of values �1 =
0.15–0.25 eV, the off-center DPs move further away from
the K+ point. Also, for one of the groups the band gap
closes and the Dirac mass changes sign at �1 ≈ 0.18 eV [see
Figs. 2(d)–2(g)]. The velocity also changes, although not very
significantly.

To understand the origin of the new DPs and some of their
properties, including their position in the Brillouin zone, let us
reinspect the tight-binding model at large bias. We note that at
large bias, the most important terms in the band structure are
γ0,γ1,γ3, and �1. It is convenient to separate the Hamiltonian
into the leading part which contains only these terms, H (0),

and the remaining subleading part, H (1):

H = H (0) + H (1). (16)

To elucidate the structure of H (0) let us rearrange the basis (9)
as follows:{

A1 − A3√
2

,B2,
B1 + B3√

2
,
A1 + A3√

2
,A2,

B1 − B3√
2

}
. (17)

Using Eqs. (4) and (5), we write H (0) in the vicinity of the K+
point in the new basis:

H (0) =
(

0 C

C† 0

)
, C =

⎛
⎜⎝

�1 0 v0π
†

√
2v3π

† v0π 0

v0π
√

2γ1 �1

⎞
⎟⎠.

(18)

Similarly, one can find an explicit form of the subleading part
of H (1), but we will not need it here.

The chiral symmetry of the Hamiltonian (18) greatly
simplifies the analysis of its band structure. This symmetry
implies that the spectrum is particle-hole symmetric. We find
that for any �1, H (0) has seven massless DPs. Their positions
can be found from condition det C = 0, which reduces to an
algebraic equation on π :

�2
1v0π + v0π

∗(2γ1v3π
∗ − v2

0π
2
) = 0. (19)

First of all, π = 0 is an obvious root of the above equation.
Second, introducing parametrization π = peiθ , we obtain the
other roots which give the positions of the remaining six
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FIG. 3. (Color online) Evolution of the mass of emergent Dirac
fermions as a function of bias �1 = 0.05 . . . 0.25 eV for central DP
(purple), first group of off-center DPs (dotted green), and second
group of off-center DPs (dashed green). The mass of the second
group of DPs vanishes at �1 ≈ 0.185 eV and becomes negative at
a larger bias.

off-center DPs:

p1 =
√

γ 2
1 v2

3 + �2
1v

2
0 + γ1v3

v2
0

, θ = 0,2π/3,4π/3, (20)

p2 =
√

γ 2
1 v2

3 + �2
1v

2
0 − γ1v3

v2
0

, θ = π/3,π,5π/3. (21)

Therefore, at small �1 	 γ1v3/v0 ≈ 0.04 eV the off-center
DPs remain relatively close to the K+ point and their position
depends approximately quadratically on �1: p1 ≈ 2γ1v3/v

2
0 +

�2
1/(2γ1v3), p2 ≈ �2

1/(2γ1v3). At large bias, �1 
 0.04 eV,
the distance of the off-center DPs from K+ grows linearly with
�1, p1(2) ≈ (�1v0 ± γ1v3)/v2

0.
The chiral symmetry is broken by the subleading part of the

Hamiltonian, H (1) in Eq. (16). Consequently, all seven species
of emergent Dirac fermions become massive, as is evident from
Fig. 2. We extract the Dirac mass as a function of bias for these
DPs from the numerically evaluated spectrum.26 The result is
illustrated in Fig. 3. The most interesting feature is that the
mass of the second group of Dirac fermions vanishes at �∗

1 ≈
0.185 eV and changes sign for larger values of �1. Note, that
the value of �∗

1 depends on the tight-binding parameters. The
mass of the first group of Dirac fermions grows monotonically,
changing from 8 meV at �1 = 0.1 eV to 18 meV at �1 =
0.25 eV. Finally, the mass of the central DP depends on bias
relatively weakly.

The tunability of the Dirac masses will manifest itself in a
characteristic nonmonotonic bias dependence of conductivity
at the neutrality point. At �1 < �∗

1 and �1 > �∗
1 we expect

an activated temperature dependence of the conductivity with
an activation gap set by the smaller of the Dirac masses. When
�1 ≈ �∗

1, assuming the disorder is weak, the conductivity
will have a metallic temperature dependence and will be
dominated by the twelve species of massless Dirac fermions
(including spin and valley degeneracy), becoming of the order
of 12 × e2/h (we assumed that a single Dirac species has a
conductivity approximately equal to e2/h1).

We note that as previously pointed out by McCann and
Koshino,9,27 the screening can be significant, and therefore
the parameters �1,�2 should be calculated self-consistently.

We have calculated the self-consistent values of �1, �2 as
a function of external bias in the Hartree approximation,
obtaining results which were consistent with Refs. 9, 27.
Interestingly, there is nonzero �2 ≈ 2 meV even at zero
external bias. This term will be important in our analysis of
low-lying LLs in the following section.

IV. LANDAU LEVELS AND THEIR CROSSINGS

In this section, we analyze the Landau level spectrum of
the biased trilayer graphene. As we shall see, the bias-induced
band structure transformations lead to a rich pattern of LL
crossings. At high bias, when the new Dirac points are formed,
corresponding threefold-degenerate groups of LLs emerge.
This gives rise to an anomalous sequence of quantum Hall
plateaus. At smaller bias, all LL degeneracies are lifted, and
therefore all quantum Hall plateaus are spaced by e2/h. An
interesting feature of the LL crossing pattern is its extreme
sensitivity to certain tight-binding parameters, including �2

and γ3. We explore how the existence and positions of various
crossings depend on the values of these parameters, and argue
that in an experiment the LL crossing pattern can be used to
determine the precise values of tight-binding parameters.

A. Zero Landau levels without displacement field

We start with reviewing known results about the LL
spectrum in the absence of bias.13,19,28,29 In what follows, we
shall be mostly interested in the low-lying LLs. The energies of
such LLs in the unbiased case can be obtained analytically28,29

from the effective low-energy model described in Sec. II A.
This will facilitate the identification of various low-lying LLs
in numerical simulations, and also will help us to develop an
intuition about their sensitivity to tight-binding parameters.

In the absence of bias, the monolayer-like [Eq. (11a)] and
bilayer-like [Eqs. (13) and (14)] bands are independent. To
find the spectrum of LLs, we adopt the Landau gauge, Ax = 0,
Ay = Bx, and make a substitution π → π − e(Ax + iAy) in
Eqs. (11a), (13), and (14). Momentum ky is conserved (and
is proportional to the guiding center position X), and the π

operator acquires the following form (ξ = ±1 for K± valleys):

π = − ih̄

lB
(ξ∂x + x − X), (22)

where the coordinate and momentum are measured in units of
magnetic length lB = √

h̄/eB and 1/lB , respectively. We see
that π and π † can be viewed as lowering and raising operators
of the magnetic oscillator. In the basis of nonrelativistic LL
orbitals |n〉 (at a given X), the matrix elements of π,π † in the
two valleys are given by

K+ : π |n〉 = ih̄

lB

√
2(n + 1)|n + 1〉,

(23a)

π †|n〉 = − ih̄

lB

√
2n|n − 1〉,

K− : π |n〉 = ih̄

lB

√
2n|n − 1〉,

(23b)

π †|n〉 = − ih̄

lB

√
2(n + 1)|n + 1〉.

The Hamiltonian of the monolayer-like band, Eq. (11a),
describes two-dimensional Dirac-like fermions with a mass.
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Although the entire spectrum of Landau levels can be found
analytically for the monolayer block, for our purposes it
suffices to consider only the zeroth LLs in K± valleys:

	0m+ =
(

0

|0〉
)

, E0m+ = δ − 1

2
γ5 + �2, (24a)

	0m− =
( |0〉

0

)
, E0m− = −1

2
γ2 + �2. (24b)

Therefore, the zeroth LL in the monolayer sector is valley
split, with the energy difference given by �m

± = E0m+ − E0m− =
δ − γ5/2 + γ2/2 ≈ 7meV (where we used tight-binding pa-
rameters listed in Fig. 1). This situation should be contrasted
with monolayer and bilayer graphene, where LLs are valley
degenerate, at least at the single-particle level.1

Finding low-lying LLs in the bilayer block is more
challenging. In general, the trigonal warping described by
the first term in (14) does not allow us to solve for the LL
spectrum analytically, as it breaks rotational symmetry and
admixes arbitrarily high LLs. However, it turns out that trigonal
warping gives relatively small corrections to LL energies, at
least when the magnetic field is not too small.28 Therefore,
one can find the LL spectrum in the bilayer block neglecting
trigonal warping, which gives

	0b+ =
(

0

|0〉
)

, E0b+ = −2�2, (25a)

	1b+ =
(

0

|1〉
)

, E1b+ = −2�2 + ζ

(
γ5

2
+ δ + �2

)
, (25b)

	0b− =
( |0〉

0

)
, E0b− = γ2

2
+ �2, (25c)

	1b− =
( |1〉

0

)
, E1b− = γ2

2
+ �2 + ζ (δ − 2�2), (25d)

where ωc = eB/m = √
2eBv2/γ1 is the cyclotron frequency,

and ζ = h̄ωc/(
√

2γ1) is a dimensionless parameter propor-
tional to the magnetic field (ζ ≈ 0.02 for B = 5 T) that
controls splitting between two LLs in the same valley. The
intervalley splitting, approximately given by γ2/2 + 3�2, is
of the order of 10 meV; it is very sensitive to the value of
�2, since it enters with a factor of 3. Below we will see that
even relatively small variations of �2 can completely change
the pattern of LL crossings at small negative filling factors.
Also, notice that the intervalley splitting is much larger than
the intravalley splitting: The latter is proportional to ζ and is
of the order 1 meV at B = 5 T.

B. Landau levels at high bias

We now proceed with the analysis of the LL spectrum
at a nonzero bias. As bias admixes the monolayer-like and
bilayer-like blocks and trigonal warping becomes important,
an approximate analytical treatment is no longer possible.
Therefore, we find the LL spectrum and wave functions
numerically.

If we fix the guiding center position at some value, our
Hamiltonian can be viewed as an infinite matrix. It is easily
written in the basis of nonrelativistic LL orbitals |n〉, using
matrix elements of π,π † operators from Eq. (23). We truncate

this infinite matrix, restricting the Hilbert space to LL orbitals
with indices n � �. Finally, the problem of finding the LL
spectrum reduces to diagonalizing a matrix in which each
element of the 6 × 6 Hamiltonian, Eq. (10), is replaced by
a matrix of dimensions � × �. Momentum operators are
replaced by matrices corresponding to raising and lowering
operators according to Eq. (23) with the cutoff �. All other
nonzero elements γi are replaced by γi1�×�.

One subtlety associated with this procedure is due to the
fact that the cutoff imposed on the ladder operators gives rise
to new unphysical eigenvalues.30 Such unphysical eigenvalues
have to be identified and removed. We do this by using the fact
that although these “false” Landau levels have low energy, their
wave functions are dominated by Landau level orbitals with
large indices (near cutoff �). We have found that cutoff � � 30
is sufficient to faithfully represent the evolution of LLs in the
vicinity of the neutrality point with magnetic field and bias.
All simulations presented in this paper are done with � = 50.

The evolution of LLs with magnetic field at zero bias
is shown in Fig. 4(a). The zeroth LLs in the bilayer and
monolayer block can be easily identified in this picture
because they disperse very weakly with magnetic field. These
results are consistent with Ref. 28; however, notice that
we have chosen a different set of tight-binding parameters
extracted from experiment,5 which leads to visible differences
in the LL spectrum.

The Landau level spectrum as a function of bias for fixed
values of magnetic field B = 5 T and B = 10 T, illustrated in
Figs. 4(b) and 4(c), reveals a very complex pattern of crossings.
At smaller field B = 5 T and large bias � � 0.15 eV, both the
dispersion and degeneracy of LLs changes: In particular, there
are threefold-degenerate groups which are associated with the
new emergent Dirac points in the band structure. In addition,
there is a singly degenerate zeroth LL that originates from the
central Dirac point in each valley. The dispersion of new zeroth
LLs is determined by the dependence of the Dirac mass on the
bias (see Fig. 3).

It should be noted that the threefold degeneracy of a subset
of DPs gives rise to the threefold-degenerate groups of LLs
only when the magnetic field is not too strong. This means that
the inverse magnetic length must be smaller than the distance
between the DPs in the BZ. Considering �1 
 0.04 eV
and using the approximate expressions for the DP positions
obtained in the previous section, we write this condition as
h̄/lB 	 �1/v0. Thus, threefold-degenerate groups of LLs are
most easily observable at smaller fields.

Experimentally, the degeneracy of certain LLs at high
bias (and relatively small field) will manifest itself in an
anomalous quantum Hall sequence. Some of the steps will
be characterized by a jump of Hall conductivity by 3e2/h

(when a threefold-degenerate LL is filled), while others will
correspond to a jump of e2/h (when a singly degenerate LL
is filled). Here we assumed that the spin degeneracy is lifted
by the Zeeman interaction. In experiment, such an anomalous
quantum Hall sequence will signal the formation of new DPs.

C. Anticrossings and the role of γ3

As we discussed above, bias gives rise to threefold-
degenerate groups of LLs, which is in full agreement with the
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FIG. 4. (Color online) Landau level spectrum as a function of magnetic field and bias. Plot (a) shows LL spectrum as a function of magnetic
field B = 2 . . . 10 T at zero displacement field, �1 = 0, and �2 = 0. Landau levels from the monolayer-like and bilayer-like block are shown
in red and blue color; solid (dashed) lines correspond to K+ (K−) valleys. LLs are labeled with their indices, e.g., blue 1+, red 1+ (1b

+,1m
+

in the main text) stand for LL with index 1 from K+ valley of bilayer and monolayer sector, respectively. Lifting of spin degeneracy by the
Zeeman field is not shown, so that every LL is doubly degenerate. Neutrality point is located between blue 0+ and blue 1+ LLs. Plots (b) and
(c) show Landau levels at B = 5 T and B = 10 T as a function of displacement field. Red (blue) color is used to indicate LLs which belong to
monolayer (bilayer) sector at �1 = 0.

emergence of low-energy DPs in the band structure. Another
notable feature of a LL pattern, which is visible in Figs. 4(b)
and 4(c), is that LLs from the monolayer-like sector move
away from the neutrality point as the bias is increased. This
fact can also be understood using intuition developed about
the band structure evolution under the bias: Hybridization and
floating away of monolayer-like bands [see Figs. 2(a) and
2(b)] corresponds to monolayer-like LLs moving away and
exhibiting avoided crossings with bilayer-like LLs.

Interestingly, it is the tight-binding parameter γ3 that
controls the behavior of the aforementioned avoided crossings.
For example, let us zoom in to part of the LL spectrum
corresponding to negative filling factors of order ν ≈ −20.
We note that such filling factors are easily accessible in
the experiment.5 Figure 5 illustrates the pattern of avoided
crossings for moderate bias �1 = 0–0.17 eV and two different
values of γ3: the one which is used in all simulations throughout
this paper [γ3 = 0.39 eV, Fig. 5(a)] and a twice larger value
[γ3 = 0.78 eV, Fig. 5(b)].

In Fig. 5(b), corresponding to the larger value of γ3, the
crossing pattern changes due to a slightly different order of LLs
at zero bias. More noteworthy is the pronounced enhancement
of gaps at anticrossings. Due to this enhancement, one can
identify the clear pattern in Fig. 5(b): Avoided crossings
occur between a given LL originating from monolayer-like
band and every third bilayer-like LL. This pattern can be
easily explained using the effect of trigonal warping on the
LL wave functions. If, without a trigonal warping term, a
given LL contains orbital |i〉 in its wave function, a nonzero
trigonal warping admixes orbitals |i ± 3〉,|i ± 6〉, . . ., with
progressively smaller coefficients. It is this admixture that
underlies the avoided crossings; thus, it is natural that stronger
trigonal warping enhances the gaps at anticrossings.

As an example, let us consider LL 1m
+ in the monolayer-like

block (the labeling scheme of the LLs is introduced in the
caption of Fig. 4). From Fig. 5 we see that it exhibits a
pronounced anticrossing with the 8b

+ bilayer-like LL, and also
with the 11b

+ LL for larger γ3. In the absence of trigonal
warping, the wave function of the 1m

+ LL at �1 = 0 consists
of a combination of |0〉 and |1〉 orbitals on A1 − A3 and
B1 − B3 sublattices, respectively [see Eq. (9)]. The wave
function of the 8b

+ LL is dominated by |6〉 and |8〉 orbitals on
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FIG. 5. (Color online) Influence of the value of γ3 on the pattern
of avoided crossings between monolayer-like and bilayer-like LL.
Magnetic field is B = 10 T. For clarity, only LLs in the K+ valley
are shown. Plot (a) is for γ3 = 0.39 eV used in this paper, whereas
plot (b) is for twice larger value of γ3. Labeling scheme of LLs is
explained in the caption of Fig. 4.
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a symmetric combination of A1,3 sublattices and the B2 sub-
lattice. Nonzero trigonal warping changes the wave functions,
admixing substantial components of |0〉,|3〉,|9〉, . . . orbitals
to the |6〉 orbital on A1 + A3 sublattice. Finally, nonzero �1

breaks inversion symmetry, and initially orthogonal symmetric
and antisymmetric combination of A1,3 sublattices evolve to
have nonvanishing overlap. This gives rise to the anticrossings
observed in Fig. 5.

The observed sensitivity of the pattern of avoided crossings
can be potentially used to fix the value of the tight-binding
parameter γ3. However, in order to do this, the other tight-
binding parameters have to be refined. Below we discuss how
information about them can be extracted from the LL crossings
at small filling factors and a smaller bias.

D. Pattern of Landau level crossings at smaller bias and its
sensitivity to tight-binding parameters

Having discussed the behavior of LLs at high bias and
(or) large filling factors, we concentrate on the regime of
small bias, when the new Dirac points have not formed
yet. To better understand the complicated pattern of LL
crossings that arises in this regime, we zoom in on the region
�1 � 0.1 eV, and concentrate only on several low-lying LLs
[see Fig. 6(a)].

Interestingly, the bias completely lifts the degeneracies of all
LLs. Therefore, we expect that in biased bilayer graphene all
quantum Hall plateaus will be spaced by e2/h. Notice that this
goes against intuition acquired from the studies of monolayer
and bilayer graphene,1 where in the absence of interactions
Landau levels remain valley degenerate.

Landau levels undergo a series of crossings, as illustrated in
Fig. 6(a). In particular, level 0b

− moves down, crossing weakly
split 2b

± LLs at �1 ≈ 0.03 eV. The energy of level 1b
− increases

with bias, such that it crosses level 1b
+ at �1 ≈ 0.07 eV.

Furthermore, levels 0b
+ and 1b

+ cross at �1 ≈ 0.05 eV as the

1b
+ level slowly moves down and the 0b

+ level is essentially
nondispersive. Finally, monolayer-like levels 0m

− and 0m
+ both

float up and cross at small bias �1 ≈ 0.015 eV. They also
cross the 2b

± LLs which move down.
As we emphasized above, although qualitatively the band

structure of trilayer graphene is rather well understood at
this point, not all parameters in the tight-binding model are
precisely known. The complex LL crossing pattern described
above is very sensitive to the choice of tight-binding param-
eters, and may provide a valuable tool for fixing their values.
We illustrate this by exploring how the LL crossing pattern
changes when parameter �2 is varied. Such a parameter is
allowed by symmetry, but has not been taken into account
previously.

The LL crossing pattern for �2 = 3 meV and �2 = 7 meV
is illustrated in Figs. 6(b) and 6(c). It is evident that the crossing
between 1b

− and 1b
+ is significantly shifted even by small �2 =

3 meV; so is the crossing between the monolayer-like 0m
+ LL

and 2b
± levels.

As �2 is increased further [see Fig. 6(c)], new crossings
appear; in particular, a pair 0b

+,1b
+ swaps positions with the

pair 0b
−,1b

− at zero bias [as expected from Eq. (25)]. This leads
to new crossings between the 0b

− and 0b
+,1b

+ levels at a small
bias, �1 ≈ 0.01 eV. Also, the 0m

+ LL moves above 2± levels,
such that crossings between them disappear. We see that even
small variations of parameter �2 can change the pattern of LL
crossings. Similarly, the positions of different crossings are
sensitive to the values of γ2,γ5,δ, although in a more subtle
manner.

As we pointed out, nonzero �2 can be present among
other tight-binding parameters. Moreover, if one accounts for
the effect of the electric field self-consistently, in addition to
renormalization of �1 (corresponding to screening), parameter
�2 changes as well. We found that the typical value of �2

obtained from such self-consistent procedure is 2 meV at
the charge neutrality point.31 We also performed numerical
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FIG. 6. (Color online) Landau levels as a function of displacement field for different values of �2. Magnetic field B = 10 T. Plot (a) uses
zero value of �2; for plots (b) and (c) �2 = 3 meV and �2 = 7 meV, respectively. Value of �2 = 7 meV is sufficient to switch the order of
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simulations for the case when a magnetic field is present (the
detailed procedure will be described elsewhere). We found that
the self-consistent value of �2 in the presence of a magnetic
field can be enhanced compared to the case when B = 0,
due to discreteness of the LLs. For example, from Eqs. (25a)
and (25b) one can see that at zero bias wave functions of
bilayer-like 0b

+ and 1b
+, the LLs are localized on the middle

layer. Consequently, by emptying these LLs one can create
an excess positive charge on the middle layer, thus generating
positive nonzero �2 that can be as large as 4 meV.31

V. DISCUSSION AND OUTLOOK

In summary, we have studied the electronic properties of the
ABA-stacked trilayer graphene in the perpendicular electric
field. We found that the hybridization of the monolayer-
like and bilayer-like bands leads to an opening of a small
(�10 meV) band gap at experimentally achievable values of
bias �1 � 0.25 eV. At bias �1 � 0.1 eV, a new set of Dirac
points appears in each valley, which includes one central
DP, and six off-center DPs. Masses of the emergent Dirac
fermions are tunable by bias, and, interestingly, some of the
masses vanish at a bias which for our choice of tight-binding
parameters corresponds to �∗

1 ≈ 0.185 eV. Therefore, the
band gap depends on the bias in a nonmonotonic manner and
closes at the bias �∗

1. This behavior should be contrasted with
bilayer graphene,2–4 where the band gap grows monotonically
as a function of bias, and can become very large, of the order
of 0.25 eV.4

We have also studied the spectrum of LLs, finding that at
bias �1 � 0.1 eV the band structure transformation gives rise
to new threefold-degenerate groups of LLs. The evolution of
low-lying LLs from the unbiased case, where the spectrum
consists of LLs in the monolayer and bilayer sectors, to the
degenerate groups of LLs at higher bias is accompanied by
multiple level crossings. Experimentally, these LL crossings
will give rise to phase transitions between quantum Hall states
as a function of bias. We have also shown that the pattern
of crossings depends strongly on the values of certain tight-
binding parameters, such as �2 and γ3. Studying the phase
transitions in the QHE regime experimentally should enable
the precise determination of these parameters.

Our results show that single-particle splittings between
LLs in the biased trilayer are sizable, of the order of a few
meV, and exceed the Zeeman energy of 1 meV at a typical
magnetic field of B = 10 T. This is expected to play an
important role in the analysis of quantum Hall ferromagnetism
in trilayer graphene,32–34 which will be the subject of a
subsequent publication.31 Here we just note that we found
that, owing to the small LL spacing, the effective Coulomb
interactions are strongly screened,31 similar to the case of

bilayer graphene35 and, as a result, the Coulomb energy scale
becomes comparable to typical single-particle energy splitting.
This situation is quite different from the case of monolayer
graphene, where single-particle splittings of LLs are much
smaller than the interaction energy.36–39

Our study reveals the unique tunability of Landau levels in
trilayer graphene: Bias controls their energies, wave functions,
and degeneracies. We speculate that this may enable the ex-
ploration of interesting interaction-induced phenomena in the
QHE regime. First, the threefold degeneracy of LLs at higher
bias may allow one to study quantum Hall ferromagnetism,
skyrmions, and fractional quantum Hall states with SU (3)
symmetry. Second, the bands in trilayer graphene are strongly
trigonally warped, which provides an opportunity to study the
effect of anisotropic band structure on quantum Hall ferro-
magnetism and fractional QHE.40 Third, Landau level wave
functions involve a superposition of different nonrelativistic
LL orbitals with weights tunable by bias. Therefore the LL
form factors are tunable, which may allow one to realize
new effective interaction regimes, stabilize desired fractional
quantum Hall states, and drive phase transitions between
them.20,21

We believe that the phenomena discussed above can be
experimentally observed in the near future. We note that the
observation of effects associated with the emergent DPs is
possible when disorder broadening is smaller than the energy
scale over which effective description in terms of DPs is valid.
Figure 2 indicates that the latter energy scale is of the order
of 20 meV, which is much larger than the disorder broadening
achievable in trilayer graphene on hexagonal boron nitride.5,41

Therefore, new DPs should be observable in currently available
samples.

Finally, we note that very recently multiple phase transitions
between different quantum Hall states in biased trilayer
graphene have been reported.42 It is possible that these phase
transitions can be understood in terms of single-particle LL
spectrum evolution described in our paper.

Note added. We recently became aware of work by
Morimoto and Koshino43 in which new bias-induced Dirac
points in trilayer graphene were also predicted. Recently ABA
graphene subject to a large displacement field (several volts
per nanometer) has been studied experimentally by K. Zou
et al.44 Such fields should be sufficient to study phenomena
predicted in our work.
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