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Broadband near-field radiative thermal emitter/absorber based on hyperbolic metamaterials:
Direct numerical simulation by the Wiener chaos expansion method
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In the near field, radiative heat transfer can exceed the prediction from Planck’s law by several orders of
magnitude, when the interacting materials support surface polaritons in the infrared range. However, if the
emitter and absorber are made from two different materials, which support surface polariton resonances at
different frequencies, the mismatch between surface polariton resonance frequencies will drastically reduce
near-field radiative heat transfer. Here, we present a broadband near-field thermal emitter/absorber based on
hyperbolic metamaterials, which can significantly enhance near-field radiative heat transfer with infrared surface-
polariton-resonance materials and maintain the monochromatic characteristic of heat transfer. Instead of using
an effective medium approximation, we perform a direct numerical simulation to accurately investigate the heat
transfer mechanisms of metamaterials based on the Wiener chaos expansion method.
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I. INTRODUCTION

In the near field, when the gap distance between objects
is smaller than the dominant thermal wavelength predicted
by Wien’s displacement law, radiative heat transfer can be
greatly enhanced by photon tunneling through evanescent elec-
tromagnetic waves.1–3 In particular, it has been demonstrated
that near-field radiative heat transfer can exceed the predic-
tion from Planck’s law by several orders of magnitude,4–6

when the interacting materials support infrared surface polari-
ton resonances (IR-SPRs), including surface phonon polari-
tons in polar dielectric materials4 (e.g., cBN, SiC, or SiO2)
and surface plasmon polaritons in doped semiconductors.7 In
contrast to far-field radiation in which the spectral distribution
of emissive power is usually broadband, near-field thermal
emission from an IR-SPR material is almost monochromatic.8

The IR-SPR based near-field radiation is practically important
due to the significant heat transfer enhancement and quasi-
monochromatic emission, and has been suggested to be used
to increase the efficiency of thermophotovoltaic devices9,10

and create vacuum thermal rectifiers.11,12

However, the IR-SPR based near-field heat transfer is
strongly material dependent. The enhancement of heat transfer
between two identical IR-SPR materials arises from the
coupling of surface polariton waves.8 If the emitter and
absorber are made from different materials which support
SPRs at different frequencies, the mismatch between SPR
frequencies will result in much less heat transfer. For instance,
SiC supports surface phonon polaritons in the infrared range,
but gold supports surface plasmon polaritons in the visible
range. As shown in Fig. 1, near-field radiative heat transfer
between semi-infinite SiC and gold plates is found to be three
orders of magnitude less than that between two SiC plates.

To overcome the material limitation of the IR-SPR based
near-field radiation, “metamaterials” have been proposed to
enhance near-field radiative heat transfer by designing SPRs
at desired frequencies.13 Metamaterials, which are typically
structured at a scale smaller than 1/10th of wavelength, are
artificial composite materials whose electromagnetic prop-
erties are engineered by subwavelength structures such as
split-ring resonators and dilute metal wires.14,15 If the gold

plate in Fig. 1 is replaced by the arrays of subwavelength gold
wires or split-ring resonators, the effective resonant frequency
of surface plasmon polaritons in the metamaterial can be
shifted to match the resonant frequency of surface phonon
polaritons in SiC. However, in order to maintain designed
effective properties and manipulate thermal radiation in the
near field, a metamaterial needs to meet two criteria: (i) The
feature size of the metamaterial (e.g., period of subwavelength
structures) must be much smaller than the gap size between
the emitter and the absorber, which can be in the range of
tens of nanometers,16 and (ii) the metamaterial must have
an effective resonant frequency in the infrared range (e.g.,
wavelength around 10 μm) in order to match the resonant
frequency of an IR-SPR emitter. For both criteria to be fulfilled
simultaneously, the diameters of dilute metal wires and the
thicknesses of split-ring resonators are predicted to be in the
subnanometer scale. Although these resonant metamaterials
show the potential for manipulating near-field radiation, they
are very difficult to be experimentally realized with current
fabrication technologies.

In this paper, we present a broadband nonresonant heat
emitter/absorber based on hyperbolic metamaterials,17–19

which can significantly enhance near-field radiative heat
transfer between metals and IR-SPR thermal emitters, and
maintain the monochromatic characteristic of the IR-SPR
based near-field radiation. In order to elucidate the heat
transfer mechanisms of complex three-dimensional meta-
materials, we directly calculate near-field radiation based
on the Wiener chaos expansion method, rather than using
effective medium theory (EMT). Previous studies on meta-
material based near-field radiation generally adopted EMT to
approximate electromagnetic properties.13,20 However, EMT
approximation has two drawbacks: (i) It may not be applicable
in the near field because, instead of effective or averaged
properties, inhomogeneous behaviors of individual subwave-
length structures dominate the responses of metamaterials to
the exponentially decaying evanescent waves. (ii) EMT is
essentially an approximation which cannot provide detailed
information on the electromagnetic fields in metamaterials.
A direct numerical simulation is thus crucial for accurately
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FIG. 1. (Color online) Plot of radiative heat transfer between two
semi-infinite plates maintained at 0 and 300 K against the vacuum
gap size d . The SiC-SiC case (red curve) is compared to the SiC-gold
case (blue curve). The blackbody radiation limit is also plotted for
reference (black dashed line).

predicting the near-field responses of complicated geometries
such as metamaterials.

II. ENHANCED NEAR-FIELD HEAT TRANSFER
BETWEEN AN IR-SPR EMITTER AND A HYPERBOLIC

METAMATERIAL

Hyperbolic metamaterials are nonresonant and can po-
tentially manipulate near-field radiation.17,21 The effective
permittivity of this type of metamaterial has a negative ver-
tical component (εz < 0) and positive horizontal components
(εx,y > 0), with the materials assumed to be uniaxial (i.e.,
εx = εy = εx,y) for simplicity. Since εz and εx,y are opposite
in sign, the dispersion relation for TM (transverse magnetic,
Hz = 0) waves is a hyperbolic function

k2
z

εx,y

− K2

|εz| = k2
0, (1)

where K is the lateral wave vector K =
√

k2
x + k2

y , and k0

is the wave vector in vacuum. As shown in Eq. (1), one
intriguing property of hyperbolic metamaterials is that they
allow propagating TM waves with no upper bound for K .
The IR-SPR based near-field heat transfer is dominated by the
contribution from the TM waves that have a purely imaginary
kz and a large surface wave vector K (K > k0).1 These
waves are evanescent in vacuum but can be converted into
propagating waves by hyperbolic metamaterials for arbitrarily
large K .

Hyperbolic metamaterials can be realized by a number
of structures such as alternating metal-dielectric layers17 and
metal wire arrays (MWAs).18,19 In the infrared regime, metals
behave as perfect electric conductors (PECs) with permittivity
ε = −∞ + i∞. A metamaterial made of MWAs can have the
hyperbolic dispersion given by Eq. (1) in a broad frequency
band for ω < ωp without relying on the intrinsic resonant
properties of metals. Here, ωp is the equivalent plasma
frequency of MWAs, which can be expressed by the wire
period a and the radius r as ωp ≈

√
2πc2

0/[a2ln(a/r)].22

The vertical components of the effective permittivity εx,y can
be approximated as the vacuum permittivity ε0 due to the

negligible polarizability in the x or y direction. However, the
estimation of the parallel component εz is not straightforward.
The local EMT model for “diluted metal wires” proposed
by Pendry et al.22 cannot interpret the dispersion of the
propagating waves inside the MWAs.18,19 Belov et al.18

proposed a nonlocal EMT model for MWAs which requires
evaluating the microscopic structure details

εz(ω,kz) = ε0

(
1 − ω2

p

ω2 − c2
0k

2
z

)
, (2)

which is always negative for ω < ωp. If the period of MWAs is
chosen to be hundreds of nanometers, ωp of MWAs is typically
in the visible range, and MWAs can maintain the hyperbolic
dispersion in the infrared range.

The performance of MWAs can be evaluated by the
photon local density of states (LDOS) above the surface
of semi-infinite MWAs. According to Ref. 23, the photon
tunneling rate through evanescent waves increases with the
increase of the LDOS immediately above the surface of
the thermal emitter/absorber. Therefore, by enhancing the
LDOS, near-field radiative heat transfer can be increased.
The LDOS, ρi(d,K,ω), at the distance d above the surface
of a medium for parallel wave vector K and frequency ω is
related by

ρi(d,K,ω) ∝ Im
[
ri

TM

]
exp(−γ d), (3)

where ri
TM is the Fresnel factor of the medium i ∈

{emitter, absorber} for TM waves, and γ =
√

k2
0 − K2. Here,

we ignore the contribution from the transverse-electric (TE)
wave since the near-field heat transfer with an IR-SPR emitter
is dominated by TM waves. Furthermore, the profile of
the spectral heat flux �(ω) between a thermal emitter and
absorber separated by a vacuum gap d can be estimated by
the product of the LDOS above the surface of each individual
medium, ∫ ∞

k0

d2Kρemitter(d,K,ω)ρabsorber(d,K,ω). (4)

Due to the hyperbolic dispersion, the LDOS above MWAs can
be dramatically increased compared to that of bulk metals.
However, the exact value of the LDOS of MWAs is difficult
to be calculated based on the nonlocal EMT model [Eq. (2)],
because the calculation of the Fresnel factors of nonlocal media
requires the structure details to be scrutinized.24 Hence, we
consider a limiting case with a local dispersion relation to
predict the general trend of the LDOS above MWAs. If the
period of MWAs is infinitely small, the equivalent plasma
frequency approaches infinity, ωp → ∞, then the effective
permittivity of this limiting case of MWAs is εx = εy =
ε0,εz = −∞, according to Eq. (2). The limiting case is a
reasonable approximation to the actual MWAs in the near
field because it can lead to the same dispersion relation of the
propagating waves inside MWAs as that of the actual cases
when ω < ωp.18,19 The LDOS can thus be easily evaluated
by calculating the Fresnel factor for an anisotropic medium
with a local EMT model.16 In Fig. 2, we estimate the LDOS at
100 nm above the surface of the semi-infinite SiC, gold, and
the limiting case of MWAs by calculating Im[rTM] exp(−γ d).
The LDOS of MWAs is largely enhanced in a broad frequency
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FIG. 2. (Color online) Plot of the expression Im[rTM] exp(−γ d) to estimate the photon local density of state (LDOS) at d = 100 nm above
the surface of semi-infinite (a) SiC, (b) Au, and (c) the limiting case of metal wire arrays (MWAs).

band compared to that of gold. The LDOS of SiC has a sharp
peak at the SPR frequency. The LDOS of MWAs as shown
in Fig. 2 is almost evenly distributed in the infrared regime.
Hence, MWAs can strongly interact with an IR-SPR emitter
(e.g., SiC) and simultaneously maintain the monochromatic
near-field heat transfer with the IR-SPR emitter, according to
Eq. (4).

III. WIENER CHAOS EXPANSION METHOD

Since conventional approaches for directly calculating
near-field radiation mainly rely on the analytical forms of
dyadic Green’s functions,25 these calculations can only be
conducted for simple geometries, e.g., semi-infinite plates,
spheres, and multilayers. For complex structures such as
metamaterials, EMT is often employed to approximate the
arrays of inhomogeneous subwavelength structures as a
homogenous medium with effective electric and magnetic
properties. There exist few direct numerical methods to simu-
late near-field radiation. Guérout et al.26 developed a method
based on scattering theory to calculate the radiative heat
transfer between one-dimensional gratings. Rodriguez et al.27

conducted a direct simulation to investigate the near-field
radiative heat transfer between two photonic crystal slabs using
the Monte Carlo method. Very recently, Rodriguez et al.28

proposed a fluctuating surface-current (FSC) formulation to
evaluate radiative heat transfer for arbitrary geometries based
on the boundary element method (BEM). Badieirostami29

and Wen30 conducted nonstochastic direct simulations for
incoherent light sources and radiative heat transfer between
two parallel plates, respectively, based on the Wiener chaos
expansion method. Here, we perform a direct numerical sim-
ulation of near-field radiation for complex three-dimensional
geometries (e.g., MWAs) using the Wiener chaos expansion
method29,30 by the finite-difference time-domain (FDTD)
technique.

The unique properties of the Wiener chaos expansion
method are summarized below. First, unlike the scattering
theory formulations described in Ref. 26, the Wiener chaos
expansion method does not require any mode expansion
over the wave vector. It only relies on finding a proper
orthonormal basis of the geometries. Thus, the Wiener chaos
expansion method can be used to calculate the thermal

radiation from arbitrary geometries. Second, the Wiener chaos
expansion method is a nonstochastic method and it does
not need any random number generators, whereas a proper
random number generator is critical for the efficiency and
accuracy of the Monte Carlo method.29 Furthermore, the
Wiener chaos expansion method can be implemented by the
standard FDTD technique, which can obtain the spectrum
information (i.e., spectral energy flux from each mode) from
a single simulation. However, the data points at different
frequencies need to be simulated separately by the frequency-
domain methods, such as the FSC method28 and the finite-
difference frequency-domain implementation of the Wiener
chaos expansion method in Ref. 30.

Thermal radiation from an object physically originates from
thermally induced random currents Jl(r,ω) whose mean value
is equal to zero. According to fluctuation electrodynamics,31

the thermally induced random currents are spatially and
temporally incoherent, which satisfy

〈Jk(r,ω)J ∗
l (r ′,ω′)〉 = V (ω,T )2δ(ω − ω′)δklδ(r − r ′), (5)

where V (ω,T ) = √
4ε0Im[εr ]	(ω,T )/π is a deterministic

function, the bracket 〈·〉 denotes the statistical ensemble
average, ε0 is the permittivity of vacuum, Im[εr ] is the
imaginary part of the dielectric function of the object, and
	(ω,T ) = h̄ω/[exp(h̄ω/kBT ) − 1] is the Planck distribution.
δklδ(r − r ′) are the Kronecker delta and Dirac delta functions
that indicate the random currents are incoherent at different
polarizations (l and k) and different locations, respectively.
δ(ω − ω′) indicates the temporal incoherence. Due to the
spatial incoherence, Jl(r,ω) at a certain frequency can be
constructed as Jl(r,ω) = V (ω,T )dW (r)l, where dW (r) is the
white noise function (i.e., the derivative of Brownian motion)
that has the properties 〈dW (r)〉 = 0 and 〈dW (r)dW (r ′)〉 =
δ(r − r ′). dW (r) has been extensively studied in stochastic
process theories and can be expanded by the Karhunen-Loève
expansion as dW (r) = ∑∞

n=1 cnfn(r),32 where {fn} is an or-
thonormal basis for a volume S with thermal sources defined by∫
r∈S

fi(r)f ∗
j (r)d3r = δij , and cn are the uncorrelated random

variables satisfying 〈ci〉 = 0, 〈cicj 〉 = δij . Thus, the random
current sources can be expanded as the linear combination of
the orthogonal current modes {jn(r,ω) = V (ω,T )fn(r)}, such
that Jl(ω,r) = ∑∞

n=1 cnjn(r,ω)l. Now Eq. (5) can be rewritten
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FIG. 3. (Color online) Average energy flux radiated from random
current sources is expanded as the sum of the energy flux from each
orthogonal current mode. Fast convergence can be achieved when the
current modes are chosen in sinusoidal forms.

as

〈Jl(r,ω)J ∗
l (r ′,ω)〉 =

∞∑
n=1

∞∑
m=1

〈cncm〉jn(r,ω)j ∗
m(r ′,ω)

=
∞∑

n=1

jn(r,ω)j ∗
n (r ′,ω). (6)

According to Maxwell’s equations, energy flux q(ω) is
usually related to the current source term J (r,ω)J ∗(r ′,ω) by
a linear operator L[·] as q(ω) = L[J (r,ω)J ∗(r ′,ω)].1,2 Here,
L[·] is the standard dyadic Green’s function, which is the
electromagnetic response to a point dipole source. From Eq. (6)
the average energy flux from the random currents 〈q(ω)〉 =
L[〈J (r,ω)J ∗(r ′,ω)〉] can be expanded as the sum of the energy
flux from each current mode qn(ω) = L[〈jn(r,ω)j ∗

n (r ′,ω)〉],
〈q(ω)〉 = L[〈J (r,ω)J ∗(r ′,ω)〉]

=
∞∑

n=1

L[jn(r,ω)j ∗
n (r ′,ω)] =

∞∑
n=1

qn, (7)

which is illustrated in Fig. 3.
The primary challenge of the Wiener chaos expansion

method is to find the proper current modes of the thermal
sources. For instance, when the current modes are chosen in
sinusoidal forms, their expansion can be physically viewed
as a classical multipole expansion (Fig. 3), which leads to a
fast convergence for energy flux calculation.33 Hence we can
truncate the expansion and only keep the lower order current
modes without losing accuracy. For complicated geometries,
the current modes can be generated in spherical harmonic
forms using the algorithms developed in Ref. 34.

IV. SIMULATION RESULTS

Here, we investigate the near-field radiative heat transfer
between an IR-SPR emitter and MWAs placed in vacuum.
The IR-SPR emitter is assumed to be a 1 μm thick plate.
Metal wires are aligned in the z direction with radius r = 50
nm and period a = 300 nm. The IR-SPR emitter is kept at
300 K, and the MWAs are at 0 K. The heat flux between them
is evaluated by calculating the amount of energy transmitted
into the MWAs. As the MWAs are at a finite temperature, the
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FIG. 4. (Color online) Spectral heat flux into PEC MWA and gold
MWA due to current mode 1. The MWAs have the same geometry:
wire radius r = 50 nm, wire period a = 300 nm. The vacuum gap
size d between the MWAs and SiC plate is 100 nm.

net heat flux can be solved by the reciprocity of radiative heat
transfer.27 In our simulation, the current modes in the IR-SPR
emitter are chosen in sinusoidal forms (see the Appendix)
because of the resulting high convergence speed of numerical
simulation. The MWAs at 0 K do not emit thermal radiation,
and we only consider their electromagnetic response in the
infrared range. The metal wires in our simulation are assumed
to be PEC wires, which are verified by comparing the energy
fluxes into PEC and gold wire arrays for current mode 1. We
find that the results from PEC and gold wires are almost the
same, as shown in Fig. 4.

The spectral heat flux between a SiC emitter and the MWAs
with a 100 nm gap is plotted in Fig. 5(b). The first current mode
(dipolelike mode) contributes ≈40% of the total heat flux, and
the first two modes contribute ≈80%. The monochromatic
feature of heat transfer is denoted by the peaks corresponding
to the symmetric and antisymmetric SPR modes of the 1 μm
thick SiC plate, where near-field heat transfer clearly exceeds
the Planck law. The broadband response from the MWAs
can be found by introducing an “ideal SPR emitter” that has
a frequency-independent permittivity equal to −1 + bi. The
real part, −1, indicates that the material supports SPR at any
frequency, and the imaginary part b is an arbitrary number
associated with the magnitude of thermal induced currents in
Eq. (5). In Fig. 5(b), b is assumed to be 0.1. The spectral heat
flux between the “ideal SPR emitter” and the MWAs is plotted
in Fig. 5(b). Heat transfer enhancement is observed for all the
frequencies of interest in the infrared regime.

The mechanism with which MWAs absorb heat is directly
elucidated in our simulations. The field profiles inside the
MWAs at the SPR frequency of SiC are shown in Figs. 5(c)
and 5(d). The highly spatial dispersion of MWAs leads to the
TEM (transverse electromagnetic, Ez = Hz = 0) propagating
modes.18 At the frequencies below the equivalent plasma
frequency ωp, the hyperbolic dispersion relation becomes flat
as k2

z = k2
0. Thus, the MWAs support the TM waves with

arbitrary K propagating only along the z direction (i.e., TEM
waves).19 For real MWAs (e.g., gold wire arrays), they couple
the TM waves (both propagating and evanescent components)
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FIG. 5. (Color online) (a) Schematic diagram (3D view and top view) of the SiC plate heat emitter (at 300 K) and the metal wire array heat
absorber (at 0 K) separated by a vacuum gap. Metal wires have an infinite length, radius r = 50 nm, and period a = 300 nm. (b) Spectral heat
flux into metal wire arrays from sinusoidal current modes in the SiC plate at a 100 nm vacuum gap. (c), (d) Electric and magnetic field profiles
in metal wire arrays at the SPR frequency (1.78 × 1014 rad/s) of SiC, measured at the plane 2 μm above the gap.

from the IR-SPR emitter into the TEM waves propagating
along the wires, which will eventually be absorbed by metals
due to the ohmic loss. In the frequency range of thermal
radiation, the MWAs can be viewed as a system of coupled
low-loss transmission lines.18 The decay length Ld of the gold
wires in Fig. 5 is estimated to be on the order of 100 μm by
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FIG. 6. (Color online) (a) Comparison between heat fluxes from a
1 μm thick SiC plate (at 300 K) to MWAs (at 0 K) and a semi-infinite
gold plate (at 0 K), as a function of the vacuum gap size. Also the
performance of ideal MWAs is plotted for reference. (b) Spectral heat
flux between the SiC plate and the MWAs with different (a,r) at a
100 nm gap. Here a,r denote the period and the radius of metal wires,
respectively.

the approach described in Ref. 19 that Ld ≈ Im[kz]−1 for the
TEM waves with K = 0. With this low-loss feature, MWAs
can also be used as “near-field thermal waveguides” which
can couple the evanescent radiative energy at the nanoscale
and transfer it to a macroscopic scale.

In Fig. 6(a), we plot the total heat flux between the SiC IR-
SPR emitter and the MWAs against the gap sizes. Compared
with the SiC-gold case, MWAs can enhance the near-field heat
transfer with SiC by one order of magnitude without having
to match the SPR in SiC. These results show that MWAs
significantly modify the radiative thermal properties of bulk
metals in the near field. For a fixed gap, the performance of
MWAs is determined by wire density and size. As shown in
Figs. 5(c) and 5(d), the transmitted energy in the MWAs is
concentrated on the surface of each wire. MWAs with smaller
radii and periods are expected to absorb more energy. This
trend is demonstrated by calculating the spectral heat fluxes to
MWAs with different wire radii and periods [Fig. 6(b)]. The
performance of MWAs can be maximized when the period
of the wires is infinitely small, which is the limiting case
presented in Sec. II. The radiative heat transfer between this
limiting case of MWAs and a SiC emitter can be calculated
analytically by modeling the MWAs as an anisotropic medium
with a local dispersion relation based on EMT,16,35 as shown in
Fig. 6(a). At large gaps, the limiting case EMT approximation
gives an accurate prediction. However, for small gaps, it
overestimates the heat transfer in actual cases. Therefore, a
direct numerical simulation is required to accurately predict
the performance.

V. CONCLUSION

In this paper, we described a hyperbolic metamaterial based
heat emitter/absorber made of metal wire arrays (MWAs),
which can greatly enhance near-field heat transfer with IR-SPR
materials. Rather than match the resonant frequencies of
IR-SPR materials, MWAs are nonresonant and have enormous
enhancement of the LDOS in a broad frequency range.
We directly simulated the near-field radiative heat transfer
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TABLE I. The ranking of the groups of the current modes
mentioned in Sec. IV.

Mode ranking l m n

1 0 0 0
2 0 0 1
3 0 0 2
4 0 0 3
5 0 0 4
6 0 0 5
7 0 1 0
8 1 0 0
9 0 1 1
10 1 0 1
11 0 1 2
12 1 0 2
13 1 1 0
14 1 1 1

between MWAs and an IR-SPR emitter based on the Wiener
chaos expansion method. The direct numerical simulation is
demonstrated to be critical for accurately predicting the near-
field radiation of complex geometries such as metamaterials.
Manipulation of near-field radiation using metamaterials has
been considered in theory for a long time but is difficult to
be experimentally realized. The results presented in this paper
provide a feasible way to achieve the metamaterials which
can work in the near field and enhance radiative heat transfer
beyond material limitations.
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APPENDIX: CURRENT MODES

As discussed in Sec. III, a proper set of current modes
in thermal emitters {ji(r) = V (ω,T )fi(r)} can be selected by
choosing a set of orthonormal basis functions {fi} in sinusoidal
forms. When dealing with the periodic structures such as
metamaterials, the quality of the current modes can be further

improved by taking advantage of the periodicity and symmetry
of the geometries.

In the simulation of the heat transfer between the IR-SPR
emitter and MWAs, as shown in Fig. 5(a), the orthonormal
basis {fi} is defined in the volume of the 1 μm thick SiC plate.
Since the structure is periodic in the x,y direction, the infinite
plate can be divided into cuboid cells with a height of h =
1 μm and a length and a depth of a/2. Thus, the orthonormal
basis {fi} for this infinite plate can be chosen as the union of the
orthonormal basis for all the cuboid cells. Consider the cuboid
cell centered at (xc,yc) = ( a

4 [2cx + 1], a
4 [2cy + 1]), where cx

and cy are integers. The orthonormal basis for this cell is
chosen as the Fourier-series basis {fl,m,n,k,cx ,cy

}, where

fl,m,n,k,cx ,cy
(x,y,z) = Hl(x − xc)Pm(y − yc)Gn(z + h)k,

(A1)

and

Hl(x) =
⎧⎨
⎩

√
2
a
, l = 0,√

4
a

cos
[

lπ(x+cxa/2)
a/2

]
, l = 1,2,3 . . . ,

Pm(y) =
⎧⎨
⎩

√
2
a
, m = 0,√

4
a

cos
[mπ(y+cya/2)

a/2

]
, m = 1,2,3 . . . ,

(A2)

Gn(z) =
⎧⎨
⎩

1√
h
, n = 0,√

2
h

cos
[

nπz
h

]
, n = 1,2,3 . . . .

.

Here, x − xc,y − yc ∈ [ − a/4,a/4], z ∈ [ − h,0], k ∈ {ex,

ey,ez} is the unit vector of three-dimensional (3D) space. Then
the current modes in the SiC plate become {jl,m,n,k,cx ,cy

(r,ω) =
V (ω,T )fl,m,n,k,cx ,cy

(r)}.
Due to the periodicity and symmetry of the structure,

the current modes in different cuboid cells have the same
contribution to thermal radiation. Therefore, we only need to
evaluate the current modes in one cell, which can be chosen as
cx = cy = 0. Since the current modes in sinusoidal forms can
be viewed as a multipole expansion, they can be divided into
different groups with ranking numbers, which are similar to the
orders in the multipole expansion. The top 14 groups of current
modes are listed in Table I. For example, mode 1 denotes the
group of current modes {jl,m,n,k,cx ,cy

} with l = m = n = 0. It
can be viewed as the term of dipole approximation, which is
similar to the concept mentioned in Ref. 36.
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