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Quantum Hall ferromagnetic phases in the Landau level N = 0 of a graphene bilayer
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In a Bernal-stacked graphene bilayer, an electronic state in Landau level N = 0 is described by its guiding-
center index X (in the Landau gauge) and by its valley, spin, and orbital indices ξ = ±K, σ = ±1, and n = 0,1.

When Coulomb interaction is taken into account, the chiral two-dimensional electron gas (C2DEG) in this system
can support a variety of quantum Hall ferromagnetic ground states where the spins and/or valley pseudospins
and/or orbital pseudospins collectively align in space. In this work, we give a comprehensive account of the
phase diagram of the C2DEG at integer filling factors ν ∈ [−3,3] in Landau level N = 0 when an electrical
potential difference �B between the two layers is varied. We consider states with or without layer, spin, or orbital
coherence. For each phase, we discuss the behavior of the transport gap as a function of �B, the spectrum of
collective excitations, and the optical absorption due to orbital pseudospin-wave modes. We also study the effect
of an external in-plane electric field on a coherent state that has both valley and spin coherence and show that it is
possible, in such a state, to control the spin polarization by varying the strength of the external in-plane electric
field.
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I. INTRODUCTION

Electrons in a Bernal-stacked graphene bilayer1,2 behave
as a chiral two-dimensional electron gas (C2DEG) of massive
Dirac fermions.3 The chiral nature of the electrons leads to
transport and optical properties that are different from those
of conventional semiconductor 2DEG’s or of the 2DEG in
monolayer graphene. In particular, in the absence of Coulomb
interaction, the Landau level (LL) spectrum is given by
EN = sgn (N )

√|N | (|N | + 1)h̄ω∗
c , where the Landau level

index N = 0,±1,±2, . . . and the effective cyclotron frequency
ω∗

c = eB/m∗c where B is the magnetic field and m∗ the
effective mass of the electrons. Each Landau level is four-time
degenerate when counting valley and spin degrees of freedom
with the exception of Landau level N = 0, which is eight-time
degenerate. Indeed, an electronic state in Landau level N = 0
is specified by its guiding center X (in the Landau gauge),
spin σ = ±1, valley ξ = ±K , and orbital n = 0,1 indices.1

(In Landau level N = 0, valley and layer degrees of freedom
are equivalent.) When the Coulomb interaction is negligible
with respect to the disorder broadening at low temperature
and when the small Zeeman splitting is neglected, the eight
states in N = 0 are degenerate and the Hall conductivity has
plateaux at σxy = 4Me2/h where M = ±1,±2, . . . .4

In recent transport experiments,5–12 it was shown that
in sufficiently pure sample, when disorder is low or when
the magnetic field is large enough, the Coulomb interaction
completely lifts the degeneracy of the N = 0 octet and
leads to the formation of seven new plateaux in the Hall
conductivity, i.e., σxy = νMe2/h, where ν ∈ [−3,3] . These
plateaux were attributed to the formation of broken-symmetry
many-body ground states. These states can alternatively be
described as quantum Hall ferromagnets (QHF’s) where the
spin and/or valley pseudospins and/or orbital pseudospins are
spontaneously and collectively aligned in space.13

In bilayer graphene, a top-bottom gates voltage imbalance
can be applied to create a potential difference �B (which we
call the “bias” hereafter) between the two layers. In dual-gated
bilayer graphene, �B and the total density of electrons in

the bilayer can be controlled independently. This allows the
phase diagram of the C2DEG to be studied as a function
of �B, magnetic field, and temperature. Such study has
been done by Weitz et al.12 in high-quality bilayer graphene
suspended between a top gate electrode and the substrate.
The measurements show a series of phase transitions between
different QHF states as �B is increased at given filling factor
and magnetic field. Special attention has been given to the
filling factor ν = 0 where the precise nature of the ground state
when B → 0 near zero bias is still debated.14 All experiments
were done at relatively small magnetic field B < 10 T with
the exception of the experiments reported in Ref. 9 where B

reached 35 T.
Various aspects of the QHF states in bilayer graphene (in

particular the nature and the evolution of the ground state of the
C2DEG near charge neutrality as B → 0) have been studied
theoretically by a number of authors.15–23 In the work of Gorbar
et al.17 and Shizuya,19 the phase diagram of the C2DEG as a
function of bias for ν = 0,1,2,3 is presented. Gorbar et al.
have considered the effect of both static17 and dynamical
screenings18 of the Coulomb interaction. The modified gap
equation captures the linear scaling of the transport gaps
with the magnetic field which is seen in all the experiments
at low magnetic field. The transport gaps are also strongly
reduced with respect to the unscreened case and become more
comparable to those observed experimentally. The dynamical
screening was found to reproduce the offset in the behavior
of the gap with magnetic field in the spin-polarized QHF state
near zero bias, which is seen in the experiments.10 Shizuya19

points out that the filled levels N � −1 can not be considered
as completely inert. Instead, they lead to a correction �n

of the energy of the orbital levels n = 0,1 that can change
the ordering of these states in a way that depends on their
occupation. A negative capacitance effect is also found that
suppresses rotation of the valley pseudospins.

The work that we present in this paper extends our previous
study of the phase diagram of the C2DEG at zero bias13,24–26

and complements the study of Gorbar et al.16–18 and Shizuya.19
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We give a comprehensive account of the phase diagram of
the C2DEG in bilayer graphene at all integer filling factors
ν ∈ [−3,3] in Landau level N = 0 as a function of an applied
bias �B at a fixed magnetic field. Our analysis is based on an
effective two-band model27 which describes the low-energy
physics near the valleys K±. We explicitly take into account
as symmetry-breaking terms the Zeeman splitting �Z and
the bias �B . In the effective two-band model, the bias �B

lifts the degeneracy between the orbital levels n = 0 and
1 by a small amount ξβ�B where β = h̄ω∗

c /γ1 with γ1

the interlayer hopping between carbon atoms that are part
of a dimer. We also include in our model the interlayer
next-nearest-neighbor hopping term γ4 between carbon atoms
in the same sublattices. This term causes a small asymmetry
in the electronic band structure and was neglected in previous
studies.17,19 It combines with the correction ξβ�B to give an
energy difference ≈2βγ1γ4/γ0 + ξβ�B between the n = 1
and 0 orbital levels where γ0 is the intralayer hopping energy
between nearest neighbors. This correction is thus finite at zero
bias and breaks the orbital degeneracy. Our phase diagram is
not electron-hole symmetric around ν = 0 and the sequence
of phase transitions is different for each filling factor.

In our analysis, we treat the electron interaction in the
Hartree-Fock approximation (HFA) and compute the collective
excitations and electromagnetic absorption of the different
phases of the C2DEG in the generalized random-phase
approximation (GRPA). We include in our study both uniform
and nonuniform states and allow for the possibility of any
type of coherent (or QHF) state. By coherent state, we mean
a state where the average value 〈c†ξ,σ,n,Xcξ ′,σ ′,n′,X〉 
= 0 for

ξ 
= ξ ′ and/or σ 
= σ ′ and/or n 
= n′ where c
†
ξ,σ,n,X creates an

electron in a state with quantum numbers ξ,σ,n,X. In our phase
diagram which is summarized on Fig. 5, the layer-coherent
states occur at very small bias because of the small interlayer
distance d = 0.34 nm in bilayer graphene. As the bias is
increased, we find around a critical bias corresponding to the
regions where the Hall conductivity ceases to be quantized in
the experiments12 a state with both layer and spin coherence.
The orbital coherent states occur at a much larger bias
corresponding to the situation where level n = 1 gets lower in
energy than level n = 0 in valley K− (see Fig. 4). In-between
these coherent states are various incoherent states, some of
which have been studied before.17 Interestingly, we find that
the application of an electric field in the plane of the layers can
produce a new state where all three coherences (layer, orbital,
and spin) are present. In such a state, it is possible to control
the degree of spin polarization by changing the strength of the
external in-plane electric field.

We also present in this study the properties of the different
ground states in the phase diagram. For all filling factors, we
show how the transport gaps evolve with bias. In most cases,
this evolution is qualitatively similar to that obtained with
screening corrections.17 We compute all the intra-LL collective
excitations in the various phases showing that all coherent
states but the orbital state are characterized by a linearly
dispersing gapless (in the long-wavelength limit) Goldstone
mode. This mode becomes gapped after the transition to an
adjacent incoherent state. In the orbital phase, the orbital-
pseudospin Goldstone mode dispersion is anisotropic and this

mode becomes unstable at a finite wave vector, indicating a
transition to a charge-density-wave state.25,26 We identify the
number of spin waves and orbital modes in each phase. These
latter modes are active in optical absorption. The inter-LL
and some intra-LL magnetoexcitons have been computed
recently20–23 and we comment on the difference with our
results and how the presence of the inter-LL magnetoexcitons
in the spectrum may complicate the detection of the intra-LL
excitations. The main results of our paper are summarized
in Figs. 5 (phase diagram), 8 (transport gaps), and 9 and 10
(collective mode dispersions).

This paper is organized in the following way. Section II
introduces the two-band model of bilayer graphene with the
resulting LL spectrum in finite magnetic field. Section III
summarizes the Hartree-Fock and generalized random-phase
approximations that we use to take into account the Coulomb
interaction and gives the formalism for the calculation of
the electromagnetic absorption. Our numerical results for
the phase diagram, transport gaps, collective excitations, and
optical absorption are presented in Sec. IV. In Sec. V, we show
how the application of an in-plane electric field allows us to
control the spin polarization in some phases. We conclude in
Sec. VI.

II. TWO-BAND MODEL OF BILAYER GRAPHENE

A. Crystal structure and tight-binding Hamiltonian

The crystal structure of a Bernal-stacked graphene bilayer
is shown in Fig. 1. Each graphene layer is a two-dimensional
crystal with a honeycomb lattice structure. The honeycomb
lattice can be described as a triangular Bravais lattice with
a basis of two carbon atoms An and Bn where n = 1,2 is
the layer index. The two basis vectors are given by a1 =
a0(1/2,−√

3/2) and a2 = a0(1,0), where a0 = 2. 46 Å= √
3c

is the lattice constant of the underlying triangular Bravais
lattice and c = 1.42 Å is the separation between two adjacent
carbon atoms. The distance between the two graphene layers
is d = 3.4 Å. In the Bernal-stacking arrangement, the upper A

sublattice is directly on top of the lower B sublattice, while the
upper B sublattice is above the center of a hexagonal plaquette
of the lower layer.

A2

A1

B2

γ1

γ0

γ3 γ4

B1

FIG. 1. (Color online) Crystal structure of a Bernal-stacked
graphene bilayer.
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FIG. 2. Brillouin zone of the triangular Bravais lattice and
definition of the valleys indices K±.

The Brillouin zone of the reciprocal Bravais lattice is shown
in Fig. 2. We choose the two nonequivalent valley points
to be

Kξ =
(

2π

a0

) (
ξ

2

3
,0

)
, (1)

where ξ = ± is the valley index.

The electronic dispersion is obtained from a tight-binding
model with the following parameters:1 γ0 the nearest-neighbor
(NN) hopping in each layer, γ1 the interlayer hopping between
carbon atoms that are part of a dimer (i.e., A1 − B2, these
sites are called the high-energy sites), γ3 the interlayer NN
hopping term between carbon atoms of different sublattices
(i.e., A2 − B1), and γ4 the interlayer next-NN hopping term
between carbon atoms in the same sublattice (i.e., A1 − A2 and
B1 − B2). The energy δ represents the difference in the crystal
field between sites A1,B2 and sites A2,B1. In this work, we
neglect the trigonal warping term γ3, a correct approximation
at sufficiently high magnetic field.27

If we define the spinor

d
†
k,σ = (a†

1,k,σ b
†
1,k,σ a

†
2,k,σ b

†
2,k,σ

), (2)

where a
†
i,k,σ (b†i,k,σ ) creates an electron on site A(B) in layer

i = 1,2 with wave vector k and spin σ = ±1, then we can
write the second-quantized tight-binding Hamiltonian in the
basis (A1,B1,A2,B2) as

H 0 =
∑
k,σ

d
†
k,σH 0

σ (k) dk,σ , (3)

with the matrix

H 0
σ (k) =

⎛⎜⎜⎜⎜⎝
1
2�B + δ − 1

2σ�Z −γ0� (k) −γ4�
∗ (k) −γ1

−γ0�
∗ (k) 1

2�B − 1
2σ�Z 0 −γ4�

∗ (k)

−γ4� (k) 0 − 1
2�B − 1

2σ�Z −γ0� (k)

−γ1 −γ4� (k) −γ0�
∗ (k) − 1

2�B + δ − 1
2σ�Z

⎞⎟⎟⎟⎟⎠ , (4)

where �Z = gμBB with g = 2 is the Zeeman energy. We have
also included in H 0

σ an external transverse electric field that
creates an electrical potential difference (or bias) �B between
the layers. The function �(k) is defined by

�(k) =
3∑

i=1

eik·δi , (5)

where the summation is over the vectors connecting
a site A1 to its three nearest neighbors in the same
plane, i.e., δ1 = a0(1/2,1/2

√
3),δ2 = a0(−1/2,1/2

√
3),δ3 =

a0(0,−1/
√

3).
Using �(Kξ + k) ≈ −√

3a0(ξkx + iky)/2 and setting
γ4 = δ = �B = �Z = 0, we find for the the band structure
near the points Kξ the bands

E1,±(p) = ±γ1 ± p2

2m∗ , (6)

E2,±(p) = ± p2

2m∗ , (7)

where the momentum p is measured with respect to h̄Kξ and
the effective mass is defined by

m∗ = 2h̄2γ1

3γ 2
0 a2

0

. (8)

The band structure consists of four bands. In the absence
of bias, the two middle bands meet at the six valley points.
The two high-energy bands are separated by a gap γ1 from
the two middle, low-energy bands. The bands E2,±(p) remain
degenerate at p = 0 when γ3, γ4, and � are finite if �B = 0.

This degeneracy is lifted by a finite �B .
For a neutral bilayer, the chemical potential is at the

energy E = 0. The low-energy excitations (E � γ1) of the
tight-binding model can be studied using an effective two-band
model.27,28 This model gives for each valley

H 0
ξ,σ (p) =

(
ξ �B

2 + η−ξp−p+ − 1
2σ�Z

1
2m∗ (px − ipy)2

1
2m∗ (px + ipy)2 −ξ �B

2 + ηξp+p− − 1
2σ�Z

)
, (9)
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where we used the basis (A2,B1) for K− and (B1,A2) for K+
and defined p± = px ± ipy and

ηξ = 1

2m∗

(
ξ
�B

γ1
+ 2

γ4

γ0
+ δ

γ1

)
. (10)

In this model, the presence of a quantizing perpen-
dicular magnetic field is accounted for by making the
Peierls substitution p → P = p + eA/c (with e > 0), where
∇ × A = B =B ẑ. Defining the ladder operators a = (Px −
iPy)
/

√
2h̄ and a† = (Px + iPy)
/

√
2h̄ with the magnetic

length 
 = √
h̄c/eB, we get

H 0
ξ,σ

=
(

ξ �B

2 + ζ1,−aa† − 1
2σ�Z ζ2a

2

ζ2(a†)2 −ξ �B

2 + ζ1,+a†a − 1
2σ�Z

)
,

(11)

where

ζ1 = β

(
2
γ1γ4

γ0
+ δ

)
, (12)

ζ1,± = ζ1 ± ξβ�B, (13)

ζ2 = βγ1

[
1 + 2

δγ4

γ0γ1
+

(
γ4

γ0

)2 ]
, (14)

and

β = h̄ω∗
c

γ1
. (15)

The effective cyclotron frequency is ω∗
c = eB/m∗c. In

Eq. (11), the ladder operators are defined such that a†ϕn (x) =
i
√

n + 1ϕn+1 (x) and aϕn (x) = −i
√

nϕn−1 (x) where ϕn (x)
with n = 0,1,2, . . . are the eigenfunctions of the one-
dimensional harmonic oscillator.

For all calculations done in this paper, we choose2 for the
value of the parameters

γ0 = 3.1 eV, (16)

γ1 = 0.39 eV, (17)

γ4 = 0.12 eV, (18)

δ = 0.0156 eV. (19)

We have checked that the band dispersion obtained with this
choice of signs for the hopping terms is consistent with that
reported in the literature.29 With the magnetic field in Tesla,
we have

β = 8. 86 × 10−3B, (20)

ζ1 = 0.404B meV, (21)

while

h̄ω∗
c = 3. 46B meV, (22)

�Z = 0.1158B meV, (23)

α = e2

κ

= 11.25

√
B meV. (24)

In the calculation of α, we take κ ≈ 5 for the effective dielectric
constant at the position of the graphene layers. At B = 10 T,

ζ1/α = 3.5911 × 10−2
√

B = 0.114 , (25)

�Z/α = 1.0291 × 10−2
√

B = 0.0325, (26)

h̄ω∗
c /α = 0.307 56

√
B = 0.973. (27)

B. Landau levels and eigenstates of the noninteracting
Hamiltonian

When γ4 = δ = �B = �Z = 0, the Landau level spectrum
of H 0

ξ,σ is given by

E0
N = sgn (N )

√
|N | (|N | + 1)h̄ω∗

c , (28)

where N = 0,±1,±2, . . . is the Landau level index and sgn
is the signum function. The corresponding eigenvectors of a
given spin are

1√
2

(
h|N |−1,X (r)

−sgn(N ) h|N |+1,X (r)

)
(29)

for N 
= 0. We use the Landau gauge A = (0,Bx,0) where the
eigenstates are

hn,X (r) = 1√
Ly

e−iXy/
2
ϕn (x − X) (30)

with X the guiding-center index. All Landau levels N 
= 0
are fourfold degenerate including spin and valley degrees
of freedom in addition to the guiding-center degeneracy
Nϕ = S/2π
2 where S is the area of the 2DEG. The Landau
level N = 0 is an exception because there are two degenerate
spinors with zero energy which are given, in the basis (A2,B1)
for K− and (B1,A2) for K+, by(

0
h0,X (r)

)
,

(
0

h1,X (r)

)
. (31)

It follows that N = 0 is eightfold degenerate. In this paper,
we restrict the Hilbert space to the Landau level N = 0 and
use the index n = 0,1 to refer to the two “orbitals” ϕn=0 (x)
and ϕn=1 (x). With finite values of γ4, δ,�Z , or �B , the valley,
spin, and orbital degeneracies are lifted and the noninteracting
energies become

E0
ξ,σ,n=0 = − 1

2ξ�B − 1
2σ�Z, (32)

E0
ξ,σ,n=1 = − 1

2ξ�B − 1
2σ�Z + ξβ�B + ζ1. (33)

The corresponding eigenspinors are still given by Eq. (31).
Note that the structure of the sublattice spinors in Eqs. (31) is
such that states from different valleys (which are localized on
different layers) have no overlap. For N = 0, the layer index
is thus equivalent to the valley index.

C. Limit of validity of the two-band model

Figure 3 shows a comparison between the four- and two-
band models for the electronic dispersion in Landau levels
N = −2,−1,0,1,2 and valley K− using the values of the
parameters given previously. The agreement between the two
models is excellent for N = 0 where the difference in energy is
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E
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V
)
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0.02

0.04

0.06

0.08

0.1

N=0, n=0 (2 bands)
N=0, n=1 (2 bands)
N=0, n=0 (4 bands)
N=0, n=1 (4 bands)

N=-2

N=+2

N=-1

N=+1

FIG. 3. (Color online) Comparison between the complete four-
band model (symbols) and the approximate two-band model (lines)
for the electronic dispersion in Landau levels N = −2,−1,0,1,2 and
valley K−.

of the order of 1%. For levels |N | > 0, the difference in energy
between the two models is much more important. Note that
the two sub-Landau levels of N = 0 intersect level N = 1 at
�B ≈ 0.15 eV. For the valley K+ (not shown in the figure), the
crossing occurs at a smaller bias �B ≈ 0.10 eV corresponding
to an electric field E⊥ ≈ 300 meV/nm between the layers. In
our calculation, we must keep the bias smaller than ≈0.10 eV
(i.e., �B/α � 2.8 for κ = 5) for our model to be valid.

Figure 4 shows the ordering of the four levels of a given spin
in N = 0 at finite bias. The correction ζ1 opens a gap between
the two orbital states n = 0 and 1 which is independent of the
bias. The effective two-band model introduces a correction
β�B to this gap that has different signs in the two valleys
as indicated in the figure. When combined with ζ1, the gap
in valley K+ is positive at all biases, while the gap in valley
K− changes sign (level n = 1 gets below level n = 0) when
β�B > ζ1, i.e., for �B > 0.046 eV (i.e., �B/α = 1.3 for κ =
5).

ζ1+βΔB

ΔB

ζ1−βΔB

K+,n= 0

K_,n= 1

K_,n= 0

K+,n= 1

FIG. 4. Ordering of the four levels of a given spin in Landau level
N = 0 at finite bias �B .

III. INTERACTING CHIRAL TWO-DIMENSIONAL
ELECTRON GAS

We now add the Coulomb interaction to the noninteracting
Hamiltonian. Hereafter, we use the same basis (A2,B1) for
both valleys and define the field operators �ξ,σ,n (r) by

�−,σ,n (r) =
∑
X

(
0

hn,X (r)

)
⊗ |σ 〉 c−,σ,n,X (34)

and

�+,σ,n (r) =
∑
X

(
hn,X (r)

0

)
⊗ |σ 〉 c+,σ,n,X. (35)

The second-quantized noninteracting part of the Hamiltonian
is given by

H0 =
∑
σ,ξ,n

∫
dr �

†
ξ,σ,n (r) H 0

ξ,σ �ξ,σ,n (r)

=
∑
ξ,σ,n

∑
X

E0
ξ,σ,nc

†
ξ,σ,n,Xcξ,σ,n,X. (36)

For the second-quantized Coulomb interaction,

V = 1

2

∑
n1,...,n4

∑
σ,σ ′

∑
ξ,ξ ′

∫
dr

∫
dr′�†

ξ,σ,n1
(r)�†

ξ ′,σ ′,n2
(r′)

×Vξ,ξ ′ (r − r′)�ξ ′,σ ′,n3 (r′)�ξ,σ,n4 (r), (37)

where the Coulomb potential

Vξ,ξ ′ (r) = e2

κ|r − r′ + (1 − δξ,ξ ′ ) d ẑ| (38)

has the Fourier transform

Vξ,ξ ′ (r) = 1

S

∑
q

2πe2

κq
eiq·(r−r′)e−qd(1−δξ,ξ ′ ), (39)

where q is a two-dimensional vector in the plane of the bilayer.
The terms that do not conserve the valley index in Eq. (37) are
very small and usually neglected.30

A. Hartree-Fock Hamiltonian

In order to describe the different phases of the uniform
C2DEG, we define the operators

ρ
a,a′
n,n′ = 1

Nϕ

∑
X

c
†
a,n,Xca′,n′,X, (40)

where c
†
a,n,X (ca,n,X) creates (destroys) an electron in a state

(a,n,X). The index a combines the spin and valley indices
and we use aξ and aσ to refer to the specific spin or valley
index of a = (aξ ,aσ ). The set of average values {〈ρa,a′

n,n′ 〉} gives
a complete description of a uniform ground state. They are the
order parameters of that state. The diagonal elements {〈ρa,a

n,n 〉}
are the filling factors of levels (a,n), while the off-diagonal
elements are the “coherences.” For nonuniform states, it is
necessary to define the order parameters {〈ρa,a′

n,n′ (G)〉} where G is

a reciprocal lattice vector and 〈ρa,a′
n,n′ (G)〉 the Fourier transform

of 〈ρa,a′
n,n′ (r)〉. We refer the reader to Refs. 25 and 26 where

the formalism for this case is discussed in more details. The
Hartree-Fock Hamiltonian can be written in terms of these
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operators by (we adopt the convention that repeated indices
are summed over)

HHF = NϕEa,nρ
a,a
n,n − NϕX

(aξ ,bξ )
n1,n4,n3,n2 (0)

〈
ρa,b

n1,n2

〉
ρb,a

n3,n4
, (41)

where

Ea,n = E0
a,n + α

(̃
νaξ

− ν̃

2

)
d



, (42)

with E0
a,n given by Eqs. (32) and (33). The Fock interaction is

defined by

X
(aξ ,bξ )
n1,n2,n3,n4 (q) = α

∫
dp 
2

2π

1

p

Kn1,n2 (p)

×Kn3,n4 (−p)eiq×p
2
e
−pd(1−δaξ ,bξ

) (43)

with the form factors

K0,0 (q) = e− q2
2

4 , (44)

K1,1(q) = e− q2
2

4

(
1 − q2
2

2

)
, (45)

K1,0(q) = e− q2
2

4

(
(qy + iqx)
√

2

)
, (46)

K0,1(q) = e− q2
2

4

(
(−qy + iqx)
√

2

)
. (47)

These form factors capture the character of the two different
orbital states. In Eq. (42), ν̃ = ν + 4 is the number of filled
levels in N = 0. We reserve the symbol ν ∈ [−3,3] for the
filling factor of the C2DEG. In deriving Eq. (41), we have
taken into account a neutralizing positive background so that
the only contribution from the Hartree and background terms
is the capacitive energy given by the term in parentheses in
Eq. (42). In this term, ν̃aξ

= ∑
n,σ 〈ρaξ ,σ ;aξ ,σ

n,n (0)〉 is the total
filling factor in valley aξ . Detailed expressions for the Hartree
(see next section) and Fock interactions H and X are given in
Appendix A of Ref. 25.

The Hartree-Fock energy per electron is given by

EHF

Ne

= 1

ν̃
E0

a,n

〈
ρa,a

n,n

〉 + 1

4̃ν

d



α (̃νK+ − ν̃K− )2

− 1

2̃ν
X

(aξ ,bξ )
n1,n4,n3,n2 (0)

〈
ρa,b

n1,n2

〉 〈
ρb,a

n3,n4

〉
, (48)

where Ne is the number of electrons in the 2DEG and νK± are
the filling factors of the two valleys.

At q = 0, the only nonzero matrix elements of the Fock
interactions are

X
ξ,ξ

0,0,0,0(0) = �C, X
ξ,ξ

1,1,1,1(0) = 3
4�C, (49)

X
ξ,ξ

0,0,1,1(0) = X
ξ,ξ

1,1,0,0(0) = 1
2�C, (50)

X
ξ,ξ

1,0,0,1(0) = X
ξ,ξ

0,1,1,0(0) = 1
2�C, (51)

and the corresponding interlayer terms which must be com-
puted numerically. We have defined

�C =
√

π

2
α (52)

with α = e2/κ
.

B. Calculation of the order parameters

We define the single-particle Matsubara Green’s function

Ga,b
n1,n2

(X,τ ) = −〈
Tτ ca,n1,X(τ )c†b,n2,X

(0)
〉
, (53)

where Tτ is the imaginary-time ordering operator, such that
the order parameters are given by〈

ρa,b
n1,n2

〉 = 1

Nϕ

∑
X

Gb,a
n2,n1

(X,τ = 0−). (54)

The equation of motion for the Green’s function in the
Hartree-Fock approximation is(

ih̄ωn + μ − Ea,n1

)
Ga,b

n1,n2
(iωn) + Ua,c

n1,n3
Gc,b

n3,n2
(iωn)

= h̄δn1,n2δa,b, (55)

where μ is the chemical potential, ωn a fermionic Matsubara
frequency, and

Ua,c
n1,n3

= X
(aξ ,cξ )
n4,n3,n1,n2 (0)

〈
ρc,a

n4,n2

〉
(56)

are the self-consistent Fock potentials.
The self-consistent Eq. (55) can be put in a 8 × 8 matrix

form by defining superindices and then solved numerically in
an iterative way in order to get the order parameters.

The Hartree-Fock equation of motion for the Green’s
function leads to the sum rule (at T = 0 K)∑

b,m

∣∣〈ρa,b
n,m

〉∣∣2 = 〈
ρa,a

n,n

〉 = νa
n , (57)

where νa
n is the filling factor of the (a,n) level. By definition,〈

ρa,b
n,m

〉 = 〈
ρb,a

m,n

〉∗
. (58)

C. Collective modes in the generalized random-phase
approximation

To study the collective excitations, we compute the two-
particle Green’s functions

χa,b,c,d
n1,n2,n3,n4

(q,τ ) = −Nϕ

〈
Tτρ

a,b
n1,n2

(q,τ )ρc,d
n3,n4

(−q,0)
〉

+Nϕ

〈
ρa,b

n1,n2
(q)

〉 〈
ρc,d

n3,n4
(−q)

〉
(59)

in the GRPA. In this approximation, χa,b,c,d
n1,n2,n3,n4

(q,τ ) is the
solution of the equation

χa,b,c,d
n1,n2,n3,n4

(q,i�n)=χ (0)a,b,c,d
n1,n2,n3,n4

(q,i�n) + 1

h̄
χ (0)a,b,e,e

n1,n2,n5,n6
(q,i�n)

×H
(eξ ,gξ )
n5,n6,n7,n8 (q)χg,g,c,d

n7,n8,n3,n4
(q,i�n)

− 1

h̄
χ (0)a,b,e,f

n1,n2,n5,n6
(q,i�n)X

(eξ ,fξ )
n5,n8,n7,n6 (q)

×χf,e,c,d
n7,n8,n3,n4

(q,i�n), (60)

where �n is a bosonic Matsubura frequency and the Hartree
interaction

H
(aξ ,bξ )
n1,n2,n3,n4 (q) = 1

q

Kn1,n2 (q)Kn3,n4 (−q)e−qd(1−δaξ ,bξ

)
.

(61)
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The two-particle Green’s functions χ (0)a,b,c,d
n1,n2,n3,n4

(q,i�n) satisfy
the set of equations[

ih̄�n − (
Eb,n2 − Ea,n1

)]
χ (0)a,b,c,d

n1,n2,n3,n4
(q,�n)

= h̄
〈
ρa,d

n1,n4

〉
δb,cδn2,n3 − h̄

〈
ρc,b

n3,n2

〉
δa,dδn1,n4

+Ua,e
m,n1

χ (0)e,b,c,d
m,n2,n3,n4

(q,�n) − Ue,b
n2,m

χ (0)a,e,c,d
n1,m,n3,n4

(q,�n) .

(62)

Equation (60) can be represented by a set of bubbles (Hartree
terms) and ladder (Fock terms) diagrams. The function
χ (0)a,b,c,d

n1,n2,n3,n4
is the Hartree-Fock approximation for the two-

particle Green’s functions. It includes the Hartree-Fock self-
energy corrections but not the vertex corrections. Note that
two-particle Green’s functions depend only on the order
parameters 〈ρa,b

n,m〉 computed in the HFA. Equations (60)
and (62) can be solved numerically by defining superindices
and then writing them in a 64 × 64 matrix form. The collective
excitations are then given by the poles of the retarded Green’s
functions χ (R)a,b,c,d

n1,n2,n3,n4
(q,ω) which are obtained by the analytic

continuation i�n → ω + iδ of the corresponding two-particle
Green’s functions. To derive the dispersion relations, we follow
these poles as the wave vector q is varied.

D. Pseudospin description

We showed above that the coherent states of the C2DEG
can be described by the set of order parameters {〈ρa,a′

n,n′ 〉}. These
states are also quantum Hall ferromagnets (QHF’s) and can
also be described by using a pseudospin language where the
two valley states ξ = + (ξ = −) are associated with valley-
pseudospin up (down) and the two orbital states n = 0 (n = 1)
with orbital-pseudospin up (down).

In this language, the total spin, valley pseudospin, and
orbital pseudospin components of the electron gas are given
by

Si = 1

2Nϕ

h̄
∑
ξ,n,X

∑
α,β

〈
c
†
ξ,α,n,Xσ

(i)
α,βcξ,β,n,X

〉
, (63)

Li = 1

2Nϕ

∑
α,n,X

∑
ξ,ξ ′

〈
c
†
ξ,α,n,Xσ

(i)
ξ,ξ ′cξ ′,α,n,X

〉
, (64)

Oi = 1

2Nϕ

∑
ξ,α,X

∑
n,n′

〈
c
†
ξ,α,n,Xσ

(i)
n,n′cξ,α,n′,X

〉
, (65)

where σ (i)′s are the Pauli matrices and the total filling factor is

ν̃ = 1

Nϕ

∑
ξ,α,n,X

〈c†ξ,α,n,Xcξ,α,n,X〉. (66)

Note that these 10 fields do not provide a complete description
of a state. One must also consider the 54 other combinations
of indices (the 64 order parameters are not all independent,
however).We will use both Si,Li,Oi and the order parameters
〈ρa,b

n,m〉 to characterize the ground states of the C2DEG.

E. Induced dipoles

The coupling of the C2DEG with a uniform external electric
field in the plane of the layers is given by

HE = −e

∫
dr n(r) φ(r) , (67)

where Eext = −∇φ(r). The total density is given by

n (r) =
∑

σ,ξ,n,m

�
†
ξ,σ,n(r) �ξ,σ,m(r) . (68)

Fourier transforming Eq. (67) and using the form factors
defined in Eqs. (44)–(47), we can show that in a homogeneous
state,20,25 HE gives the dipolar coupling

HE = −d · Eext, (69)

with the total dipole vector defined by d = ∑
a da where

da = −
√

2
eNϕ

[
ρa,a

x (0) x̂ − ρa,a
y (0) ŷ

]
(70)

is the dipole moment in valley aξ with spin aσ . We have defined
here

ρa
x = 1

2

(
ρ

a,a
0,1 + ρ

a,a
1,0

)
, (71)

ρa
y = 1

2i

(
ρ

a,a
0,1 − ρ

a,a
1,0

)
. (72)

It is possible to control the orientation of the orbital pseu-
dospins in the x-y plane with an external electric field.

F. Electromagnetic absorption

The total current operator in second quantization is given
by J = ∑

a Jawith

Ja =
∑
n,m

∫
dr �†

a,n(r) ja(r) �a,m(r) . (73)

The current operator ja(r) is derived from the Hamiltonian
in Eq. (9) by making the Peierls substitution p → P = p +
eAext/c and then taking the derivative with respect to the
external vector potential Aext:

ja,i = −c
∂H 0

a

∂Ae
i

∣∣∣∣
Ae

i →0

, (74)

where i = x,y. This gives

J = 1

h̄

∑
a

�0
a (̂z × da) = dd

dt
, (75)

with

�0
a = E0

a,1 − E0
a,0 = ζ1 + aξβ�B, (76)

i.e., the bare gap in valley ξ and

dd
dt

= − i

h̄

[
H 0

HF,d
]
, (77)

where H 0
HF = NϕE0

a,nρ
a,a
n,n is the noninteracting Hamiltonian.

To compute the electromagnetic absorption per unit area,
we define the two-particle current-current Green’s function

χJα,Jβ
(τ ) = − 1

S
〈TτJα (τ ) Jβ (0)〉, (78)

which gives

χJα,Jβ
(i�n) =

(
e


h̄

)2 1

π
2

∑
a,b

�0
a�

0
bχ

a,a,b,b
ρα,ρβ

(q = 0,i�n),

(79)
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where α,β = x,y and x = y, y = x. Using Eqs. (71) and (72),
we have for example

χa,b,c,d
ρx ,ρx

= 1
4

(
χ

a,b,c,d
1,0,1,0 + χ

a,b,c,d
0,1,1,0 + χ

a,b,c,d
1,0,0,1 + χ

a,b,c,d
0,1,0,1

)
(80)

and similarly for the other components. The absorption
can only involve these four combinations of orbital in-
dices whatever the polarization of the electric field of the
electromagnetic wave. The retarded current-current response
function χJα,Jβ

(ω) is obtained from the analytic continuation
i�n → ω + iδ and the electromagnetic absorption for an
electromagnetic wave of amplitude E0 linearly polarized in
the direction α is given by

Pα (ω) = −1

h̄
Im

[
χJα,Jα

(ω)

ω

]
E2

0 . (81)

This formula is valid at finite frequency only since we have
neglected the diamagnetic contribution to the current.

G. Absorption in the incoherent phases

If there is no coherence in a phase, then〈
ρa,b

n,m

〉 = 〈
ρa,a

n,n

〉
δn,mδa,b. (82)

In this case, we can solve analytically for the absorption
because this restriction leads, from Eq. (62), to

χ (0)a,b,c,d
n1,n2,n3,n4

(q,�n) = χ (0)a,b,b,a
n1,n2,n2,n1

(q,�n)δa,dδb,cδn1,n4δn2,n3 .

(83)

Now, at q = 0 the only nonzero Fock interactions in the GRPA
equations are given in Eqs. (49)–(51), while the only Hartree
interactions that need to be considered are those of the form

H
ξ,−ξ

0,0,0,0(0), H
ξ,−ξ

1,1,1,1(0), H
ξ,−ξ

0,0,1,1(0), H
ξ,−ξ

1,1,0,0(0). (84)

These interlayer Hartree interactions involve combinations of
the form e−qd/q that give a finite contribution at q = 0 (and
also a diverging contribution that is canceled by the other
terms). It follows that Eq. (60) gives for the GRPA response
functions χ

a,a,c,c
1,0,1,0 (ω) = χ

a,a,c,c
0,1,0,1 (ω) = 0 and

χ
a,a,c,c
0,1,1,0 (ω) = χ

(0)a,a,a,a
0,1,1,0 (ω)δa,c[

1 + 1
h̄
X

(aξ ,aξ )
1,1,0,0(0)χ (0)a,a,a,a

0,1,1,0 (ω)
] , (85)

i.e., valley and spin must be conserved in an optically active
electronic transition. Since

χ
(0)a,a,a,a
0,1,1,0 (ω) =

〈
ρ

a,a
0,0

〉 − 〈
ρ

a,a
1,1

〉
ω + iδ − (

�0
a + U

a,a
0,0 − U

a,a
1,1

) /
h̄

(86)

[and a similar expression with 0 ⇀↽ 1 for χ
(0)a,a,a,a
1,0,0,1 (ω)], we

have easily

χ
a,a,a,a
0,1,1,0 (ω) =

〈
ρ

a,a
0,0

〉 − 〈
ρ

a,a
1,1

〉
ω + iδ − [

�0
a + �C

4

〈
ρ

a,a
1,1

〉] /
h̄

(87)

and

χ
a,a,a,a
1,0,0,1 (ω) =

〈
ρ

a,a
1,1

〉 − 〈
ρ

a,a
0,0

〉
ω + iδ + [

�0
a + �C

4

〈
ρ

a,a
1,1

〉] /
h̄

. (88)

The functions χ
a,a,a,a
0,1,1,0 (ω) and χ

a,a,a,a
1,0,0,1 (ω) are the response to

the two circular polarizations of light. The absorption in an

incoherent phase is finally given by

Pα (ω) = E2
0

4
2ω

(
e


h̄

)2 ∑
a

(〈
ρ

a,a
0,0

〉 − 〈
ρ

a,a
1,1

〉)
× (

�0
a

)2
δ

(
h̄ω − �0

a − �C

4

〈
ρ

a,a
1,1

〉)
(89)

with α = x,y and �0
a given by Eq. (76). In the numerical

calculation, we introduce a small Landau level width in order
to get a finite value for the optical absorption.

We can follow the same type of reasoning to show that, in a
phase with no orbital coherence but with possibly layer and/or
spin coherence, the functions χ

a,b,c,d
1,0,1,0 (ω) = χ

a,b,c,d
0,1,0,1 (ω) = 0

and the absorption depends again only on χ
a,a,b,b
0,1,1,0 (ω) and

χ
a,a,b,b
1,0,0,1 (ω). In this special case, the equation of motion for

χ
a,b,c,d
0,1,1,0 (ω) is

χ
a,a,b,b
0,1,1,0 (ω) = χ

(0)a,a,b,b
0,1,1,0 (ω) − 1

h̄

∑
e,f

χ
(0)a,a,e,f

0,1,1,0 (ω)

×X
eξ ,fξ

1,1,0,0χ
f,e,b,b

0,1,1,0 (ω) (90)

and a similar expression with 0 ⇀↽ 1 for χ
a,b,c,d
1,0,0,1 (ω).

IV. PHASE DIAGRAM OF THE C2DEG

At zero bias, the QHF states follow a set of Hund’s
rules: the spin polarization is maximized first, then the layer
polarization is maximized to the greatest extent possible, and
finally the orbital polarization is maximized to the extent
allowed by the first two rules.13 In this section, we study the
phase transitions that occur when a finite bias (or transverse
electric field) is turned on.

A. Types of phases

Figure 5 shows our numerical result for the phase diagram
of the C2DEG as a function of an applied transverse electric
field E = �B/ed for B = 10 T and κ = 5 and for all integer
filling factors ν ∈ [−3,3]. We indicate the eight noninteracting
levels by horizontal lines and number them according to the
scheme indicated in the top inset. Note that the lines are only
offset vertically for clarity. Their position does not reflect the
true ordering of the energy levels which changes with bias.
We name the phases Iν, Lν, Oν , and SLν according to the
type of coherence that is present: incoherent, layer-coherent,
orbital-coherent, or spin-layer-coherent, respectively. When
there is more than one incoherent phase at a given filling
factor, we use the notation I ∗

ν for the second phase, I ∗∗
ν for

the third phase, and so on. The critical electric field for the
transition between two phases is indicated by E(1) to E(18) and
is in units of mV/nm. A circle on an energy level represents
a fully filled level, while an ellipse that connects two levels
indicates a coherent superposition of these two states. We list
in Fig. 5 some properties of each phase: spin polarization Sz,

number of Goldstone modes (G), number of collective modes
gapped at the Zeeman energy (Z), and number of peaks in
the optical absorption spectrum (A). The transition between
a coherent and an incoherent phase is continuous, while a
transition between two incoherent phases is discontinuous.
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K-,-,1

K-,-,0

K+,-,1

K+,-,0

K-,+,1

K-,+,0

K+,+,1

K+,+,0
615

7 3 8 4
2

I-3:Sz=1/2 (0G,1Z,1A)

I0
*:Sz=0 (0G,0Z,0A)

L-3:Sz=1/2 (1G,2Z,2A)

L-2:Sz=1 (1G,2Z,2A)

SL1:Sz∈[3/2,1/2]
(1G,2Z,2A)

L3:Sz=1/2 (1G,2Z,2A)

L1:Sz=3/2 (1G,2Z,2A)

L2:Sz=1 (1G,2Z,2A)

I-1:Sz=3/2 (0G,2Z,1A)

I3:Sz=1/2 (0G,1Z,1A)
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O
(
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FIG. 5. (Color online) Phase diagram of the C2DEG in Landau level N = 0 at B = 10 T and for κ = 5 as a function of the transverse
electric field between the layers for integer filling factors ν ∈ [−3,3] (from top to bottom). A filled (red) circle represents a filled state, while a
filled (blue) ellipse indicates a coherent superposition of two levels. The numbering of the levels is indicated in the inset at the top right of the
figure. The E(i)′s indicate the critical perpendicular electric field (in mV/nm) required for the transition between two phases. Also indicated
for each phase are the spin polarization Sz, the number of Goldstone mode (G), of modes gapped at the Zeeman energy (Z), and the number
of peaks in the optical absorption spectrum (A). The mention “ + nonuniform states” for the O1 and O3 phases signals that this portion of the
phase diagram is further subdivided into uniform and nonuniform states as indicated in Eq. (109).

1. Incoherent phases Iν

The Iν phases have no coherence of any kind and so
L‖,S‖,O‖ = 0 (the parallel component is in the plane of the
bilayer). Each level is either full or empty and so Lz, Sz, and
Oz vary from one phase to another. The state corresponding to
a specific diagram is easily read from Fig. 5. For I2, we have
for example ∣∣�I2

〉 =
∏
X

c
†
7,Xc

†
5,X

|0〉 , (91)

and the order parameters 〈ρ5,5〉 = 〈ρ7,7〉 = 1. We include the
phases I ∗

±2, I ∗∗
1 , and I ∗

3 in the phase diagram only to make
it more complete. Indeed, the bias can not produce any more
transition after these states. But, the critical bias needed to
reach these states is well outside the limits of validity of our
two-band model.

Using Eq. (48), the Hartree-Fock energy of two adjacent
incoherent phases is readily compared to extract the critical
biases. We find, with �

(i)
B = edE(i),

I−2 → I ∗
−2 : �

(3)
B = �Z − ζ1 + 3

8�C

β
, (92)

I+2 → I ∗
+2 : �

(15)
B = �Z + ζ1 + 5

8�C

β
. (93)

If we ignore the SLν phases at ν = 0,±1, we find that the
transition between the two incoherent phases occurs in the
middle of the SLν phase (see Sec. IV A4), i.e., at

I−1 → I ∗
−1 : �−1 = �z + 2

d



α, (94)

I0 → I ∗
0 : �0 = �z + 2 d



α

1 − β
, (95)

I1 → I ∗
1 : �1 = �z + 2 d



α

1 − 2β
. (96)

Note that these last three results are independent of Coulomb
exchange corrections and so of screening corrections. (The
capacitive term comes from the Hartree self-energy and is not
screened.)
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From Eq. (95), we find a critical electric field Ec =
�0/ed ≈ 4.7B [T] mV/nm when κ = 1 for the tran-
sition I0 → I ∗

0 . This critical field depends linearly on
the magnetic field, in agreement with the experiments.12

Experimentally, however, the slope is12 11 mV nm−1 T−1 or10

12.7 mV nm−1 T−1 or14 12–18 mV nm−1 T−1 and thus larger
than the Hartree-Fock approximation (HFA) value. More-
over, experiments measure an offset of Ec ≈ 20 mV/nm at
B = 0 T.12 This offset can not be captured by our HFA,
which is only valid at sufficiently large magnetic field where
Landau level mixing can be neglected. Apart from the extra
β corrections, Eqs. (94)–(96) are identical to those given by
Gorbar et al.17

2. Layer-coherent phases Lν

The second type of phase Lν has layer coherence between
two states with the same spin and orbital indices and so L‖ 
= 0
but S‖,O‖ = 0. The tilt angle of the pseudospin vector L varies
with bias in this phase but Oz and Sz are constant. An example
is phase L−3, which is described by∣∣�L−3

〉 =
∏
X

(ac
†
5,X + bc

†
1,X)|0〉, (97)

where the coefficients a and b depend on the bias and are
related by |a|2 + |b|2 = 1. With increasing bias, a → 1 and
b → 0 continuously. The level populations and the coherence
in L−3 are given by

〈ρ5,5〉 = |a|2, 〈ρ1,1〉 = |b|2, (98)

〈ρ1,5〉 = 〈ρ5,1〉∗ = ab∗. (99)

Figure 6 shows how these variables depend on the transverse
electric field for the similar phase L−1. The populations of the
coherent levels vary linearly with the bias in all Lν phases with
the exception of L±2, where the variation is not exactly linear.
In L−1, for example,

〈ρ5,5〉 = 1

2

(
1 + �B

�
(1)
B

)
, (100)
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FIG. 6. (Color online) Variation of the populations and interlayer
coherence with the transverse electric field in phase L−1.

where the critical bias is, to order (d/
)2 ,

L−3(1) → I−3(1) : �
(1)
B = �

(9)
B ≈

√
π

8

(
d




)2

α, (101)

L−1(3) → I−1(3) : �(4) = �
(16)
B ≈ 7

4

√
π

8

(
d




)2

α. (102)

These critical biases all scale with the magnetic field
as B3/2.

In phases L±2, there is a layer coherence in orbitals n = 0
and 1. Phase L−2, for example, is described by the state∣∣�L−2

〉 =
∏
X

(αc
†
5,X + γ c

†
1,X)(α′c†7,X + γ ′c†3,X)|0〉. (103)

The critical bias �(2) = �(14) for the transitions L±2 → I±2

has a complicated analytical expression that we do not
reproduce here, but the numerical values of the critical electric
field for B = 10 T and κ = 5 are indicated in Fig. 5.

Phases with layer coherence occur in a small range of
bias and at very small bias because the interlayer separation
d/
 = 0.013

√
B is very small in bilayer graphene and so is

the capacitive energy. In semiconductor bilayers, d/
 can be
of order unity and interlayer coherence can survive to a much
higher bias.31

3. Orbital-coherent phases Oν

For �B > �
(12)
B = �

(17)
B , the ordering of the energy levels

n = 0,1 is reversed (this change is not shown in Fig. 5).
When this happens, the kinetic energy is minimized by
filling level n = 1 before n = 0. However, this increases the
Coulomb exchange energy because X

+,+
1,1,1,1(0) < X

+,+
0,0,0,0(0).

The C2DEG optimizes its energy by creating a coherent
superposition of n = 0 and 1 with the same valley and spin
indices. We use the notation Oν for such a phase. An example
is phase O3, which is described by∣∣�O3

〉 =
∏
X

(ac
†
2,X + bc

†
4,X)c†8,Xc

†
6,Xc

†
7,Xc

†
5,Xc

†
3,Xc

†
1,X|0〉.

(104)

In this state, L‖ = S‖ = 0 and Lz and Sz are constant. It is now
the tilt angle of the pseudospin vector O that varies with bias.
Orbital coherence begins when the bare energy of the state
|K−,±,0〉 is equal to that of state |K−,±,1〉 at ν = 1,3. This
occurs when

I ∗
1 → O1 : �

(12)
B = ζ1

β
, (105)

I3 → O3 : �
(17)
B = �

(12)
B , (106)

and the critical bias does not depend on the magnetic field,
Coulomb interaction, or on the value of the dielectric constant.
We find ζ1/β = 46 meV, i.e., E = 135 mV/nm which is in the
range of validity of the two-band model.

The orbital phase survives until a transition to an incoherent
phase occurs at the critical bias

O1 → I ∗∗
1 : �

(13)
B = 1

β

(
ζ1 + 1

4
�C

)
, (107)

O3 → I ∗
3 : �

(18)
B = �

(13)
B . (108)
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FIG. 7. (Color online) Variation of the populations interlayer
coherence with the transverse electric field in phase O3.

Since ζ1/β is the onset of the orbital phase, we see that the
range of existence of the orbital phase scales as 1/

√
B. Part of

this range is outside the limit of validity of our model.
Figure 7 shows how the populations and coherence vary

with the transverse electric field in phase O3. The same
behavior is found in phase O1. We remark that in previous
work where the spin degree of freedom is frozen,25 the orbital
coherent phase occurs at ν = −1 and 3.

The orbital phase exists in a large range of bias. As we
explained in Sec. III E, a finite orbital coherence implies a
finite density of electric dipoles in the plane of the layers. The
orientation of these dipoles can be controlled by an electric
field in the plane of the layers.20 One of us has studied in
detail the interesting properties of this state.25,26 For example,
the collective mode associated with the orbital coherence is
highly anisotropic. This mode softens at a finite wave vector
in the direction perpendicular to the dipoles when the bias is
increased. This suggests a transition to a charge-density-wave
state. In the Hartree-Fock approximation, it was found that this
transition is preempted by a transition to a crystal phase with
one electron per site and a skyrmionlike pseudospin texture
of the orbital pseudospin at each crystal site. As the bias is
increased, the crystal state is followed by a helical state where
the orbital pseudospin rotates along one spatial direction. In
both phases, the total electronic density is modulated spatially,
but the local filling factor is not. By further increasing the bias,
the crystal state and then the uniform states are recovered. The
critical electric fields for the transition to the uniform (UP),
skyrmion crystal (SKP), and helical phases (HP) are given
by26,32

134 < �B < 145 mV/nm UP
145 < �B < 189 mV/nm SKP
189 < �B < 450 mV/nm HP
450 < �B < 494 mV/nm SKP
494 < �B < 505 mV/nm UP

(109)

The phase diagram in O1 and O3 is symmetric with respect to
the center of the helical phase.

We remark that this sequence of phase transitions is similar
to that observed in a thin film of the helical magnet Fe0.5Co0.5Si
when a perpendicular magnetic field is increased.33 It has been
shown26 that the Hamiltonian of the C2DEG in the orbital
phase contains a Dzyaloshinskii-Moriya (DM) interaction34

that is responsible for the rotation of the pseudospins. Its
origin in bilayer graphene is purely Coulombic, while the DM
interaction comes from spin-orbit coupling in Fe0.5Co0.5Si.

We do not find any sign of instability in the collective
mode dispersions for the other phases in Fig. 5. However, we
remark that phases with lower energy than those considered in
this figure are possible. In order to establish the phase diagram
of the C2DEG, we choose a set of possible ground states and
compare their energies. This does not ensure, however, that
the true ground state is amongst the states that we have chosen
to compare! For the incoherent states, this is not a problem
because there is a finite number of states to compare. But, for
the nonuniform states, the number of possible ground states
is enormous.

4. Spin-layer-coherent phases SLν

The fourth type of phase has coherence between two states
with the same orbital index but different spin and layer indices.
We use for these phases the notation SLν. An example is phase
SL−1 where the ground state is∣∣�SL−1

〉 =
∏
X

(ac
†
6,X + bc

†
1,X)c†7,Xc

†
5,X|0〉. (110)

Because the coherence is now between two states with different
spin and layer indices, i.e., |K+,−,0〉 and |K−,+,0〉 in |�SL−1〉,
we can not describe the change with bias as the tilting of one
of the pseudospin L, S, or O. In fact, this state has L‖, S‖ =
O‖ = 0. Both Lz and Sz vary with bias, however. This phase
is characterized by the order parameter 〈ρ6,1〉.

The variation of 〈ρ6,6〉, 〈ρ1,1〉, and 〈ρ6,1〉 with bias in this
phase is similar to that shown in Fig. 7. The critical biases for
the beginning [�b(n)] and end [�e(n)] of the SL±1 phases
are given by

�b(n) =
d


α + �z + Xn

1 − 2βδn,1
, (111)

�e (n) = 3 d


α + �z − Xn

1 − 2βδn,1
, (112)

where Xn = X+,+
n,n,n,n(0) − X+,−

n,n,n,n(0). Thus,

�(5) ≈
[

2
d



−

√
π

8

(
d




)2 ]
α + �z, (113)

�(6) ≈
[

2
d



+

√
π

8

(
d




)2 ]
α + �z, (114)

�(10) ≈
(
2 d



− 7

√
π

128

(
d



)2)
α + �z

1 − 2β
, (115)

�(11) ≈
(
2 d



+ 7

√
π

128

(
d



)2)
α + �z

1 − 2β
. (116)

These critical biases scale linearly with the magnetic field.
The phase SLν is the ground state in a small range of bias of
the order (d/
)2 α which is approximately 0.1 meV for κ = 5.
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A sufficiently large bias is necessary for spin-down states
to cross the spin-up states and produces a SLν phase. The
SL0 is special because it involves coherence in both n = 0
and 1. As for L±2, the exact critical bias in this case has a
complicated analytical expression which we do not reproduce
here.

B. Spin polarization

We indicate for each phase in Fig. 5 the spin polarization Sz.
The polarization is constant in all phases with the exception of
the phases SLν where it varies continuously between the two
numbers indicated. The biggest change in Sz and Lz occurs
at filling factor ν = 0 where the C2DEG makes a transition
from a fully spin-polarized and layer-unpolarized gas (Sz =
2h̄, Lz = 0) at small bias to a spin-unpolarized and layer-
polarized gas (Sz = 0, Lz = 2) at large bias. For ν = ±1, the
SLν phase interpolates between Sz = 3h̄/2, Lz = 1

2 and Sz =
h̄/2, Lz = 3

2 . The only jumps in Sz occur at the transitions
I±2 → I ∗

±2 where the system goes from a spin-polarized to a
spin-unpolarized state.

C. Transport gaps

Another quantity that is accessible experimentally is the
transport gap �, which is defined by the difference in energy
between the first empty state and the last filled state of
the Hartree-Fock Hamiltonian. It was shown previously13

that the gap at zero bias follows the hierarchy �ν=0 >

�ν=±2 > �ν=±1,±3. This implies that the first plateau to
appear when the magnetic field is turned on has σxy = 0. At
larger field, the σxy = ±2 plateaux appear and at still larger
field, the σxy = ±1,±3 plateaux. This is indeed what is seen
experimentally.5,6,9

Figure 8 shows the Hartree-Fock gaps as a function of the
transverse electric field for the different phases of the C2DEG.
For this figure, we have taken B = 10 T and κ = 5. In some
phases, one or more level crossings occur that change the
behavior of the gap. This is clearly visible for I±2 in Fig. 8(a)
and for I−1 in Fig. 8(c).

With the exceptions of the phases where coherence occurs
in two levels (L±2,SL0), it is possible to obtain a simple
analytical expression for the gap. We list these expressions
below. When one or more level crossings occur, we use the
notation I (1)

ν ,I (2)
ν ,I (3)

ν , . . . to denote the different behaviors
of the gap and �

(j )−(j+1)
B for the values at which the level

crossings occur.
In the incoherent phases with ν = ±1,±3,

I−3,I1,I
∗(1)
−1 : � = β�B + ζ1 + 1

2�C, (117)

I ∗
3 ,I ∗∗

1 : � = β�B − ζ1 + 1
4�C, (118)

I−1,I
∗
1 ,I3 : � = −β�B + ζ1 + 1

2�C, (119)

I
∗(2)
−1 : �∗

−1 = �Z + 3
4�C, (120)

where, for ν = −1,

�
(1)−(2)
B = �z − ζ1 + 1

4�C

β
. (121)
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FIG. 8. (Color online) Variation of the transport gap with the
perpendicular electric field in the different phases of the C2DEG in
Landau level N = 0. The kink in the behavior of I±2 are due to level
crossings. A value of κ = 5 is assumed for the dielectric constant and
B = 10 T.
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For the incoherent phases with ν = −2,

I
(1)
−2 : � = (1 − β)�B − ζ1 − 2

d



α + 5

4
�C, (122)

I
(2)
−2 : � = −β�B − ζ1 + �Z − 2

d



α + 5

4
�C, (123)

I ∗
−2 : � = β�B + ζ1 − �Z + 1

2
�C, (124)

with

�
(1)−(2)
B = �Z + 2

d



α, (125)

while for ν = 2,

I
(1)
2 : � = (1 − β) �B − ζ1 − 2

d



α + 5

4
�C, (126)

I
(2)
2 : � = β�B + �Z − ζ1 + 5

4
�C, (127)

I
(3)
2 : � = �Z + 5

4
�C, (128)

I
(4)
2 : � = −β�B + �Z + ζ1 + 3

2
�C, (129)

with

�
(1)−(2)
B = 2 d



α + �z

1 − 2β
, (130)

�
(2)−(3)
B = ζ1

β
, (131)

�
(3)−(4)
B = ζ1 + 1

4�C

β
. (132)

For ν = 0, we find

I0 : � = − (1 − β) �B − ζ1 + �Z + 5

4
�C, (133)

I
∗(1)
0 : � = (1 − β) �B − ζ1 − �Z − 4

d



α + 5

4
�C, (134)

I
∗(2)
0 : � = (1 − 2β) �B − �Z − 4

d



α + 5

4
�C, (135)

with

�
(1)−(2)
B = ζ1

β
. (136)

The gap changes rapidly in the SL±1 phase while it is almost
independent of the bias in phase SL0. Its value in the middle
of the SL±1 phases is given approximately by

SL−1 : � ≈ ζ1 + �C

2

[
1 − 1

4

(
d




)2 ]
− 4β2

(
�−1

�C

)2
�C

2
,

(137)

SL1 : � ≈ ζ1 + �C

2

[
1 + 1

8

(
d




)2 ]
− 4β2

(
�1

�C

)2
�C

2
,

(138)

where �±1 are defined in Eqs. (94) and (96). The gaps are
twice as big in phases I0,I±2 than in phases I±1,I±3 and vary
more rapidly with bias in the former than in the latter. The

presence of the SLν phase smoothens the jump of the gap in
the transition from I±1 to I ∗

±1.

The gap is independent of the bias in the orbital phases O1

and O3:

O1,O3 : � = �C

2
. (139)

For the Lν phases, the gaps at zero bias are given
approximately by

L−3,L1 : � ≈ ζ1 + 1

2

[
1 − 1

4

(
d




)2]
�C, (140)

L−1,L3 : � ≈ ζ1 + 1

2

[
1 + 1

8

(
d




)2]
�C, (141)

L±2, : � ≈ −ζ1 − 2

(
d




)
α + 1

4

[
5 + 23

4

(
d




)2]
�C. (142)

The correction (d/
)2 is very small and the gaps at zero bias
for L±1 and L±3 are almost equal. (The difference comes from
the fact that the coherence is not in the same orbital in L−3,L1

and L−1,L3.) These gaps are not shown in Fig. 5 because
the corresponding phases occur at very small biases. The gap
increases (decreases) with bias in phases L−3,L1 (L−1,L3). It
is almost constant in L±2. The main contribution to all gaps is
the Coulomb exchange interaction.

With ζ1 = 0, our gaps for phases I2,I0,I
∗
0 agree with those

of Gorbar et al.17 if screening is neglected in their calculation.
For I1, I ∗

1 , and I3, however, our exchange correction is �C/2
which is consistent with Ref. 13, while Gorbar et al. have
3�C/8.

At �B = 0, we find for I0 the gap � = 62 meV for B = 2 T
and κ = 2 while, with static screening, Gorbar et al. find
≈5 meV. Similarly, for phase I1, the HFA gives � = 26 meV,
while the result with static screening is ≈2.5 meV. Static
screening leads to a reduction of the gap by a factor of at
least 10. Dynamical screening and Landau mixing corrections,
however, increase the gaps calculated with static screening by
a factor of 2 to 3.18 As for the behavior of the gap with bias.
Fig. 5 of Gorbar et al.17 shows that, with screening, the gap of
the phase I3 increases with the electric field even when the cor-
rection β�B is neglected. The slope is approximately 0.1 nm C
for B = 2 T and κ = 2. The (unscreened) HFA predicts a slope
of βd = 0.006 nm C. When both screening and β�B are
considered, the gaps for I±1,I±3,I

∗
±1 will probably increase

with bias [contrary to the behavior illustrated in our Fig. 8(b)]
but the rapid change of the gap in the SL±1 will still be
present.

The energy gaps obtained from local compressibility
measurements on suspended bilayer graphene by Martin et al.6

are of size �ν=0 ≈ 1.7B [T] meV, �ν=±2 ≈ 1.2B [T] meV,
and �ν=±1 ≈ 0.1B [T] meV (with less data points in this
case). A more recent transport experiment by Velasco et al.10

on suspended bilayer graphene with a higher mobility reports
a larger gap �ν=0 ≈ 5.5B [T] meV. The measured gaps
scale linearly with the magnetic field contrary to the HFA
prediction. In fact, Gorbar et al.17 have shown that a linear
scaling is obtained if static screening is considered. (One set
of experiments at higher magnetic field reported gaps that
scaled as

√
B, however.9)

115415-13
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Experiments12 show that σxy ceases to be quantized at
ν = 0,1 in the region corresponding to the SLν phase and
at ν = 2 and 3 in the region around zero bias. A possible
explanation is that the conductance quantization is broken
by disorder in the regions corresponding to a minimum of
the gap.17 However, that argument does not seem to work at
ν = 1 where the screened HFA gap increases continuously
with the bias and is also not compatible with our unscreened
result.

In closing this section, we would like to mention that,
in quantum Hall ferromagnets, topological excitations in the
form of skyrmions35 are possible, i.e., charged excitation
with a spin and/or layer and/or orbital pseudospin texture.
In monolayer graphene, for example, it has been shown that
a spin skyrmion-antiskyrmion pair has lower energy than a
Hartree-Fock electron-hole pair for Landau level |N | � 3 and
thus determines the transport gap of the system.36,37 A similar
situation can also occur in bilayer graphene. For instance,
charge 2e skyrmions38 have been predicted at even filling
factors ν = ±2 and different types of skyrmions crystals have
also been studied.39 The study of the various possible skyrmion
excitations in bilayer graphene and the corresponding transport
gap is, however, beyond the scope of this work and will be
reported in a separate publication.

D. Collective modes and optical absorption

Each phase of the C2DEG is characterized by a set of col-
lective excitations. The number of dispersive modes when m

levels are filled is m (8 − m). We have calculated the dispersion
relation of these modes using the GRPA described in Sec. III.
In the limit q → ∞, the vertex corrections vanish and the
response function χ → χ0 where χ0 is the response function
evaluated in the HFA. Thus, in this limit, the collective mode
frequencies must correspond to transitions between a filled and
an empty eigenstate of the Hartree-Fock Hamiltonian. At finite
value of q, some modes mix together and it becomes difficult
to identify their character (layer, orbital, spin transitions, etc.).
Our numerical results are summarized in Fig. 9 for the coherent
phases and in Fig. 10 for the incoherent phases.

1. Goldstone modes

The coherent phases sustain one gapless (Goldstone) mode.
The number of Goldstone modes is indicated for each phase
in Fig. 5. For example, in phase L−3, this mode is due to the
fact that the layer pseudospin L can rotate freely around the
ẑ axis. The same situation occurs for the coherent phase Oν

where again the orbital pseudospin O can rotate freely around
the ẑ axis. Phases L±2 support coherence in both n = 0 and 1
orbitals and we can define a layer pseudospin L0 for n = 0 and
L1 for n = 1. The Goldstone mode in this case corresponds
to an in-phase rotation of both pseudospins. Alternatively, we
can see this mode as a fluctuation of the relative phase of the
two order parameters 〈ρ1,5〉 and 〈ρ3,7〉 in L−2 or 〈ρ2,6〉 and
〈ρ4,8〉 in L2.

The dispersion off all gapless modes (with the exception
of the gapless mode in the orbital phase) is linear in wave
vector at very small wave vector, i.e., for q
 � d/
. Phases
L±2 have the same collective mode spectrum. The dispersion
of the Goldstone mode in phases where the coherence occurs

in the orbital n = 1 (i.e., L−1,L3,SL1) has a roton minimum
while there is none if the coherence occurs in n = 0 (i.e.,
L−3,L1,SL−1). This is due to the particular form factor for
n = 1 involved in the Coulomb matrix elements [see Eqs. (44)–
(47)]. Phases L−2,L2,SL0 contain coherence in both n = 0
and 1 and a small shoulder appears in the dispersion.

For phase Lν, the Goldstone mode is the famous layer-
pseudospin-wave mode which has been extensively studied
in semiconductor bilayer40 at filling factor ν = 1 and de-
tected experimentally.41 In semiconductor bilayer, this mode
becomes soft at a finite wave vector as the separation between
the layers is increased (around d/
 ≈ 1). In bilayer graphene
d/
 � 1 and the layer-coherent phases are stable. The only
instability in the collective modes is seen in the orbital phases
O1 and O3.

For ζ1 = 0, the Goldstone mode of L−3 (and L1) has a
quadratic dispersion at zero bias and becomes unstable24

at finite bias. (We have checked that these conclusions
remain valid if ζ1 is finite but small.) A consequence of this
instability is that the C2DEG is expected to go from a smectic
(nonhomogeneous) phase at low temperature to an isotropic
phase at higher temperature. The smectic phase would lead to
anisotropic electrical transport.

The dispersion of the gapless orbital pseudospin-wave
mode was studied in detail for the uniform phase25 as well
as for the crystal and helical phases.26 In the uniform phase, it
has a strongly anisotropic dispersion: linear in the direction of
the orbital pseudospins and quadratic in the other directions,
i.e.,

ω(q) =
√

2(β�B − ζ1)q
| sin(θq)|, (143)

ω (q) = 1

4

√√
2π (β�B − ζ1)q
, (θq = 0,π ), (144)

where θq is the angle between the wave vector and the x axis.
The Goldstone mode softens at a finite wave vector q
 ≈ 2
in the direction perpendicular to the orbital pseudospins at
a bias �B = 58.8 meV (E = 173 mV/nm). This suggests a
transition to a charge-density-wave state. As we explained
above, this transition is preempted by a transition to a crystal
phase at �B = 47.7 meV.

2. Spin-wave modes

The number of spin-wave modes gapped at �Z is indicated
for each phase in Fig. 5. All coherent phases with the exception
of O1,O3 have two modes gapped at the Zeeman energy �Z at
q = 0. Their degeneracy is lifted at finite wave vector. Because
of the occupation of the levels in O1 and O3, only one intralayer
spin-flip transition is possible in theses phases.

The incoherent phases can have 0, 1, or 2 modes gapped at
�Z. To be gapped at �Z, these modes must involve transitions
within the same valley and orbitals. From Fig. 5, it is easy to see
that no intralayer and intraorbital spin-flip transition is possible
for I ∗

0 and I ∗
±2 and that the occupation of the levels permits

only one such mode in I±3,I
∗
±1. In I±2, two transitions seem

possible but they are degenerate and the coupling between
them leaves one mode gapped at �Z and the second mode has
its frequency renormalized. The same mechanism operates in
phases I±1,I0 resulting in two modes gapped at �Z.
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FIG. 9. (Color online) Dispersion of the collective modes in the coherent phases. The (blue) arrows point to the modes which are active in
optical absorption experiments. All modes are evaluated at B = 10 T with κ = 5. The bias in units of e2/κ
 = 35.6 meV (corresponding to a
frequency ν = e2/hκ
 = 8.6 × 1012 Hz) is, respectively, �B = 0.0005 for L−3,L1; �B = 0.001 for L3,L−1; �B = 0.002 for L−2; �B = 1.26
for O3; �B = 1.115 for SL−1; �B = 0.14 for SL1; and �B = 0.126 for SL0. In SL0, the middle line in each group of three dispersive curves
contains two modes which are very close in energy.

3. Optical absorption

In the absence of Coulomb interaction, the dynamical
conductivity has intraoctet peaks at the bare gap energy �0

ξ =
E0

ξ,1 − E0
ξ,0 = ζ1 + ξβ�B in addition to the inter-Landau-

level peaks which do not appear in our calculation. Figure 11

shows the absorption in different phases when Coulomb
interaction is considered. The number of absorption peaks is
also indicated for each phase in Fig. 5 and, in Figs. 9 and 10,
we identify by (blue) arrows the modes that lead to optical
absorption.
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FIG. 10. (Color online) Dispersion of the collective modes in the incoherent phases for B = 10 T and κ = 5. The bias is in units of
e2/κ
 = 35.6 meV corresponding to a frequency ν = e2/hκ
 = 8.6 × 1012 Hz. The (blue) arrows point to the modes which are active in
optical absorption experiments. The bias in units of e2/κ
 is, respectively, �B = 0.01 for I0, I±1, I±2, I±3 and �B = 1.0 for I ∗

0 , I ∗
±1. For I±3,

I±2, I±1, only the first four, three, and six modes, respectively, are shown. For I0, each of the four branches contains four modes which are
close in energy. In I ∗

0 the middle line in each group of three curves contains two modes.

In the incoherent phases, optical absorption is possible only
for transitions that occur between states with the same valley
and spin indices but different orbital indices. The incoherent
phases have one or zero absorption peak. The latter case occurs
when both levels n = 0,1 with the same layer and spin indices
are filled (phases I±2,I0,I

∗
0 ).

When level n = 0 is filled, the absorption, as shown in
Sec. III G, is exactly at ω = (ζ1 + ξβ�B) /h̄. When level n = 1
is filled, the absorption is at ω = (ζ1 − β�B + �C/4) /h̄, i.e.,
affected by exchange corrections. The former case applies to
most of the incoherent phases in our phase diagram. The latter
case applies to phases I ∗∗

1 , I ∗
2 , and I ∗

3 which occur at very
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FIG. 11. (Color online) Electromagnetic absorption for B =
10 T and κ = 5 in phases (a) L−3 (�B = 0.018 meV), I3 (�B =
0.36 meV), and L−2 (�B = 0.07 meV); (b) SL0 (�B = 4.48 meV)
and SL−1 (�B = 4.09 meV).

high bias and are outside the limits of validity of our two-band
model. In those phases, level n = 1 is filled because it is below
n = 0 in energy. In phases I ∗

±2, the two allowed transitions
have the same energy and the intensity of the absorption peak
is doubled.

Figure 11(a) shows the absorption as a function of
frequency in phase I−3 at finite bias. The absorption is
concentrated in one strong peak at the frequency

ν = (ζ1 + ξβ�B ) /h

=
(

9. 8 + 7.6ξ�B

[
in

e2

κ


])
× 1011 Hz (145)

at B = 10 T and κ = 5. The absorption frequency varies
widely with bias . For example, at the onset of the transition
from I ∗

1 to O1, the frequency ν → 0 [see Eq. (105)], while
ν ≈ 9.8 × 1011 Hz at the onset of the I1 phase. By contrast, if
the absorption occurs in layer K+, the minimum frequency
is ν = 9.8 × 1011 Hz since the absorption frequency must
increase with bias in this case. In the O1,O3 phases, the
Goldstone mode has orbital character (i.e., electric dipole
fluctuations) but does not lead to absorption at finite frequency.

Interestingly, the coherent phases Lν and SLν show two
absorption peaks (see Fig. 11). The second peak in L±1,L±3

is extremely weak, however, and is absent at zero bias. The
two weak peaks in L±2 are also extremely weak and disappear
at zero bias. In L−3,L1, the first absorption peak at zero bias
is exactly at h̄ω = ζ1 while for L−1,L3, the frequency is at
h̄ω = ζ1 + (X+,+

0,0,0,0 − X
+,−
0,0,0,0 − X

+,+
1,1,1,1 + X

+,−
1,1,1,1)/2, which

is slightly shifted from h̄ω = ζ1.

The layer eigenstates of the Hartree-Fock Hamilto-
nian at zero bias are the symmetric (S) and antisymmet-
ric (AS) combinations of K+ and K−. Using Eqs. (90)
and (62), we can show from the GRPA equations that
the response functions that enter in Eq. (81) for the
absorption in the absence of orbital coherence and at
zero bias are of the form χ

(aξ ,σ1),(aξ ,σ1),(aξ ,σ1),(aξ ,σ1)
0,1,1,0 (ω) or

χ
(aξ ,σ1),(aξ ,σ1),(aξ ,σ1),(aξ ,σ1)
1,0,0,1 (ω) where aξ now stands for the S

or AS layer combinations. That is, the layer combination is
conserved in the absorption at zero bias and in the absence
of orbital coherence. It follows that, in phase L−3, the state
|S,+,0〉 is filled and only the transition |S,+,0〉 → |S,+,1〉 is
optically active. For L−2, no transition conserving the valley
index (S or AS) is possible and for L−1 the only allowed
transition is between |AS,+,0〉 → |AS,+,1〉 since levels
|S,+,0〉,|S,+,1〉,|AS,+,0〉 are filled. The same argument
applies to the spin-down states.

At finite but small bias, the S and AS layer combinations
are replaced by bonding and antibonding combinations,
i.e., |B,+,0〉 = a|K−,+,0〉 + b|K+,+,0〉 and |AB,+,0〉 =
−b|K−,+,0〉 + a|K+,+,0〉, for example, where a and b

depend on the bias and on the orbital index n. The strong peak
in the absorption corresponds to the transition |B,+,0〉 →
|B,+,1〉 for L−3 and to |AB,+,0〉 → |AB,+,1〉 for L−1.

By contrast to the zero-bias case, the absorption given by
Eq. (79) contains response functions which are not just of
the form χ

(aξ ,σ1),(aξ ,σ1),(aξ ,σ1),(aξ ,σ1)
0,1,1,0 (ω) with aξ = B,AB so that

transitions that do not conserve the layer combination B,AB

are weakly optically active.42 A second peak appears in
the absorption spectrum which corresponds to the transition
|B,+,0〉 → |AB,+,1〉 for L−3 and L−1. The two weak peaks
in L−2 come from the transitions |B,+,0〉 → |AB,+,1〉 and
|B,+,1〉 → |AB,+,0〉.

Figure 11(b) shows the absorption in phases SL0 and
SL−1. In SL−1, we find by analyzing the eigenvectors
of the modes involved in the optical absorption that the
strong peak corresponds to the transition |B,η,0〉 → |B,η,1〉
and the weak peak to the transition |B,η,0〉 → |AB,η,1〉
where |B,η,0〉 = a|K−,+,0〉 + b|K+,−,0〉 and |AB,η,0〉 =
−b|K−,+,0〉 + a|K+,−,0〉 and a,b depend on the bias and on
the orbital index n. The layer combinations here are between
two states with opposite spin orientations.

The electromagnetic absorption in the crystal and helical
phases is much more complex and was discussed previously.26

In the helical phase, for example, the absorption depends on
the orientation of the polarization of the electromagnetic wave
in the x-y plane.

The collective mode dispersions computed here for the
intra-Landau-level (N = 0) transitions should be combined
with the dispersion of the inter-Landau-level magnetoexcitons
computed by Sari and Töke23 and by Shizuya43 to get a
complete picture of the absorption for the C2DEG in bilayer
graphene.
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V. EFFECT OF AN IN-PLANE ELECTRIC FIELD

In this section, we consider the effect of adding a uniform
in-plane electric field to the Hartree-Fock Hamiltonian of
Eq. (41). The coupling between the C2DEG and this external
electric field is given by

HE = −d · E‖, (146)

where d is the total dipole moment of the electron gas given
by Eq. (70).

The main effect of E‖ is to induce orbital coherence. We
consider here the case of ν = −1, but a similar effect occurs
at other filling factors and will be discussed elsewhere.44 We
set E‖ = −E0̂x. In the ground state, the electric dipoles are
aligned with E‖.

With finite E‖, the SL−1 state is replaced by a state
with spin, orbital, and layer coherences, i.e., SOL−1. This
is represented by the inset in the top-left corner of Fig. 12. The
wave function of the ground state becomes∣∣�SOL−1

〉 →
∏
X

(ac
†
6,X + bc

†
1,X + cc

†
3,X + dc

†
8,X)c†7,Xc

†
5,X|0〉

(147)

with

|a|2 + |b|2 + |c|2 + |d|2 = 1. (148)

We show in Fig. 12 how the different polarizations Lz, Pz, Oz,
and Ox change with bias in SL−1 when E‖ is increased.
The other polarizations are zero. The spin (layer) polariza-
tion Sz (Lz) increases (decreases) with with E‖ until Ec

‖ �
0.2 mV/nm where it remains constant. The orbital coherence
has not yet saturated at Ec

‖ . The ground state above this critical
electric field is represented in the inset at the top-right corner
of Fig. 12. It is interesting that the spin polarization can be
varied in this phase by an external electric field.
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FIG. 12. (Color online) Variation of the spin and layer polariza-
tion and of the orbital coherence with an applied in-plane electric
field in phase SOL−1. The bias �B has been taken near the middle
of the SL−1 phase where 〈Sz〉 = 〈Pz〉 ≈ 1. Parameters are B = 10 T
and κ = 5.
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FIG. 13. (Color online) Electromagnetic absorption in the
SOL−1 phase for two different polarizations of the electromagnetic
field.

The state |�SOL−1〉 has one gapless Goldstone mode and
its dispersion is anisotropic in wave-vector space (as is the
dispersion of the other modes). By contrast, if we apply E‖ to
a phase Oν , the U(1) symmetry of the dipoles in the x-y plane
is broken. The orbital pseudospin O is then forced to align
with E‖ and the Goldstone mode is gapped.20

The absorption in |�SOL−1〉 shows two peaks as in |�SL−1〉.
The first, low-energy, peak is shown in Fig. 13 for two different
orientations of the electromagnetic wave polarization. Clearly,
the absorption is anisotropic in phase SOL−1 by contrast to
all the other uniform states that we studied before.

VI. CONCLUSION

In this work, we have derived the phase diagram of the
C2DEG in a Bernal-stacked graphene bilayer. For the nonin-
teracting Hamiltonian, we used a tight-binding model with the
hopping terms γ0, γ1, γ4, and δ and introduced a potential bias
between the two layers given by �B. The Coulomb interaction
was treated in the Hartree-Fock approximation. To reduce the
complexity of the problem, we used an effective two-band
model which described the low-energy behavior of the C2DEG
and is valid for �B � γ1. We also restricted the Hilbert
space to the N = 0 Landau level only and worked at zero
temperature. Our method allows us to include both coherent
and incoherent phases in the phase diagram. Indeed, we found
phases with layer coherence at small bias, spin and layer
coherence at intermediate bias, and orbital coherence at large
bias. The application of a parallel electric field, as we showed,
can also lead to a state with orbital, layer, and spin coherence.

We have included in our analysis the hopping parameter
γ4, which is often neglected in theoretical calculations. In our
calculations, we find that the phase diagram is sensitive to the
precise value of this parameter. If the value of this parameter is
modified, the phases that we have discussed are still present in
the phase diagram but they occur at different bias. Moreover,
other phases may appear. For example, with γ4 = 0, the
orbital-coherent phase becomes possible at ν = −1 and a new
phase with valley and orbital coherence appears as discussed
in Ref. 25.
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We have written the ground-state wave function for each
phase in the global phase diagram of the C2DEG. We have
also calculated for each phase the transport gap, the spin
polarization, the collective mode dispersions, and the electro-
magnetic absorption spectrum. The change in these properties
from one phase to another should facilitate their experimental
identification. Strictly speaking, however, our results are only
valid within the limits of validity of the approximations listed
above. In particular, we have neglected screening corrections
which are known to reduce significantly the transport gaps.
These corrections were considered for the incoherent phases
in Ref. 17. In principle, these screening corrections should be
smaller at larger magnetic field. The stability of the different
phases that we found should also be studied by considering
quantum and thermal fluctuations as well as disorder effects.

More subtle corrections specific to graphene have also been
considered by Shizuya.20–22 The quantum fluctuations of the
Dirac sea (the filled Landau levels from the valence band)

have been shown to be sizable and to lead to corrections
of the energy of the octet of states in N = 0.19 According
to Shizuya, the orbital degeneracy of the zero-energy levels
is lifted by Coulombic vacuum fluctuations, leading to an
appreciable shift and splitting of the n = 0 and 1 levels and to a
negative capacitance effect that blocks the rotation of the valley
pseudospins. The negative capacitance effect appears when the
full four bands of the tight-binding model are considered.

A more complete calculation would include all these effects
and allow a more direct comparison with the experimental
results.
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R. Côté was supported by a grant from the Natural Sciences
and Engineering Research Council of Canada (NSERC).
Computer time was provided by Calcul Québec and Compute
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