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Thermodynamic and quantum bounds on nonlinear dc thermoelectric transport
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I consider the nonequilibrium dc transport of electrons through a quantum system with a thermoelectric
response. This system may be any nanostructure or molecule modeled by the nonlinear scattering theory, which
includes Hartree-like electrostatic interactions exactly, and certain dynamic interaction effects (decoherence
and relaxation) phenomenologically. This theory is believed to be a reasonable model when single-electron
charging effects are negligible. I derive three fundamental bounds for such quantum systems coupled to multiple
macroscopic reservoirs, one of which may be superconducting. These bounds affect nonlinear heating (such
as Joule heating), work and entropy production. Two bounds correspond to the first law and second law of
thermodynamics in classical physics. The third bound is quantum (wavelength dependent), and is as important as
the thermodynamic ones in limiting the capabilities of mesoscopic heat engines and refrigerators. The quantum
bound also leads to Nernst’s unattainability principle that the quantum system cannot cool a reservoir to absolute
zero in a finite time, although it can get exponentially close.
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I. INTRODUCTION

In classical physics, currents in resistive circuits are
dissipative—they emit Joule heat that increases the entropy
of the environment of the circuit. Devices with thermoelectric
responses1–3 can be used as heat engines (using heat flows to
create electrical power) or heat pumps (using electrical power
to create heat flows). These are also dissipative, since they
increase the entropy of the environment (at least a little bit)
during their operation. The laws of thermodynamics give us
strict bounds on the capabilities of such thermoelectric devices.

There is currently great interest in using quantum systems
as thermoelectric heat engines or refrigerators, particularly
nanostructures4–13 and molecules.14–19 However, quantum
responses are often nonlocal, since thermal equilibration
occurs on length scales very much bigger than the size of
the system, with equilibrium only being established deep in
the reservoirs coupled to the system. The classical models
of transport account neither for this nonlocality nor for
the wave nature of quantum particles. It is natural to ask
what the bounds are for these quantum devices and how
they compare to the bounds on classical devices. There are
many works asking whether quantum systems are bounded
by the laws of thermodynamics,20–27 particularly for systems
modeled by Markovian or Bloch-Redfield master equations,
see Refs. 20,28–30 and references therein. However, the funda-
mental bounds on thermoelectric quantum systems remain an
open question.27 Here, I consider the fully nonlinear response
of a broad class of thermoelectric quantum systems (see Fig. 1),
and show that they obey the bounds imposed by the laws of
thermodynamics, while also suffering a quantum bound on
their behavior.

The Landauer-Büttiker scattering theory33 is a widely used
theory for modeling such electron flows through quantum
systems giving dc and ac conductances34,35 and nonlinear
effects.36–39 It has equally been used to get linear thermal
and thermoelectric effects.40–45 However, it is a delicate
question whether it captures dissipation and the associated
laws of thermodynamics (or their quantum equivalent). The
standard answer is that the theory accurately models reversible

scattering processes, while assuming that equilibration occurs
(irreversibly) in the reservoirs via dissipative processes, which
the theory does not detail. Hence one might suspect that the
theory would not capture how dissipation produces entropy.
This suspicion is wrong, the nonlinear scattering theory
is sufficient to give information about entropy production,
despite the simplistic way in which it treats the physics
in the reservoirs. Indeed, Ref. 27 showed the second law
of thermodynamics to be a remarkably direct outcome of
a nonlinear “dc” scattering theory31 for a quantum system
of noninteracting electrons between two reservoirs.32 Energy
conservation leads to the systems also obeying the first law.

Here, I show that the proof in Ref. 27 works equally well for
a nonequilibrium scattering theory that includes Hartree-like
electron-electron interactions (electrostatic charging effects)
in a self-consistent and gauge-invariant manner. This theory

FIG. 1. (Color online) Quantum systems with Kn = 3 normal
reservoirs and one superconducting (sc) reservoir. Examples include
(a) nanostructures such as those defined by electrostatic gates on top
of a two-dimensional electron gas (2deg) or (b) molecules. Charge
and heat currents, Ii and Ji , are positive if they flow from reservoir i

into the quantum system.
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is the analog for heat currents13 of the nonlinear scattering
theory for charge currents;36–39 although heat currents are
not conserved when charge currents are. Such electrostatic
interactions cannot be ignored for the nonlinear response,36–39

and entropy production is a purely nonlinear effect (vanishing
in the linear-response regime). By keeping only electrostatic
interaction effects, this approach is by no means exact,
however, it is a reasonable approximation for any system
where the single-electron charging energy is small compared
to temperature or broadening of the quantum system’s levels
due to the coupling to the reservoirs.36 Within this approach,
I prove that the dc response of any quantum system coupled
to an arbitrary number of reservoirs—one of which may be
superconducting—obeys the laws of thermodynamics.

The extension from two27 to many reservoirs requires no
new physics, but is complicated by the fact one can no longer
use the two-terminal Onsager relations for transmission matri-
ces. However, it extends our understanding of thermodynamics
in quantum transport in two ways.

(1) Using the generalization to many reservoirs, one can in-
clude dynamic interaction effects (decoherence and relaxation)
phenomenologically as additional fictitious reservoirs.25,46–48

Performing such an analysis, I conclude that the classical laws
of thermodynamics hold for partially coherent (as well as fully
coherent) quantum transport.

(2) A superconducting (sc) reservoir has no analog in
classical mechanics, because the condensate is a macroscopic
quantum state. In addition, charge current can flow into (or
out of) this condensate, but heat current cannot. Thus a
charge-current can pass into the sc reservoir, Isc, without any
change in that reservoir’s entropy, Ṡsc = 0. Despite this, I show
that the laws of thermodynamics hold in the presence of such
a reservoir.

There is also a quantum bound (qb) on the heat extracted
via thermoelectric cooling, identical to Pendry’s bound49

for passive cooling of a hot reservoir by a colder one (a
fermionic analogue50 of the Stefan-Boltzmann law of black-
body radiation). No thermoelectric device, supplied with an
arbitrary amount of dc power, can ever extract heat from
a reservoir faster than the bound J qb ∝ N T 2, where T is
the reservoir temperature and the contact between the device
and the reservoir has N transverse modes. This bound is
quantum; it is only relevant when N−1 ∼ λ2

F/Ai �= 0 for
electron wavelength λF and contact cross-section Ai .

For thermoelectric refrigerators, the quantum and thermo-
dynamic bounds compete, and the quantum bound can be
a stronger constraint than that given by the thermodynamic
bounds (the Carnot limit). In contrast, the bounds combine to
give an upper limit on the power that a thermoelectric heat
engine can produce.

I find that the quantum bound means that the system
obeys Nernst’s unattainability principle (one of the two
statements forming the third law of thermodynamics), that
states that a reservoir cannot be refrigerated to absolute zero
in a finite time. See, for example, Refs. 21,29, and 30 for
physical and Refs. 51 and 52 for mathematical overviews.
The quantum bound means that the systems considered here
have (at best) the critical behavior, i.e., the reservoir cannot
achieve zero temperature in a finite time, but it can get
exponentially close. This rules out such systems as candidates

for violating the unattainability principle in the manner Ref. 30
proposes.

II. EXPLICIT FORM OF THE BOUNDS

In this section, I give the three bounds, before deriving
them later in the paper. I consider an arbitrary quantum
system coupled to any number of reservoirs, one of which
may be superconducting. Normal reservoirs are treated as free-
electron gases in thermal equilibrium, while a superconducting
reservoir is treated as a condensate of Cooper pairs.53 The heat
current flowing out of reservoir i is Ji . The electrical power
flowing out of reservoir i is Pi = ViIi , with Vi being the bias
on the reservoir, and Ii being the charge current flowing out of
it. The rate of change of entropy in the ith reservoir is defined
as Ṡi = −Ji/Ti for reservoir temperature Ti .

I define Ėtotal and Ṡtotal as the rates of change of the
total energy and entropy of the quantum system and all
reservoirs averaged over long times. Under dc drive,31 the
quantum system remains in the same steady state on average
over long times, so one can neglect its contribution to Ėtotal

and Ṡtotal. Then scattering theory gives the thermodynamic
laws:

Ėtotal =
∑

i

(Ji + Pi) = 0 [1 st law], (1)

Ṡtotal =
∑

i

−Ji/Ti � 0 [2 nd law], (2)

where the sum is over all reservoirs. The quantum bound (qb)
on the heat current out of reservoir i is

Ji � J
qb
i ≡ π2

6h
Ni (kBTi)

2 [quantum], (3)

where the quantum system couples to reservoir i through Ni

transverse modes, and this equation defines J
qb
i . Thus the rate

of change of entropy in the ith reservoir is Ṡi � −J
qb
i /Ti .

Sections IX and X discuss how these bounds act as limits on
heat engines and refrigerators.

III. NONLINEAR SCATTERING THEORY
FOR HEAT TRANSPORT

The nonlinear Landauer-Büttiker scattering theory, de-
veloped for ac34,35 and nonlinear-dc36,37 charge flows, was
recently extended to thermoelectric effects.13,38,39 It includes
(in a gauge-invariant and self-consistent manner) Hartree-type
electron-electron interaction effects, which act as electrostatic
charging effects. Here, as in Ref. 13, I apply it to nonlinear
heat flows.54–56

One starts with the scattering matrix36–39 Sμν

ij , for a ν

particle entering the quantum system from reservoir j to a
μ particle leaving via reservoir i, where μ,ν are ±1, with +1
for electrons with charge e− or −1 for holes with charge −e−.
Here, an electron with energy ε is an occupied conduction-
band state with energy ε + e−Vsc, while a hole with energy
ε is an empty conduction-band state with energy −ε + e−Vsc,
where e−Vsc is the superconductor’s chemical potential. These
“holes” are not in a semiconductor’s valence band, unlike those
in Ref. 13. Let the lead to reservoir i have Ni modes for all ε.
The number of open modes in this lead can still be ε dependent,
since a given mode can be closed off at a certain ε (purely
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reflected in the scattering matrix at ε). If a superconducting
(sc) reservoir is present, it is modeled by Andreev reflection of
electron to hole and vice versa. Then, ε = 0 at the sc reservoir’s
chemical potential e−Vsc (otherwise one can choose ε = 0
however is convenient). In the nonlinear regime, Sμν

ij (ε,venv)
must include the charging effects self-consistently, because
this S is a function of the charge distribution in the quantum
system, which is, in turn, a function of S as well venv,36,39

where venv is the set of all voltages and temperatures, {Vk,Tk},
in the system’s environment (reservoirs and gates).

All charge and heat transport properties are then
given by the transmission matrix, T μν

ij (ε,venv) =
Tr[[Sμν

ij (ε,venv)]† Sμν

ij (ε,venv)] where the trace is over
all transverse modes of the leads connecting the quantum
system to the i and j reservoirs. Any self-consistent analysis
must of course respect gauge invariance, i.e., shifting all
voltages by the same amount is tantamount to redefining
the zero of energy and thus cannot change the physics. I
ensure this by taking ε and all reservoir and gate voltages
(and any screening potentials that depend on them) relative
to the superconductor’s chemical potential57 e−Vsc. If there
is no superconductor, one can take these relative to another
reservoir voltage. In everything that follows, I will assume
that T μν

ij has this gauge invariance.
The results presented in this paper are all based on only two

properties of T μν

ij . The first property is due to the fact that T μν

ij

is the sum of the modulus squared of the elements of Sμν

ij . This
property is that for all i,j,μ,ν,ε,venv,

T μν

ij (ε,venv) � 0. (4)

The second property is due to the unitary of Sμν

ij (particle
conservation) and is that for all ε,venv,

0 =
Kn∑
j=1

∑
ν

[
Niδ

μν

ij − T μν

ij (ε,venv)
]

=
Kn∑
i=1

∑
μ

[
Niδ

μν

ij − T μν

ij (ε,venv)
]
, (5)

where the i,j sums are over the Kn normal reservoirs, while
the μ,ν sums are over ±1 for electrons or holes.

As Eqs. (4) and (5) are the central results needed for all
derivations in this work, let me emphasize that they apply
in the Hartree approximation without further approximations.
One could self-consistently solve for infinitely many local
time-independent Hartree potentials (on a grid of a vanishing
cell size). The resulting (very complicated) self-consistent
scattering matrix would be unitary, and so it will satisfy Eqs. (4)
and (5).

The charge current Ii is the difference between the charge
μe− leaving and entering reservoir i. The heat current Ji is
the difference between the excess energy (ε − μe−Vi) leaving
and entering reservoir i.42 Thus

Ii =
∑
jμν

∫ ∞

0

dε

h
μe− [

Niδ
μν

ij − T μν

ij (ε)
]
f ν

j (ε), (6)

Ji =
∑
jμν

∫ ∞

0

dε

h
(ε − μe−Vi)

[
Niδ

μν

ij − T μν

ij (ε)
]
f ν

j (ε), (7)

where the j sum is over the Kn normal reservoirs, while the
μν sums are over electrons (+1) and holes (−1). Here, δ

μν

ij

indicates the pair of Kronecker δ functions, δij δμν . The Fermi
function for ν particles entering from reservoir j is

f ν
j (ε) = {1 + exp[(ε − νe−Vj )/(kBTj )]}−1. (8)

Comparing Eqs. (6) and (7), one can easily see that

Ji = −Vi Ii +
∑
jμν

∫ ∞

0

dε

h
ε

[
Niδ

μν

ij − T μν

ij (ε)
]
f ν

j (ε). (9)

If a superconductor is present, then the charge current into it
(in the form of Cooper pairs), Isc, is given by Kirchoff’s law of
current conservation. In contrast, heat current is not conserved.
However, the heat flow through a boundary at the surface of a
superconducting reservoir must be zero, since an electron at en-
ergy ε is Andreev reflected as a hole with the same energy. Thus

Isc = −
∑

j

Ij , Jsc = 0. (10)

Again the j sum is over the Kn normal reservoirs.
The total heat absorbed by the quantum system Jtotal is the

sum of Eq. (9) over all reservoirs. Then Jtotal = −∑Kn
i=1 Vi Ii ,

since Eq. (5) means that the second term in Eq. (9) cancels.
Thus far, voltages are relative to the sc reservoir, if we take
them relative to another reference, then

Jtotal = −Vsc Isc −
Kn∑
i=1

Vi Ii . (11)

Kirchoff’s law in Eq. (10) means that changing all voltages
by the same amount does not change the total heat flow
Jtotal. Thus Jtotal respects gauge invariance whenever Ii does,
where one recalls that Ii is a self-consistent function of
(V1,T1,V2,T2, . . . VN,TN ).39 Whenever Jtotal is nonzero, heat
currents are not conserved in the quantum system; the quantum
system is a heat sink for Jtotal > 0, or a heat source for
Jtotal < 0.

IV. ZEROTH LAW OF THERMODYNAMICS

The definition of equilibrium is one of the various state-
ments that together form the zeroth law. It is defined as a state
for which one can cut the system into parts in any manner,
and one will find no charge and heat flow between those parts.
Thus, if a system in equilibrium consists of multiple reservoirs
(evidently in equilibrium with each other) all coupled to each
other through a quantum system, then there can not be any
charge or heat current through that quantum system. It is trivial
to show that any quantum system placed between an arbitrary
number of reservoirs all in equilibrium with each other must
obey this consequence of the zeroth law; the scattering matrix
S is unitary, this means that the transmission matrix obeys
Eq. (5). Substituting this into Eqs. (6) and (7), one can see
that charge and heat currents are zero whenever Tj = T0 and
Vj = V0 for all j .
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FIG. 2. (Color online) A quantum system with a finite thermo-
electric response being used as a heat engine providing power to a
set of loads. The sc reservoir is superconducting, but “load sc” is not
(its simply the load coupled to the sc reservoir).

V. FIRST LAW OF THERMODYNAMICS
AND JOULE HEATING

Equation (11) has the form of a classical Joule heating
term, i.e., voltage × current. This is due to the fact that energy
conservation ensures that the heat emitted (or absorbed) is
equal and opposite to electrical power supplied (or generated).
Thus one arrives directly at the first law of thermodynamics,
Eq. (1). However, it is important to note that this is only true
upon summing over all reservoirs, there is no particular relation
between the power flowing out of reservoir i, Pi = ViIi , and
the heat current out of that reservoir, given in Eq. (9).

As a first example, consider a quantum system with two
normal reservoirs at the same temperature but different biases,
Kirchoff’s law means that I2 = −I1, and hence Ptotal = (V1 −
V2)I1. Here, Ptotal > 0, so the reservoirs supply power to the
quantum system, the total heat current into the quantum sys-
tem, Jtotal = −Ptotal < 0, which corresponds to Joule heating.
If reservoir 1 is superconducting, then all this heat flows
into reservoir 2. Thus superconductors filter out the heat flow
generated by Joule heating (along with any other heat flow).

As a second example, the quantum system in Fig. 2 is
assumed to have a finite thermoelectric response. If one reser-
voir is heated, the quantum system generates a total electrical
power of Pgen = −Ptotal = −∑

i ViIi at the loads. Here, Vi

and Ii have opposite signs, e.g., for Vi > 0, the current flows
into the ith load, so Ii < 0. Then Jtotal = −Ptotal > 0, so the
quantum system absorbs the heat turned into electrical power.

VI. SECOND LAW OF THERMODYNAMICS

A. System coupled to two reservoirs

Here, I reproduce the calculation in Ref. 27 whose outcome
is the second law in two-reservoir systems. The Hartree-type
interaction effects can be included without any changes to
their method. For two reservoirs, the rate of change of entropy
is Ṡ = −(J1/T1 + J2/T2), one can substitute in Eq. (7) and
explicitly write out the sum over j = 1,2. There is no Andreev
scattering so T μν

ij ∝ δμν , hence, when there are only two
reservoirs, Eq. (5) gives us the following two-terminal On-
sager relation: N1 − T μμ

11 = T μμ

21 = N2 − T μμ

22 = T μμ

12 . As a

result,

Ṡtotal

kB
= −

∑
μ

∫ ∞

0

dε

h
(ξ1μ − ξ2μ)

× T μμ

12 (ε,venv)[f (ξ1μ) − f (ξ2μ)], (12)

where I define ξiμ = (ε − μe−Vi)/(kBTi), so f
μ

i (ε) = f (ξiμ)
for f (ξ ) = [1 + exp(ξ )]−1. Since f (ξ ) is a monotonically
decaying function of ξ , the product of the two square brackets
in Eq. (12) cannot be positive. Taking this together with Eq. (4),
one concludes that the second law, Ṡtotal � 0, is satisfied for
such a two-reservoir system.

B. System coupled to any number of reservoirs

In general for more than two reservoirs, there is no simple
relationship between T νμ

ji and T
μν

ij . Then the derivation of the
second law is more involved. Here, I provide a derivation that
uses only the unitarity of Sμν

ij , in the form of Eqs. (4) and (5).
Using Eq. (7), I write Ṡtotal = −(kB/h)

∫ ∞
0 dε Y (ε) with

Y (ε) =
∑
ijμν

ξiμ

[
Niδ

μν

ij − T μν

ij (ε)
]
f (ξjν), (13)

where the i and j sums are over the Kn normal reservoirs. As
in Eq. (12), I defined ξiμ = (ε − μe−Vi)/(kBTi) and f (ξ ) =
[1 + exp(ξ )]−1. I now prove that Y (ε) � 0 for all ε to show
that the second law, Eq. (2), is satisfied.

One can relabel the reservoirs in Eq. (13), giving separate
labels to the electron and hole states entering the system from
a given reservoir. Thus I replace the sum

∑Kn
i=1

∑
μ=±1 with∑2Kn

ı̃=1 , where ı̃ is related to i and μ as follows. For each i and μ,
one calculates ξiμ, and then orders the elements in ascending
order of ξiμ. I then label these states with superscripts ı̃, run-
ning from 1 to 2Kn, such that ξ (1) < ξ (2) < · · · < ξ (2Kn). Then
the quadruple sum over i,j,μ,ν in Eq. (13) can be replaced
with a double sum over ı̃,j̃ . I then define the differences

	ξ (̃n) = ξ (̃n) − ξ (̃n−1), (14)

	f (m̃) = f (ξ (m̃)) − f (ξ (m̃−1)), (15)

and so I use ξ (ı̃) = ξ (0) + ∑ı̃
ñ=1 	ξ (̃n) and f (ξ (ı̃)) = f (ξ (0)) +∑j̃

m̃=1 	f (m̃) to get

Y (ε) =
2Kn∑

ı̃,j̃=1

[
ξ (0) [Niδı̃j̃ − Tı̃ j̃ (ε)] f (ξ (0))

+
ı̃∑

ñ=1

	ξ (̃n) [Niδı̃j̃ − Tı̃ j̃ (ε)] f (ξ (0))

+
j̃∑

m̃=1

ξ (0) [Niδı̃j̃ − Tı̃ j̃ (ε)] 	f (m̃)

+
ı̃∑

ñ=1

j̃∑
m̃=1

	ξ (̃n)[Niδı̃j̃ − Tı̃ j̃ (ε)] 	f (m̃)

]
. (16)

Here, ξ (0) is arbitrary, so I take ξ (0) < ξ (1). Then 	ξ (̃n) � 0
for all ñ and 	f (m̃) � 0 for all m̃ [since f (ξ ) decays
monotonically with ξ ]. From Eq. (5), one sees that the first
three lines of Eq. (16) equal to zero when summed over ı̃,j̃ ;
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leaving only the term containing the sum over both ñ and m̃ to
evaluate. To do this, I write

∑2Kn
ı̃=1

∑ı̃
ñ=1 = ∑2Kn

ñ=1

∑2Kn
ı̃=ñ and∑2Kn

j̃=1

∑j

m̃=1 = ∑2Kn
m̃=1

∑2Kn
j̃=m̃, after which,

Y (ε)=
2Kn∑

ñ,m̃=1

	ξ (̃n) 	f (m̃)
2Kn∑
ı̃=ñ

2Kn∑
j̃=m̃

[Niδı̃j̃ − Tı̃ j̃ (ε)].

For ñ > m̃, one can prove that the sum over j̃ is positive
(or zero) for all ı̃. The proof requires noticing that every
sum over j̃ contains a positive term for j̃ = ı̃ and negative
terms for j̃ �= ı̃, and then using Eqs. (4) and (5), showing
that the sum over j̃ is not negative. This is not the case if
ñ < m̃, because not all sums over j̃ contain a term with j̃ = ı̃.
However, for ñ < m̃, one can do the ı̃ sum first, using the
same logic as above to find that the sum over ı̃ is positive (or
zero) for all j̃ . Thus

∑2Kn
ı̃=ñ

∑2Kn
j̃=m̃ [Tı̃ j̃ (ε) − Niδı̃j̃ ] � 0 for all

ñ,m̃. Combining this with the fact that 	ξ (̃n) � 0 for all ñ

and 	f (m̃) � 0 for all m̃, shows that Y (ε) � 0, and thus the
second law, Eq. (2), is obeyed.

On a side note, I want to mention that the above proof
of

∑2Kn
ı̃=ñ

∑2Kn
j̃=m̃ [Niδı̃j̃ − Tı̃ j̃ (ε)] � 0 is most easily seen

graphically. First, one can write out the matrix [Niδı̃j̃ − Tı̃ j̃ ]
explicitly and draw a rectangle around the elements summed
over for given ñ,m̃. For ñ > m̃, every row in this rectangle
contains a diagonal (ı̃ = j̃ ) element, so Eqs. (4) and (5) show
that summing the elements in each row gives a positive (or
zero) result. In contrast, for ñ < m̃, every column in the
rectangle contains a diagonal (i = j ) element, thus summing
over the elements in each column gives a positive (or zero)
result.

C. Emission of Joule heat

It is common that all reservoirs have the same temperature,
Ti = T0 for all i. Under this circumstance, the above proof of
Eq. (2), proves that the quantum system must emit Joule heat,
so Jtotal � 0.

VII. QUANTUM BOUND ON HEAT FLOWS

Equation (7) has an upper bound on the amount of heat
that a thermoelectric quantum system can extract from any
given reservoir [see Eq. (3)]. This is simply because no system
can extract more heat from a reservoir than if that system is
emptying every filled state that comes to it at an energy above
the reservoir’s chemical potential and filling every empty
electron state that comes to it at an energy below the reservoir’s
chemical potential.49 If we can get ε = 0 to coincide with the
ith reservoir’s chemical potential, then the proof is easy (see
how the below proof simplifies for Vi = 0). However, this
may not be possible when there is a superconductor present
or if one is interested in heat flows in multiple leads with
different chemical potentials. Thus, below, I provide the proof
for arbitrary Vi .

To proceed, I split Eq. (7) into two parts: J
(a)
i containing

only the parts of the integrals with (ε − μe−Vi) > 0 and J
(b)
i

containing the rest. Below, I assume positive e−Vi , the proof
for negative e−Vi follows the same logic (by interchanging
electron ↔ hole). For positive e−Vi , one has Ji = J

(a)
i + J

(b)
i

with

J
(a)
i (e−Vi > 0)

=
∫ ∞

e−Vi

dε

h
(ε − e−Vi)

∑
j,ν

[
Niδ

+1,ν
ij − T +1,ν

ij (ε)
]
f ν

j (ε)

+
∫ ∞

0

dε

h
(ε + e−Vi)

∑
j,ν

[
Niδ

−1,ν
ij − T −1,ν

ij (ε)
]
f ν

j (ε),

J
(b)
i (e−Vi > 0)

=
∫ e−Vi

0

dε

h
(ε − e−Vi)

∑
j,ν

[
Niδ

+1,ν
ij − T +1,ν

ij (ε)
]
f ν

j (ε),

where the ±1 is for an electron and a hole, respectively. Our
objective is to find the upper bound on J

(a)
i and J

(b)
i .

For J
(a)
i (e−Vi > 0), the first term in both integrands [the

terms of the form (ε ± e−Vi)] is positive, while Eq. (4) shows
that T μν

ij > 0, and the Fermi function satisfies 0 � f ν
j (ε) � 1.

Thus J
(b)
i (e−Vi > 0) can never be more positive than when

f ν
j (ε) = 0 for all j �= i or ν �= μ (where μ = +1 in the

first integral and μ = −1 in the second). The remaining
terms—those with j = i and μ = ν—can never be more
positive than when T μμ

ii = 0. Making the substitution ξ =
(ε − μe−Vi)/(kBTi) for μ = +1 in the first integral and −1 in
the second, one arrives at

J
(a)
i (e−Vi > 0) � Ni(kBTi)2

h

[
P (0) + P

(
e−Vi

kBTi

)]
, (17)

having defined P (x) ≡ ∫ ∞
x

dξ ξ/[1 + exp(ξ )].

For J
(b)
i (e−Vi > 0), the first term in the integrand

[the term of the form (ε − e−Vi)] is negative. Thus
J

(b)
i (e−Vi > 0) is most positive when the j,ν sum is as

negative as possible, and this is when the Fermi functions
f ν

j (ε) = 1 for all terms with j �= i or ν �= +1. Then
using Eq. (5) to write the sum over (j,ν) �= (i,μ) in
terms of the (i,μ) element of the sum, one sees that
J

(b)
i � − ∫ e−Vi

0
dε
h

(ε − e−Vi)[Ni − T +1,+1
ii (ε)] [1 − f +1

i (ε)],

which is most positive when T +1,+1
ii = 0. Taking this upper

bound, one can make the substitution ξ = (ε − e−Vi)/(kBTi),
and use the fact that [1 − f (ξ )] = f (−ξ ), thus arriving at

J
(b)
i (e−Vi > 0) � Ni(kBTi)2

h

[
P (0) − P

(
e−Vi

kBTi

)]
. (18)

Taking the sum of Eqs. (17) and (18) and noting that P (0) =
−Li2(−1) = π2/12, where Li2(z) is a dilogarithm function,
one arrives at Eq. (3). Redoing the derivation for e−Vi < 0,
gives different results for J

(a)
i and J

(b)
i , but their sum is the same

as for e−Vi > 0, thus the inequality in Eq. (3) holds for all Vi .
For passive cooling, the bound is a fermionic analogue of

the Stefan-Boltzmann law of black-body radiation.50 To reach
the bound J

qb
i , one couples reservoir i to a zero-temperature

reservoir with the same chemical potential, through a contact
containing Ni modes.49 To achieve the bound with active
cooling (thermoelectrically driving heat against a thermal
gradient) is more complicated. I will discuss it elsewhere58

and show that for coherent two-terminal devices, it cannot
exceed 1

2J qb.
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VIII. PHENOMENOLOGICAL TREATMENT
OF DECOHERENCE AND RELAXATION

The scattering theory, used above, includes electrostatic
interaction effects but not dynamic interaction effects. This
means that neither temperature nor bias induces the decoher-
ence or relaxation (thermalization) of the electrons as they pass
through the quantum system. However, one can include these
effects in the model in a phenomenological manner. The idea
is to model a system with such dynamic interaction effects as
follows.

Relaxation to a thermal state (and the associated decoher-
ence) is modeled by fictitious reservoirs,25,46–48 whose bias
and temperature are chosen so that the average charge and
heat flows into each such reservoir are zero. “Pure dephasing”
(decoherence with no relaxation)47 is modeled by a large set
of fictitious reservoirs coupled to the system via leads, which
only let a given energy pass through them, and by tuning the
bias on those reservoirs so that the charge and heat flows into
all of them are zero.

A system without dynamic interactions, but with the
fictitious reservoirs, obeys the bounds in Eqs. (1)–(3). Since the
average charge and heat currents into the fictitious reservoirs
are zero, the bounds on flows into the real reservoirs are the
same as in the absence of the fictitious reservoirs. Thus it
seems reasonable to conclude that Eqs. (1)–(3) are obeyed
regardless of whether the electrons decohere and relax within
the quantum system (due to electron-electron interactions) or
not.

IX. LIMITS ON QUANTUM HEAT ENGINES

Consider a two-terminal thermoelectric device extracting
electrical power Ptotal from a heat flow between hot (temper-
ature TH) and cold (temperature TC) reservoirs. Then, JH > 0
and JC < 0, while the generated power is Pgen = −Ptotal > 0.
The first and second laws, Eqs. (1) and (2), combine to give
Carnot’s result that

Pgen � JH(1 − TC/TH). (19)

This places a bound on the efficiency of power extraction,
η = Pgen/JH, but not on the power itself. Yet, taking Eq. (19)
with the quantum bound on JH in Eq. (3), one gets a bound on
the power itself,

Pgen � NHπ2k2
BTH(TH − TC)

6h
. (20)

For a heat engine between a hot source at TH = 100 ◦C =
373 K and a cold source at TC = 20 ◦C = 293 K, the maximum
power per transverse mode is 15 nW.

X. LIMITS ON QUANTUM REFRIGERATORS

Consider a two-terminal device extracting heat from a
cold reservoir (to keep it cold or cool it further) when the
ambient temperature is T0 and the cold reservoir’s temperature
is TC < T0. Power is supplied (positive Ptotal) to extract heat
from the cold reservoir (positive JC). Combining the first and
second laws, Eqs. (1) and (2), one gets the Carnot bound on
refrigeration. Equation (3) gives a second quantum bound.

Together they read

JC �
{

Ptotal TC/(T0 − TC) [thermodynamic],

NCπ2(kBTC)2/6h [quantum].
(21)

The thermodynamic bound places no limit on the heat that one
can extract from the cold reservoir—one can always extract
heat if one is able to provide enough electrical power. In stark
contrast, the quantum bound places an absolute limit on the
heat extracted.

Imagine a kitchen refrigerator consisting of thermoelectric
devices, running at 100 W and cooling from room temperature
T0 = 293 K to TC = 0 ◦C = 273 K, then

JC �
{

1300 W [thermodynamic],

NC × 36 nW [quantum].
(22)

The quantum bound is stronger than the thermodynamic one
if NC � 1010. A typical thermoelectric semiconductor (Fermi
wavelength ∼100 nm) with a cross-section of 1 cm × 1 cm has
NC ∼ 1010—the quantum bound dominates for cross-sections
smaller than this.

Consider a point contact such as in Ref. 59, where typical
powers are picowatts (pW). Suppose such a device is used for
cooling, as proposed in Ref. 13, to refrigerate a micrometer-
sized island from the cryostat temperature T0 ∼ 1 K down to
TC ∼ 0.1 K. Then

JC �
{

0.1 pW [thermodynamic],

NC × 0.005 pW [quantum].
(23)

For a single-mode point contact, the quantum bound is more
important. However, the thermodynamic one dominates for
20 or more such point contacts in parallel thermally [as in
Fig. 2(b) of Ref. 13].

XI. NERNST’S UNATTAINABILITY PRINCIPLE

Nernst’s unattainability principle is one of the two state-
ments that are together referred to as the third law of
thermodynamics. It says that one can never take a finite
temperature reservoir down to zero temperature in a finite
time. (The other part of the third law is the claim that entropy
vanishes at zero temperature.) The textbook result for the heat
capacity of a reservoir of free electrons is Ci ≡ (dQi/dTi) ∝
Ti . If the quantum system is extracting heat out over a long
time, then the fastest rate of heat removal is given by the
quantum bound, J

qb
i ∝ T 2

i . Assuming this heat flow is weak
enough that the reservoir remains in equilibrium, we have
−J

qb
i = (dQi/dt) = Ci(dTi/dt). Thus

dTi

dt
∝ −T

ζ

i with ζ = 1. (24)

For arbitrary ζ , one sees that Ti = 0 is reached in a finite
time if ζ < 1, but not if ζ > 1. Equation (24) has the critical
value ζ = 1, then the temperature decays exponentially with
time t ; thus it gets exponentially close to Ti = 0, but never
quite reaches it. The point contact in Ref. 13 at large bias
has ζ = 1. Scattering matrices with smoother ε-dependencies
give larger ζ , so the decay goes like t−1/(ζ−1) for large t . The
thermoelectric systems considered here never have ζ < 1, and
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so never violates the unattainability principle in the manner
proposed in Ref. 30.

XII. CONCLUDING REMARKS

This work is on the fully nonlinear zero-frequency (dc) heat
and charge response to time-independent potentials. It applies
for any quantum device where single-electron charging effects
are not significant (i.e., the single-electron charging energy
is much less than the temperature or level broadening due
to the coupling to reservoirs). I do not consider heat engines
and refrigerators that rely on a classical or quantum pumping
cycle, although work in this direction is desirable. One should

also remember that quantum transport is inherently noisy,
so the energy and entropy in the quantum system fluctuate
randomly on short-time scales. This noise has little effect at
low frequency, as it averages out over long time but it will
affect finite-frequency responses.

Finally, it is worth recalling that all the results presented
here rely on only two ingredients: (i) the formulation of
the Schrodinger equation as a scattering theory and (ii) the
utilization of the simple equilibrium statistical mechanics in
the reservoirs. It is remarkable that the thermodynamic laws
for nonequilibrium transport (far outside the linear-response
regime) emerge so naturally from a simple combination of
these two ingredients.
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