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Universal plasmonic properties of two-dimensional nanoparticles possessing sharp corners
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We investigate theoretically the impact of variable smoothing of corners of single metallic, two-dimensional
nanoparticles (faceted nanowires) on the characteristics of their plasmonic resonances—the resonant frequencies,
eigenfunctions, polarizability, and near fields—using the method of surface integral equations. This impact is
very strong: Increasing sharpness of the corners leads to a strong separation of the plasmonic eigenfrequencies,
a progressing localization of the surface charge at the corners, and a strong near-field enhancement of the light
intensity. Dependences of the above characteristics on the apex angle and the corner curvature show striking
universal features. The limit of nonsmoothed corners is found to be practically meaningless.
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I. INTRODUCTION

Plasmon excitations of subwavelength (nanosize) metal-
lic particles, including two-dimensional (2D) particles
(nanowires), is nowadays a vast and rapidly developing
research area. Potential applications of nanoplasmons span
from nanolasers1–3 (spasers) to biosensors and sensors of
single atoms and molecules.4,5 From a fundamental point
of view, it is interesting and important to recognize the
capabilities of tailoring the plasmonic resonances and the
extents of concentration of light energy within the nanoscale.

Strong enhancement of the light fields near sharp fea-
tures of the metal-dielectric interfaces—corners and tips—
is well known in electrodynamics as the so-called corner
singularities.6–8 These singularities are important in the theory
of composites, when the inclusions possess sharp surface
features.9–11 In the case of metal, whose optical dielectric
permittivity εM = ε′

M + iε′′
M has a negative real part ε′

M, the
singular behavior acquires special features: Depending on the
apex angle of a single 2D corner, there are two negative critical
values of εM leading to diverging light energy.7,8 These critical
values are, e.g., −1/3 and −3 for a 90◦ single corner. They
manifest themselves also in the properties of the so-called
wedge plasmons propagating along sharp corners.12,13

In theory, the presence of sharp surface features is often
regarded as something nonphysical and leading to diver-
gence of numerical procedures for finite-size metal-dielectric
structures—rounding of sharp corners is a standard element
of numerical methods.14 Moreover, the mathematical basis
of the plasmonic theory, including the well-known potential
theory, is restricted to sufficiently smooth (Lyapunov) surfaces,
i.e., surfaces possessing no cusps.15–17 Only recently, a
serious mathematical attempt has been made to overcome this
restriction.18

From the experimental point of view, the presence of sharp
corners and tips in metallic 2D and 3D nanoparticles is a feature
which is far from exotic. Modern chemical methods for the
production of such particles give often nearly atomically sharp
edges in the crystallographic directions.19–21 In particular, the
synthesis of metallic nanostars has recently allowed a strong
enhancement of the near fields at the plasmonic resonances.22

Experimental methods capable of resolving, spectrally and

spatially, plasmonic excitations of faceted nanoparticles are
emerging nowadays.23

Analytical solutions to Maxwell’s equations relevant to
the plasmonic eigenmodes of metallic 2D and 3D single
nanoparticles are available only in the simplest cases—circular
and elliptic cylinders, spheres, and ellipsoids; see, e.g., Refs. 24
and 25, and references therein. They give strongly degenerated
plasmonic resonances. In particular, all plasmonic excitations
of a circular cylinder correspond to a single eigenfrequency
given by ε′

M(ω) = −1.
Using different direct numerical methods, serious efforts

have been undertaken to ascertain the phenomenology of the
optical response of 2D and 3D metallic nanoparticles of more
complicated shapes.26–31 In particular, truncated cubes and
polyhedrons, snipped triangular prisms, and wires with non-
regular cross sections were considered. The general outcome
is that the deviations from the most symmetric shapes result
in enriching plasmon spectrum and in the appearance of new
red-shifted resonances. The expected near-field enhancement
of the light intensity near the corners was also demonstrated.
For 2D nanoparticles, the strongest shape effects were found
for a triangular cross section.

An important step in the theory of plasmonic resonances
of nanoparticles possessing Lyapunov boundaries was made
in Refs. 32 and 33. Using the quasistatic approximation25 and
the theory of potential,17 it was shown that the plasmonic
eigenfrequencies and eigenfunctions can be found by solving
a basic integral equation for surface-charge density at the
boundary of the nanoparticle. The knowledge of these basic
ingredients allows one to next determine such important
characteristics as the width of the plasmonic resonance,
polarizability of the particle, and near fields using a simple
perturbation routine.15,33 Size corrections to the quasistatic
characteristics are also available.15,34

The approach of Refs. 32 and 33 possesses highly attrac-
tive features as applied to the case of nanoparticles whose
characteristic size r0 is small compared to the wavelength λ:
In the leading approximation in r0/λ, the resonant plasmonic
frequencies are size invariant—they are determined by the
shape of the particle, while the plasmonic eigenfunctions are
scaling invariant.35 The determination of the resonant values
of the permittivity, denoted as ε, is free of model assumptions
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about the frequency dispersion of this quantity. In short, the
plasmonic excitations of metallic nanoparticles can be viewed
as a geometric issue. The reduction of the dimension of
the problem to be solved is also important. It increases the
capability and accuracy of numerical methods and allows one
to consider very sharp tips and corners of metallic particles.

Below we analyze the impact of a variable smoothing
of corners of 2D nanoparticles, possessing different shapes
and apex angles, on the plasmonic spectrum, the modal
charge distributions, the polarizability, and the near-field
enhancement. Our considerations show that for large values of
the normalized corner curvature κc, i.e., the ratio of the size r0

to the corner curvature radius ρc, plasmonic properties acquire
a universal behavior: The lowest resonant values of ε (dipolar
and multipolar) are controlled by κs and by the apex angle θa ,
while the global shape is of minor importance. Moreover, the
lowest values of ε tend to 1 − 2πθ−1

a with increasing κc and
become well separated from the higher values.

The universality of the plasmonic behavior manifests itself
also in a progressive localization of the modal charge at the
corners of nanoparticles with increasing κc. We analyze this
phenomenon in detail proceeding from the case of circular
symmetry to the cases of weak fourfold rotational symmetry
and further on to the cases of arbitrary-sharp smoothing of 90◦
corners of a square. Altogether, strong lowering of the resonant
values of ε and localization of the corresponding eigenfunc-
tions enable one to excite the corresponding dipolar branches
selectively, leading to a dramatic near-field enhancement of
the incident light.

II. BASIC RELATIONS

The optical properties of subwavelength particles, including
the plasmonic properties of metallic nanoparticles, can be well
described on the basis of the quasistatic approximation.25 In
the leading approximation, the amplitude of the electric light
field at the frequency ω can be expressed as E = −∇φ, and
the potential φ obeys the Laplace equation inside and outside
the particle and satisfies the conventional boundary conditions
incorporating the optical permittivity of the particle εM =
εM(ω). Two steps have to be taken as applied to plasmonic
resonances of nanoparticles:

(i) First, it is necessary to solve an eigenmode problem to
determine the real resonant values of the optical permittivity ε

and the corresponding plasmonic eigenfunctions, ignoring the
light absorption. The most elegant and efficient formulation of
the eigenmode problem occurs in the terms of the eigenmode
surface-charge density σ at the border of the metallic particle.

(ii) Second, one can describe the optical properties of
the nanoparticle subjected to an external light field in the
eigenmode problem terms.

As applied to the 2D case, the plasmonic eigenmode
problem is reduced to the solution of a real 2D integral equation
for the surface-charge density σ (r),32,33

∫
L

K(r,r′) σ (r′) dl′ = �σ (r), r,r′ ∈ L, (1)

where the closed line L is the boundary of the particle, dl is the
length element along L, � = (ε + 1)/(ε − 1) is the eigenvalue

to be found, and the kernel is given by

K(r,r′) = n · (r − r′)
π (r − r′)2

, (2)

with n = n(r) being the unit vector of the external normal. It
is assumed that the line L is smooth—having no cusps. In this
case, a 0/0 uncertainty in K(r,r′) for r → r′ can be resolved.

Generally, Eq. (1) gives an infinite discrete sequence of
the plasmonic eigenmodes. When necessary, we will use the
notation εj , �j , σj (r), . . . , with the subscript j enumerating
these modes. This subscript should not necessarily be an
integer.

Equations (1) and (2) possess a number of simple and
general properties:32,33

(a) If the r, r′ belong to a plane section of L, then K(r,r′) =
0.

(b) The kernel is not symmetric, K(r,r′) �= K(r′,r), i.e., the
eigenmode problem is not Hermitian.

(c) All eigenvalues ε are real and negative.
(d) The total surface charge is zero,

∫
L

σ (r) dl = 0.
(e) For any L, there is an eigenvalue � = 0, i.e., ε = −1.
(f) If L is a circle of a radius r0, then K(r,r′) = 1/2πr0 and

ε = −1, i.e., total degeneracy of the eigenvalues occurs.
(g) If r0 is a size parameter, then the eigenvalues are r0

independent, while the eigenfunctions σ depend on r/r0, i.e.,
they are scale invariant.

The following important general properties are less
evident:33

(a) If ε is an eigenvalue, then the inverse 1/ε is an eigenvalue
as well. This is the property of twin symmetry inherent in the
2D case.

(b) Since the eigenmode problem is not Hermitian, different
eigenfunctions are not orthogonal,

∫
L

σj1 (r) σj2 (r) dl �= 0 for
j1 �= j2.

(c) For this reason, it is necessary to employ not only the
eigenfunctions σ (r), but also the eigenfunctions τ (r) of the
adjoint problem∫

L

K(r′,r) τ (r′) dl′ = �τ (r), (3)

corresponding to the transposed kernel and the same eigen-
value �.

(d) The adjoint eigenfunctions allow us to employ the
orthogonality relations 〈σj1 (r) τj2 (r)〉 = 0, where j1 �= j2 and
〈·〉 means the integration along L.

Despite the simplifying general properties, the eigenmode
problem is far from trivial. Further simplifications are possible
with the use of properties of spatial symmetry.36 In particular,
depending on the spatial symmetry of the nanoparticle, an
eigenmode j can possess zero or nonzero modal dipole
moment dj = 〈rσj (r)〉. The dipolar eigenmodes are of our
prime interest.

As soon as the eigenmode problem is solved, the calculation
of the optical characteristics of the nanoparticle can be done
straightforwardly. Let the total electric light field be E =
E0 + Ê(r), where E0 is the amplitude of a locally uniform
external light field which is present without the particle and
Ê(r) is the nonuniform particle-caused part to be found. Just
this nonuniform part will be represented by the light-induced
surface-charge density σ̂ . Here and later on, we use the hat
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symbol in order to distinguish the light-induced charge density
from the density σj (or σ ) related to the eigenmodes.

Generally, the density σ̂ (r) is given by the modal expansion

σ̂ (r) =
∑

j

cj σj (r). (4)

The calculation of the constants cj consists of three steps:33

(i) First, we employ the known relation of the potential
theory for the normal component of the total field En on the
external ( + ) and the internal (−) sides of the line L:

E±
n = E0 · n ± 2πσ̂ (r) +

∫
L

2σ̂ (r′)
n · (r − r′)
|r − r′|2 dr′. (5)

Each of the three contributions is intuitively clear.
(ii) Second, we use the boundary condition E+

n = εME−
n .

Combining it with Eq. (5), we get

(E0 · n)/2π = �̃ σ̂ (r) −
∫

L

K(r,r′) σ̂ (r′) dr′, (6)

with �̃ = (εM + 1)/(εM − 1).
(iii) Third, using Eq. (4) and the orthogonality relations

between the eigenfunctions τj1 (r) and σj2 (r), we obtain

cj = (εM − 1)(εj − 1)

εj − εM

〈τj (E0 · n)〉
4π 〈τjσj 〉 . (7)

The complex-valued factor εj − εM(ω) in the denominator
reaches the minimum absolute values |ε′′

M(ωj )| at the points
of plasmonic resonances, such that ε′

M(ωj ) = εj . If needed,
the radiation losses can be taken into account in Eq. (7) in
addition to the joule losses caused be the imaginary part of the
permittivity ε′′

M.
If εM(ω) 
 εj , then we can keep only one resonant term

in the expansion (4) and obtain, for the light-induced surface-
charge density,

σ̂j (r) 
 (εj − 1)2

(εj − εM)
× 〈τj (E0 · n)〉

4π 〈τjσj 〉 σj (r). (8)

The first factor is resonant in ω and the second one expresses
the spatial properties of the eigenfunctions. Importantly, the
found relation does not depend on the normalization of the
eigenfunctions σj (r) and τj (r).

With the light-induced surface density σ̂ (r) known, we can
calculate the dipole moment of the particle, d = 〈r σ̂ (r)〉, its
polarizability, irradiated power, etc.

III. PARAMETRIZATION OF THE SHAPE

In the 2D case, the polar coordinate system, r = (x,y) =
(r cos ϕ, r sin ϕ) with r = r(ϕ) and the origin inside L,
provides a natural choice of a single-variable coordinate along
L, namely, the polar angle ϕ. Any 2π -periodic function r(ϕ)
specifies L. Three geometric characteristics of this boundary
line are of interest to us:

(i) First, this is the derivative lϕ = dl/dϕ. It is given by lϕ =
(r2 + r2

ϕ)1/2, where rϕ = dr/dϕ. From now on, the subscript
ϕ indicates the polar angle derivative.

(ii) Second, this is the unit vector of the external normal
n = (rϕ sin ϕ + r cos ϕ,−rϕ cos ϕ + r sin ϕ)/lϕ .

(iii) Third, this is the local curvature radius ρ = l3
ϕ/(r2 +

2r2
ϕ − rrϕϕ).

In the polar coordinates, it is practical to transfer from
the linear charge density σ (r) to the angular density σ (ϕ) =
σ [r(ϕ)]) dl/dϕ, such that the surface-charge differential is
σ (ϕ)dϕ. Using the above relations, we rewrite Eq. (1) in the
form ∫ 2π

0
K(ϕ,ϕ′) σ (ϕ′) dϕ′ = �σ (ϕ), (9)

with the kernel

K(ϕ,ϕ′) = r2 − rr ′ cos(ϕ − ϕ′) − rϕr ′ sin(ϕ − ϕ′)
π [r2 + r ′ 2 − 2rr ′ cos(ϕ − ϕ′)]

. (10)

Only the last term in the numerator makes the kernel not
symmetric in ϕ and ϕ′. In the case of circle r(ϕ) = const,
we have K(ϕ,ϕ′) = 1/2π . Resolving a 0/0 uncertainty in
Eq. (10) for ϕ′ → ϕ, we obtain, for the diagonal value of
the kernel, K(ϕ,ϕ) = lϕ/2ρ; this gives a link to the geometric
characteristics of L. It is evident that K(ϕ,ϕ) peaks at the
points of minimum of ρ(ϕ).

It is easy to find that the integral equation for the adjoint
function τ (r) is different from Eq. (9) for σ (ϕ) only by the
replacement K(ϕ,ϕ′) → K(ϕ′,ϕ).

Below, we use two basic families of lines L. The first family
(two-parametric one) is given by the relation

r

r0
= p + 1√

c2 + p2s2cot2(θa/2)+
√

s2cot2(θa/2)+ p2c2
, (11)

where c = cos ϕ and s = sin ϕ, while p and θa are two
parameters ranging within the intervals [1,∞] and [0,π/2],
respectively. The maximum value of r(ϕ) is r0; it corresponds
to ϕ = 0 and π . For p � 1, the line L is a smoothed rhombus
with the sharp apex angle θa , while for p → 1, it transfers into
an ellipse with the axes ratio cot θa; see also Fig. 1(a).

For θa = π/2, we have a smoothed square transferring into
a circle of the radius r0 with decreasing p. The normalized
corner curvature is given by κc = r0/ρc = cot2(θa/2)(p − 1 +
p−1); it is practically linear in p for p � 1. Thus, the limit
p → ∞ corresponds to a perfect rhombus. Note that for p �
1, the line L is very close to the perfect rhombus everywhere
except close vicinities of the corners.

The second family of lines (single-parametric one) is given
by the relation

r

r0
= 1 + 9b2

[f (ϕ) + f (ϕ − 2π/3) + f (ϕ + 2π/3)]2 − 2
, (12)

with f (ϕ) = [sin2(ϕ/2) + b2]1/2 and 0 < b < ∞. The struc-
ture of Eq. (12) ensures the 3m symmetry of L. For b � 1,
line L is very close to a r0 circle. With decreasing b, it

r0                                                     r0 

(a) 

r( ) 
 

a 
c c 

(b)

FIG. 1. (Color online) (a) The boundary line L for a smoothed
rhombus (θa = π/3, p = 50) transferring to an ellipse. (b) A
smoothed equilateral triangle (b = 0.01) transferring to a circle.
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transforms into a smoothed equilateral triangle corresponding
to θa = π/3; see also Fig. 1(b). For b  1, the normalized
corner curvature is κc 
 √

3/2b; it tends to ∞ for b → 0.
Parametrizations of Eqs. (11) and (12) are not unique. In

particular, we will use an additional q representation of L

given by

r/r0 = (|c|2q + |s|2q)−1/2q, (13)

with 0 � q < ∞. It gives a smoothed square for q � 1
transferring into a r0 circle for q → 1. At the same value of κc,
line L lies here inside that given by Eq. (11) with θa = π/2.
The q representation is useful to verify whether the plasmonic
properties are controlled by the corner curvature for κc � 1 at
the same values of θa .

IV. SYMMETRY CONSIDERATIONS

The presence of point symmetry of the cross section allows
one to classify the plasmonic eigenfunctions and eigenvalues
and to simplify numerical calculations regardless of the
smoothing details.36 For illustration, we consider here the
case of the highest point symmetry 4m, which is inherent
in square-shaped 2D particles. In this case, there are doubly
degenerate dipolar modes and four types of nondegenerate
multipolar modes.

One of two dipolar [d] eigenfunctions belonging to an
eigenvalue ε obeys the symmetry requirements

σ (ϕ) = σ (−ϕ) = −σ (π − ϕ); [d] . (14)

They mean that σ (r) is symmetric about the horizontal (h)
diagonal and antisymmetric about the vertical (v) diagonal;
see also Figs. 1(a) and 2. The dipole moment is directed here
along the h diagonal, and σ (±π/2) = 0.

Using the symmetry relations (14), we find that
∫ 2π

0
K(ϕ,ϕ′)σ (ϕ′) dϕ′ =

∫ π/2

0
Kd (ϕ,ϕ′)σ (ϕ′) dϕ′, (15)

where the dipolar kernel Kd (ϕ,ϕ′) is given by

Kd = K(ϕ,ϕ′) + K(ϕ,−ϕ′)
−K(ϕ,π − ϕ′) − K(ϕ,π + ϕ′).

It is possible thus to solve the eigenmode problem for the
dipolar modes within the interval [0,π/2]; this interval is
sufficient to restore σ (ϕ) in the whole angular range. The
function Kd (ϕ,ϕ′) is smooth and sign changing, but not trivial.
Note that Kd (π/2,ϕ′) = 0; this is consistent with the equality
σ (±π/2) = 0.

FIG. 2. (Color online) Possible types of the dipolar (d) and
multipolar (m±

1,2) symmetry. Inversion of the charge signs does not
change the symmetry.

The second independent dipolar eigenfunction, belonging
to the same eigenvalue ε and not shown in Fig. 2, can be
obtained by a trivial π/2 rotation. It is given by σ (ϕ − π/2),
and the corresponding dipole moment is directed along
the v diagonal. Moreover, one can show that the dipolar
eigenfunctions are orthogonal to each other.

The same reduction procedure is valid for the determination
of the adjoint dipolar eigenfunctions τ (ϕ). The choice of
independent dipolar eigenfunctions is not unique. Taking,
e.g., the combinations σ (ϕ) ± σ (ϕ − π/2), one obtains the
eigenfunctions whose dipole moments are π/4 rotated against
the initial ones.

All multipolar [m] modes are nondegenerate in ε and
inversion symmetric, σ (ϕ) = σ (ϕ ± π ). Generally, there are
four types of the multipolar symmetry (see also Fig. 2):

σ (ϕ) = σ (ϕ + π/2) = ±σ (−ϕ); [m±
1 ], (16a)

σ (ϕ) = −σ (ϕ + π/2) = ±σ (−ϕ); [m±
2 ], (16b)

(i) The first type, m+
1 : Symmetry to all allowed symmetry

transformations—rotations and reflections.
(ii) The second type, m−

1 : Symmetry to all allowed rotations
and asymmetry to all allowed reflections.

(iii) The third type, m+
2 : Symmetry to the reflections about

the diagonals, but asymmetry to the π/2 rotations and to the
reflections about the lines passing through the centers of the
opposite sides.

(iv) The fourth type, m−
2 : Asymmetry to the π/2 rotations

and to the reflections about the diagonals, but symmetry to the
reflections about the lines passing through the centers of the
opposite sides.

It is not difficult to write down two separate integral
equations within the interval [0,π/2] for the multipolar
symmetry types m±

1 and m±
2 .

Employment of the integral equations for the special types
of symmetry resolves the problem of classification of the
eigenmodes and, furthermore, extends the capabilities of
numerical calculations for very small corner curvatures; see
the next section. It is necessary, of course, to make sure that the
found particular solutions exhaust the solutions of the general
integral equation (9).

V. NUMERICAL RESULTS

We solved numerically the general integral equation (1) for
σ (ϕ) and the transposed equation for τ (ϕ). Also, we solved
the integral equations for the particular types of symmetry
within the reduced angular interval [0,π/2]. It was verified for
not very high values of corner curvature parameter κc = r0/ρc

that the reduced equations provide full information about the
eigenfunctions and eigenvalues. For ultimately small corner
curvature parameter, κc � 104, we used the reduced integral
equations.

The number of points N per side varied from 201 to 1001.
In order to enter the range of high κc, we used nonuniform
discretizations with the density of points near the corners ∼N3.
For any particular value of the parameters p, b, and q [see
Eqs. (11), (12), and below], it was ensured that further increase
of N does not affect ε(p), ε(b), and ε(q).
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FIG. 3. (Color online) The case of square, θa = π/2. Dependence
ε(κc) for several first pairs of the plasmonic modes j,j ′. Line L given
by Eqs. (11) and (13) (lines and circles, respectively). The solid lines
and filled circles refer to the dipolar modes, and the dashed lines and
open circles represent the multipolar modes. For j > 3, the circles
lie too close to the corresponding lines to be shown.

We show below that Eq. (11) with θa = π/2 and Eq. (13)
give essentially the same results for the eigenvalues and
eigenfunctions of square for sufficiently large values of κc.
With this fact proven, we restrict ourselves then to the
representations given by Eqs. (11) and (12).

A. Spectra of eigenvalues

Consider first the case of square when the line L is given
by Eq. (11) with θa = π/2 and Eq. (13). Figure 3 shows
our numerical results for the first several branches εj (κc),
possessing the largest distances to the value of −1, on a
semilogarithmic scale. The eigenvalues appear in pairs j,j ′
linked by the twin symmetry: each value εj < −1 has its twin
counterpart εj ′ = 1/εj > −1. The values of εj for the higher
modes lie thus above line 6, and the close vicinity of the line
ε = −1 is filled up with the spectrum. The main results, shown
by lines, correspond to Eq. (11), while the circles refer to
Eq. (13). The solid and dashed lines correspond to the dipolar
and multipolar modes.

A number of further important features of the dependences
εj (κc) have to be indicated:

(a) All eigenvalues lie within the interval [−1/3,3], re-
stricted by the points of strong singularities for θa = π/2,7 and
approach slowly the borders of this interval with increasing κc.

(b) Equations (11) and (13) give very close values of εj for
κc � 1. The largest distances to −1 correspond to Eq. (13),
i.e., to the fastest convergence to the perfect-square shape with
increasing κc.

(c) The modes 1,2,3,4, . . . possess the symmetries m+
2 ,

d, m+
1 , m+

2 , . . . , respectively, whereas for the twin modes

1′,2′,3′,4′, . . . , the sequence of the symmetry changes is m−
2 ,

d, m−
1 , m−

2 , . . .; see also Fig. 2.
(d) For κc � 1, the values of εj group in triplets. The

absolutely lowest value ε1 corresponds to the multipolar
symmetry m+

2 , which is not the highest for the multipolar
modes; see the next section.

(e) In the range 1 � κc � 10, the changes of εj (κc) occur
linearly only for the first two pairs of branches, 1,1′ and 2,2′.
This feature, valid also for the 3m symmetry, is in agreement
with the theory of Ref. 37 developed for weak perturbations
of the circular shape. The higher the mode number j > 2, the
slower are the initial changes of εj (κc).

(f) For κc � 10, when the shape changes are already reduced
to increasing sharpness of the corners, the decrease of εj (κc)
for the lowest modes still remains substantial.

(g) For κc � 103, the branches ε1,2(κc) and ε1′,2′ (κc)
approach the limiting values of −3 and −1/3 very slowly:
for κc > 104, we are still pretty far from these values.

(h) Even for modest smoothing, κc = 101–102, the sepa-
ration of the eigenvalues within the interval [−3,−1] is big
enough for their selective excitation.

Now we turn to the impact of the apex angle θa on the
dependence ε(κc). We consider the cases of rhombus with
θa = π/2,π/3,π/4,π/5, and π/6 using Eq. (11) and the case
of an equilateral triangle using Eq. (12). For simplicity, we
restrict ourselves to the lowest dipolar branch.

The corresponding data are presented in Fig. 4. The starting
nonunit values of ε1 coincide with the known plasmonic
solutions for the elliptic cross section.25 Obviously, a decrease
of θa results in a strong lowering of the branches, including
the initial and limiting values of ε(κc). The limiting values,
shown by the horizontal dashed lines, correspond to the
general relation ε(∞) = 1 − 2π/θa for nonintegrable corner
singularities.7 The smaller the θa , the slower is the transition
to the corresponding limiting value. Obviously, the perfect-
corner limit, being a matter of principle, is of minor practical
importance.
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FIG. 4. (Color online) The lowest dipolar branch ε2(κc) for the
smoothed rhombus with the apex angle θa = π/2,π/3,π/4,π/5, and
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115406-5



B. STURMAN, E. PODIVILOV, AND M. GORKUNOV PHYSICAL REVIEW B 87, 115406 (2013)

A quick confluence of the dotted line (relevant to a
circle → triangle transition) with the solid line corresponding
to the rhombus with the same apex angle is remarkable.
It shows explicitly that the lowest eigenvalues are strongly
controlled by θa and κc for κc � 1, while the global shape of
the particle is of minor importance.

B. Eigenfunctions: Charge localization

Here we consider the angular charge distributions for
the most important eigenmodes. For simplicity, we restrict
ourselves to the case of 4m symmetry (θa = π/2).

Normalization of the eigenfunctions σj (ϕ) and τj (ϕ) is
generally a matter of convenience. The simplest choice is
σ max

j = τmax
j = 1. It allows one to see the most important

tendency with increasing the corner curvature parameter κc:
localization of the surface charge at the corners.

The solid lines in Fig. 5(a) show the eigenfunction σ2(ϕ) for
the lowest dipolar branch calculated with the use of Eq. (11)
for θa = π/2 and p = 4, 8, and 64 (κc 
 3.25, 7.1, and 63,
respectively).

All necessary symmetry properties (see Sec. IV) are
fulfilled. Obviously, the surface-charge distribution exhibits
sharp maximum and minimum at ϕ = 0 and π , respectively
(at the charged corners), and turns to zero at ϕ = π/2 and
3π/2 (at the uncharged corners). For κc 
 p/

√
2 � 1, the

angular width of the peak is about κ−1
c = ρc/r0  1. Outside

the close vicinities of the charged corners, the charge density
σ2(ϕ) tends to zero for κc → ∞. Remarkably, the function
σ2(ϕ) changes its sign in between the charged and uncharged
corners, and the corresponding zero points move towards the
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FIG. 5. (Color online) The case of square, θa = π/2: The dipolar
eigenfunctions (a) σ2(ϕ) and (b) σ2′ (ϕ) calculated with Eq. (11) for
p = 4, 8, and 64 (solid lines). The dotted lines in (a), given for
comparison, refer to Eq. (13) and the same values of κc.

charged corners with increasing κc. This feature is not dictated
by the symmetry properties or the charge neutrality.

The dotted lines in Fig. 5(a) are calculated using Eq. (13)
for the same values of the corner curvature κc (
2.8, 2.63,
and 45.3) as the solid lines. For modest values of κc, there are
some quantitative (but not qualitative) differences between two
different representations of line L. When κc is increasing, these
differences become negligible; see also Fig. 3. This situation
is general for all results obtained for the 4m symmetry with
the use of Eqs. (11) and (13). From now on, we will exhibit
only the data obtained with Eq. (11).

The adjoint dipolar eigenfunction τ2(ϕ), belonging to
the same eigenvalue ε2, is structurally similar to σ2(ϕ). In
particular, it also shows maximum and minimum at the charged
corners. However, localization of τ2(ϕ) with increasing κc is
much less pronounced.

The dipolar twin function σ2′ (ϕ), possessing the eigenvalue
ε2′ = 1/ε2, is essentially different from σ2(ϕ) with respect to
the localization type: The derivative dσ2′/dϕ tends to infinity
at the uncharged corners π/2 and 3π/2 forming localized
double layers; see Fig. 5(b). This feature is typical for the twin
functions.

The higher-order dipolar eigenfunctions, σ5(ϕ), σ8(ϕ), etc.,
also experience localization at the corners with increasing κc;
they possess a more complicated oscillatory structure far from
the corners.

Figures 6(a) and 6(b) show the two lowest multipolar
(quadrupolar) eigenfunctions σ1(ϕ) and σ3(ϕ) possessing the
symmetries m+

2 and m+
1 , respectively. Localization of the

charge at all four corners with increasing κc is clearly seen.
The charge neutrality in the case of Fig. 6(b) is ensured
by the presence of nonlocalized charge; for Fig. 6(a), it is
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FIG. 6. (Color online) The lowest multipolar (quadrupolar)
eigenfunctions (a) σ1(ϕ) and (b) σ3(ϕ) for p = 4, 8, and 64.
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FIG. 7. (Color online) The lowest dipolar mode: The surface-
charge distribution κcσ2(ϕ,κc) for several large values of the corner
curvature κc within the angular interval [0,π/2].

fulfilled automatically. The twin multipolar functions σ1′ and
σ3′ , possessing the symmetries m−

2 and m−
1 , show localized

double-layer features, similar to that shown in Fig. 5(b), at all
four corners for κc � 1.

As soon as the angular symmetry of the eigenfunctions is
clear, their representation within the whole 2π interval of ϕ

becomes excessive. It is sufficient to show the eigenfunctions
within a quarter of the interval.

The data of Figs. 5 and 6 say almost nothing about the
law of charge localization and about the relationship between
the localized and nonlocalized charges. Furthermore, the used
normalization of the eigenfunctions, σ max

j = τmax
j = 1, implies

that
∫ 2π

0 |σj (ϕ)| dϕ → 0 for ρc → 0, i.e., both the localized
and nonlocalized charges tend to zero for a quarter of the
square with increasing κc.

When dealing quantitatively with the charge localization,
it is useful to consider the functions κcσj (ϕ,κc). Their peak
values are κc, while the angular width of the peaks is 
κ−1

c .
This means that the localized charge remains almost constant
in κc, and one can expect that the localized part of κcσ (ϕ,κc)
near a charged corner can be represented by the Dirac δ

function for κc → ∞. On the other hand, the nonlocalized
part becomes clearly accessible with this normalization.

Figure 7 shows in detail the negative tail of the charge
distribution κcσ2(ϕ,κc) within a quarter of the angular interval,
including the positively charge corner at ϕ = 0, for several
large values of κc. For all curves, we are well outside the peak
area, ϕ � κ−1

c . Several features are worthy of attention:
(a) After a very sharp initial drop, the function κcσ2(ϕ,κc)

changes its sign at a certain point ϕ0(κc), reaches a pronounced
minimum at ϕmin(κc), and then grows slowly up to the second
zero point at the uncharged corner ϕ = π/2.

(b) Both characteristic angles, ϕ0(κc) and ϕmin(κc), approach
zero with increasing κc.

(c) The total negative (nonlocalized) charge exceeds 1 in
the absolute value and grows slowly with κc. It is not small
compared to the total positive charge.

(d) The minimum value of κcσ2(ϕ) also grows slowly with
increasing κc.

(e) All shown curves practically coincide with each other
far enough from the charged corner, showing a universal
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ϕmin vs κc. (b) Dependence of the total charges Q± on κc. The circles
in (a) and (b) are numerical data, while the solid straight lines are
fitting functions; see the text.

behavior within a broad interval of ϕ; this interval expands
with increasing κc.

Figure 8(a) exhibits the κc dependences of the characteristic
angles—the half width of the peak ϕ1/2, the zero point ϕ0, and
the point of minimum ϕmin—on a double logarithmic scale.
The circles and straight solid lines refer to numerical data and
power-fitting functions, respectively. Good agreement between
the first and second is evident for sufficiently large corner
curvatures. The characteristic angles tend to zero for κc → ∞
by following different power laws. The decrease of ϕ1/2(κc)
(line 1) is the fastest, while lines 2 and 3, representing ϕ0 and
ϕmin, are almost parallel to each other. We have found also that
[κcσ2(ϕ,κc)]min 
 −0.124κ0.43

c for κc � 10, i.e., the minimum
value in Fig. 7 tends to −∞ by following a power law. Thus,
not only the peak of κcσ2(ϕ,κc), but also the growing negative
tails are relevant to the charge localization at ϕ = 0.

Next we consider the total positive charge Q+ =
2
∫ ϕ0

0 σ2(ϕ) dϕ/ρc localized near the corner ϕ = 0 and
the absolute value of the total negative charge Q− =
2| ∫ π/2

ϕ0
κcσ2(ϕ) dϕ| that is present on the right upper or right

lower sides of the square; see also Fig. 2. The charge Q−
includes indeed both localized and nonlocalized contributions.
The circles in Fig. 8(b) represent our numerical data for the
dependences Q±(κc), while the solid lines 1 and 2 provide
the corresponding fits. Both charges grow in κc, and they
are comparable with each other in the whole range. At the
same time, the growth is extremely slow—it is logarithmic for
sufficiently large κc. The charge ratio Q+/Q−, which does not
depend on the normalization of σ2(ϕ), remains larger than one
in the whole shown range.
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It is possible also to fit the function κcσ2(ϕ,κc) nearby
the charged corner, namely, for |ϕ| � κ−1

c . For κc � 10, the
function κc (1 + c κ2

c ϕ2)−0.7 with c = c(κc) ≈ 1 approximates
well the fall of σ2(ϕ) in the peak area within at least one order
of magnitude. The peak profile is thus far from a Lorentzian
one.

While the tendency to the charge localization and formation
of singular charge structures for κc → ∞ is clearly seen from
our numerical calculations, there is no clear way to separate
the singular and regular charge contributions. This issue will
be discussed in Sec. VII.

With the known eigenfunctions σj (ϕ) = σj [r(ϕ)] lϕ , we can

calculate the modal dipole moments dj = ∫ 2π

0 σj (ϕ) r(ϕ) dϕ.
Obviously, they are nonzero only for the dipolar modes. It is
clear from the above considerations that not only the localized
but also nonlocalized modal charges contribute to dj for large
values of κc.

VI. RESONANT POLARIZABILITIES AND NEAR FIELDS

Here we restrict ourselves to the case of smoothed square.
Because of the 4m symmetry, the polarizability is scalar, so
that the light-induced dipole moment of the wire d̂ = 〈rσ̂ (r)〉,
where σ̂ (r) is the light-induced surface-charge density, is paral-
lel to the external electric field vector E0. Correspondingly, the
quantity α = |d̂|/|E0| calculated for an arbitrary orientation
of the polarization vector e0 = E0/|E0| gives the necessary
polarizability.

When using the modal expansion (4), the light-induced
dipole moment of the particle is given by d̂ = ∑

cj dj , where
the summation occurs only over the dipolar modes and cj is
given by Eq. (7). In accordance with this equation and our
definitions, the vector d̂ does not depend on the normalization
of the eigenfunctions σj and τj .

Since the lowest dipolar eigenvalues εj , with j = 2,5, . . . ,
are well isolated from each other for ρ−1

c � 1 (see Fig. 3),
the corresponding plasmonic modes can be excited selectively
and resonantly.

When calculating the resonant polarizability, it is necessary
to keep in mind that a double degeneration occurs for the
dipolar modes: The π/2-rotated functions σj (ϕ + π/2) and
τj (ϕ + π/2) belong to the same εj and are independent from
the functions σj (ϕ) and τj (ϕ), respectively. While the averages
〈τj n〉 and 〈σj r〉 are parallel to the h diagonal, the same
averages for the π/2-rotated functions are parallel to the v

diagonal; see also Fig. 2. Missing this point leads to violation
of the law d̂ ‖ E0.

Setting ε′
M(ωj ) = εj (the resonant condition for the j th

mode) and e0 = (1,0), we represent the polarizability in the
form αj = iGj r

2
0 /ε′′

M(ωj ), where the dimensionless factor Gj

is given by

Gj = (εj − 1)2

4π r2
0

〈τj (e0 · n)〉 〈σj (e0 · r)〉
〈σjτj 〉 , (17)

and 〈·〉 means again the integration along L. For a certain
dipolar mode number j , this factor depends solely on the
normalized corner curvature κc.

The presence of the imaginary unit in the expression
for αj means that a π/2 phase shift occurs between the
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FIG. 9. (Color online) The dependence Gj (κc) for the first three
twin pairs of the dipolar modes: 2,2′, 5,5′, and 8,8′; see also Fig. 3.

temporal oscillations of the light electric field and those of
the light-induced dipole moment; this feature is typical of the
resonant phenomena. The resonant value of the polarizability
grows indeed with decreasing loss factor ε′′

M(ωj ); this factor is
controlled by material properties of the metal. Furthermore, the
combination sj = 8π2r2

0 Gj/λjε
′′
M ∝ r2

0 /λj gives the resonant
absorption cross section.

The influence of the corner curvature on the resonant
polarizabilities is given by the functions Gj (κc). Figure 9
shows these functions for several first dipolar modes on a
semilogarithmic scale. Within a wide range of κc, the biggest
values of the G factor correspond to the lowest dipolar mode
2. The function G2(κc) possesses a broad maximum around
κc ≈ 15; near this maximum, G2 � G5,8. For κc = 1, we have
G2 = 1/

√
2; this corresponds to the limit of circular wire. For

very large values of the corner curvature, κc � 103, the higher
dipolar modes 5 and 8 become competitive. The twin modes
with j = 2′,5′, and 8′ possess relatively small G factors and,
correspondingly, small polarizabilities.

When calculating the modal polarizability, we have found
that the combination 〈τj (e0 · n)〉 〈σj (e0 · r)〉/〈σj τj 〉, entering
Eq. (17), is the same for the dipolar twin modes 2 and 2′, 5
and 5′, etc. This expresses a certain hidden symmetry property.
Because of this symmetry, the difference in polarizabilities αj

and in the Gj factors for the twin modes 2,2′, etc. is fully due
to the difference in the factors (εj − 1)2 in Eq. (17).

Next, we evaluate the resonant corner values of the light-
induced charge density σ̂j (0) for the horizontal light polar-
ization vector, e0 = (1,0). With our normalization σ max

j = 1,
these values are given by σ̂j (0) = αj |E0|/〈σj (e0 · r)〉. While
the changes of αj as a function of κc are modest (see Fig. 9), the
factor 〈σj (e0 · r)〉 is roughly proportional to κ−1

c . This is why
σ̂j (0) ∝ κc, i.e., a strong enhancement of the corner charge
with increasing κc, takes place; see also below.

It is even more interesting to calculate the resonant light-
induced field Êj at the charged corner for e0 = (1,0). This
field has indeed only the normal (horizontal) component Ê+

n (0)
given by the two last terms in Eq. (5). While the first of these
terms is given by the corner charge density σ̂ (0), the second
is integral—it depends on the distribution of the localized
and nonlocalized charges along L. In the case of resonant
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excitation of the mode j , the integral contribution is nothing
else than �j σ̂j , in accordance with Eq. (1). Thus, we have the
following simple link between the resonant corner values of the
light-induced field and charge: |Êj (0)| = 4π εj |σ̂j (0)|/(εj −
1). Using the above relations for αj and σ̂j (0), we arrive at
a simple relation for the resonant field-enhancement factor
ξ c
j = |Êj (0)|/|E0| at the charged corners:

ξ c
j = εj (εj − 1)

ε′′
M

〈τj (e0 · n〉
〈σj τj 〉 . (18)

The squared value of this factor gives the light intensity
enhancement factor at the corner.

Figure 10 shows the dependence ξc
j (κc) for the three

lowest dipolar modes, j = 2,5, and 8. One sees that the
field-enhancement factor grows approximately linearly with
the corner curvature and increases by orders of magnitude for
realistic values of κc. Remarkably, the lowest dipolar mode
2 possesses a relatively small enhancement factor compared
to the higher dipolar modes 5 and 8. This contrasts with the
properties of the modal polarizability; see Fig. 9. The behavior
of σ̂j (0) as functions of κc is similar to that presented in
Fig. 10.

Lastly, we consider how fast the resonant field Ê decreases
with increasing normalized distance to the corner δr/ρc =
κcδr/r0. Figure 11 shows this dependence on a semilogarith-
mic scale for the main dipolar mode 2, the polarization vector
e0 = (1,0), and three values of κc. The field Ê2 is directed
here along the h diagonal, and δr is measured along this
diagonal. With the chosen normalization, all three curves lie
very close to each other, showing an almost universal behavior.
It is evident that the function |E2|(δr/ρc,κc)/|E2|(0) converges
to a certain characteristic function of δr/ρc with increasing κc.
The half width of the function |E2|(δr)/|E2|(0) is about the
corner curvature radius ρc for κc � 1; this indicates again a
strong charge localization at the corners. For δr � ρc, the
decrease of |E2|(δr) slows down because of the influence of
the nonlocalized charge.

VII. DISCUSSION

Although we necessarily touched on classification of the
plasmonic states, the main results of our study are about
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h diagonal, δr/ρc, for the resonantly excited main dipolar mode
(j = 2) and three values of the corner curvature parameter κc.

the universal behavior of plasmonic properties of metallic
2D nanoparticles with sharp corners and about the charge
localization phenomenon. This involves several issues to
discuss:

(a) Smoothing of corners is absolutely necessary to provide
well-defined plasmonic eigenfrequencies and eigenfunctions.
The apex angle θa and the normalized corner curvature
κc = r0/ρc serve as the main control parameters for the lowest
plasmonic eigenmodes: Different types of smoothing with the
same values of θa and κc give essentially the same plasmonic
properties for κc � 1, and the global shape of the particle is
of minor importance.

(b) When the corner curvature increases, the lowest resonant
values of the permittivity εj (κp), dipolar and multipolar,
decrease steadily and tend to the limiting value ε(∞) = 1 −
2π/θa . This value corresponds to a nonintegrable singularity of
a single infinite corner.7 Within the Drude model, the resonant
frequencies ωj tends to ωp(θa/2π )1/2. The smaller the θa , the
stronger is the lowering of the resonant plasmonic frequency.

(c) For very large values of κc, the convergence of εj (κc)
to the limiting value of ε(∞) occurs extremely slowly: Even
for unrealistically large values, κc = (104–105), which bring
us to a subatomic spatial scale, the values of εj are still not
very close to ε(∞); see Figs. 3 and 4. Already in this sense,
the limiting case ρc → ∞ is practically unattainable, and the
recent attempt to treat it heuristically38 looks unjustified.

(d) Nevertheless, the impact of the increasing curvature is
strong: First, it provides the charge localization on the scale of
ρc  r0. Second, it gives strong separation and red shifts of the
plasmonic frequencies relevant to the localized dipolar modes.
Altogether, it allows one to excite selectively the localized
modes, leading to strong near-field enhancement of the light
intensity.

(e) When looking at the structure of the eigenfunctions
σj (ϕ), it becomes evident (see, e.g., Figs. 5 and 7) that the
charge localization cannot be approximated solely by the
singular Dirac δ function for κc → ∞. The angular derivatives
of the δ function have to be involved as well. Furthermore, not
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only the eigenfunctions σj (r) but also the kernel K(r,r′) of
the basic integral equation becomes singular in this limit. This
emphasizes the mathematical complexity of the transition to
the perfect corner limit.

While the influence of the shape of metallic particles on the
spectrum of plasmonic resonances, including the appearance
of new red-shifted maxima, is known (see Refs. 27 and 29,
and references therein), the knowledge of the plasmonic
properties of nonspherical and nonelliptical nanoparticles
remains fragmental and superficial. This is caused largely by
vastness and uncertainty of the subject. The found universality
of the plasmonic behavior for nanoparticles with sharp corners
is the main difference with the previous studies.

A certain similarity of our physical picture with that of
the wedge plasmons (WPs) propagating along sharp metallic
corners12,13 has to be mentioned. It concerns the importance
of rounding of the corners for WPs. At the same time, the
differences are evident: Nanolocalization of WPs is due to
large values of the wave vectors; there is no transition to our
case of nonpropagating localized plasmons. Furthermore, the
WPs cannot be excited by laterally incident light, so that
the observable characteristics and the areas of interest are
different.

Consider now the upper limit of the corner curvature
parameter κc = r0/ρc. The value of ρmin

c , compatible with the
notion of bulk optical permittivity, is ∼1 nm.15,34 The size
r0 has to be considerably smaller than the light wavelength
λ to avoid the retardation effects.25 Most probably, the latter
restriction is not severe—owing to the charge localization at
the corners, there should not be strong modification of our

theory for r0 ≈ λ. We can expect thus that κmax
c = 102–103

within the visible to near IR spectral range.

VIII. CONCLUSIONS

Plasmonic properties of 2D metallic nanoparticles with
sharp corners show a universal behavior. The lowest values
of the resonant optical permittivity εj , dipolar and multipolar,
are controlled by the corner apex angle θa and the normalized
corner curvature κc ≡ r0/ρc � 1, while the global shape and
smoothing details are of minor importance. The negative
values of εj decrease with increasing κc and decreasing θa ,
causing strong red shifts of the plasmonic frequencies. The
decrease of εj (κc) is initially fast and then extremely slow so
that the limiting value ε(∞) = 1 − 2π/θa cannot be closely
approached for κc � 103. The decrease of εj (κc) is accom-
panied by localization of the corresponding eigenfunctions—
the surface charge densities σj (ϕ)—near the corners at the
angular scale of κ−1

c . This localization is compatible with
the properties of spatial symmetry. For realistic values of the
corner curvature, κc = 101–103, the main dipolar resonances
are well separated from each other. This allows one to excite
them selectively, leading to a strong near-field enhancement
of the light intensity at the corners.
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