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Large Chern number phases in a Haldane model become possible if there is a multiplication of Dirac points
in the underlying graphene model. This is realized by considering long-distance hopping integrals. Through
variation of these integrals, it is possible to arrive at supermerging band touchings, which up to N7 graphene are
unique in parameter space. They result from the synchronized motion of all supplementary Dirac points into the
regular ±K points of graphene. The energy dispersion power law is usually larger than the topological charge
associated with them. Moreover, adding distant-neighbor hoppings in the Haldane mass allows one to sweep
large Chern number phases in the topological insulator.
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I. INTRODUCTION

The Haldane model1 is the first topological insulator that
presents the quantum Hall effect without an external magnetic
field. It is a two-band system with bands that have a nontrivial
topology. The bands are characterized by Chern numbers that
are proportional to the conductance carried by edge states. This
model was a playground for ideas that eventually led to the
prediction and discovery of the Z2 topological insulators.2,3

Here we revisit the Haldane model and show in practice how
the addition of hopping integrals between distant neighbors
can lead to a multiplication of topological phases with a large
Chern number. Recent work suggests a way to produce flat
bands with arbitrary Chern numbers in multilayer systems.4,5

In contrast, we constrain ourselves to the two-band Haldane
system and we do not seek flatness of bands. Admittedly
this is not a very physical way to increase the topological
index characterizing a band, because the contribution from
distant neighbors is small. The conceptual advantage is that
one can fully describe the phase diagram of such systems
and analytically predict its topological transitions. The system
can be understood from a decomposition of the model in an
underlying gapless graphene model and a Haldane mass. The
variation of the topological index is related at once to the
multiplication of nodes in the energy dispersion for the gapless
system and to the rapid oscillations in the Haldane mass term.
In general, if the two-band underlying gapless system admits
2n Dirac points, then the Chern number can vary from −n to
n.6

In Sec. II we present the theoretic tool to compute analyti-
cally the Chern number in a two-band system. That allows one
to immediately discriminate the topological phases. In Sec. IV,
we treat the underlying graphene with long-distance hopping
integrals. Up to N7 (next × 6-nearest-neighbor) graphene,
we investigate the multiplication of Dirac points through
the addition of long-range hopping. We also show that
there are unique supermerging points where all the Dirac points
merge to ±K points in the graphene Brillouin zone (BZ).
Satellite Dirac points can be found by perturbing around these
special band touchings. The topological charge associated with
them can be immediately established from a sum over the
additional Dirac points. In Sec. IV, we consider the effects of

gapping the Dirac points with a Haldane mass term. The phase
diagram for the modified Haldane model is shown.

II. CHERN NUMBER IN TWO-BAND MODELS

A generic two-band Hamiltonian on a two-dimensional
Bravais lattice reads

H = 1

4π2

∫
BZ

d2k
∑

α,β=1,2

hαβ(k)c†αkcβk (1)

with c
†
αk the creation operator of the Bloch state with wave

vector k and where α constitutes a pseudospin index resulting
from either two sublattices or two orbitals per unit cell. The
elements hαβ(k) form a 2 × 2 Hermitian matrix h(k) that can
be written

h(k) =
3∑

μ=0

hμ(k)σμ, (2)

with σ0 the identity matrix and σ1,2,3 the Pauli matrices.
hμ=0,3(k) comes from intrasublattice contributions hαα and
hμ=1,2(k) from intersublattice contributions hαβ . The real
valued functions hμ(k) can be further split into even and odd
components hμ(k) = he

μ(k) + ho
μ(k), where he

μ(k) = he
μ(−k)

and ho
μ(k) = −ho

μ(−k). For time-reversal symmetric, spinless
Hamiltonians, hμ=0,1,3(k) are purely even and h2(k) purely
odd.

The spectral decomposition of matrix h(k) reads

h(k) =
∑
±

ε±(k)P±(k), (3)

with band energies ε±(k) = h0(k) ± |h(k)| and eigenband pro-
jector P±(k) = 1

2 (σ0 ± h · σ/|h|), where h(k) = (h1,h2,h3).
Component h0(k) breaks particle-hole symmetry by shifting
the energy bands and it may also lead to an indirect overlap
of the two energy bands. Nevertheless it does not intervene
in the direct gap |h| or in the projectors P± which determine
the topological properties of the Hamiltonian. In the following
we will neglect the h0(k)σ0 term and consider the system
an insulator as long as the direct gap |h| does not close; in
this situation the projection to the lower band is always well
defined. An insulating phase, in which the three components
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of h(k) never vanish simultaneously and |h| remains finite
for any k, can be characterized by a topological index, the
first Chern number C. The integer C counts how many times
the Brillouin zone wraps around the unit sphere traced by
ĥ = h/|h|. One can choose to index the system with the Chern
number associated with the lowest band ε−(k),

C = 1

4π

∫
BZ

d2k ĥ · (
∂kx

ĥ × ∂ky
ĥ
)
, (4)

where the integral is over the Brillouin zone. The Chern
number is zero unless one of the components of h(k) breaks
time-reversal symmetry. Furthermore, a nonzero value of C
requires that any submodel obtained by considering only two
components of h must exhibit band touchings at some finite
set of points in the BZ.6 In fact, an explicit calculation of C
is made easy by considering such a gapless system containing
only two components of h. When the band touchings of the
gapless submodel have linear dispersion (i.e., they are Dirac
points), C can be calculated by treating separately the chirality
of the Dirac points and the sign of the third component of h
(the mass term that gaps the system) at these Dirac points. The
Chern number then reads6

C = 1

2

∑
k∈Di

χi(k) sgn(hi), (5)

where Di is the set of Dirac points for a simplified two-
component model without an hi term, and

∀ k ∈ Di, χi(k) = sgn
(
∂kx

h × ∂ky
h
)
i

(6)

is their corresponding chirality. Such formula permits an
analysis of the Haldane model by separately studying the
underlying gapless graphene model and the sign of the mass
term. The caveat of the above formula is that it works only
for point band touchings with linear energy dispersion (Dirac
points). However, we shall see that there can be Fermi lines or
point band touchings with higher power dispersion as well. The
latter ones can be understood as the merging of many Dirac
points. Then the topological charge of the merging points is
just the sum of the chiralities for the Dirac points that are
converging to it. This fast calculation of charge associated
with a band touching will be referred to as the sum rule.7

III. DISTANT-NEIGHBOR HOPPING IN GRAPHENE

As seen in previous section, the possibility of a two-band
insulator with a Chern number C = n requires one to build a
reduced two-band gapless model with at least 2n Dirac points.
Let us consider the extended tight-binding graphene model,
including distant Nn [next × (n − 1)-nearest-neighbor] hop-
ping terms on the hexagonal lattice. The eventual Dirac point
will eventually be gapped by a Haldane mass to yield a
topological insulator with large Chern numbers. The hexagonal
lattice is a bipartite lattice built out of two interpenetrating
triangular Bravais sublattices A and B. Let us denote by tn
the (isotropic) Nn intra- and intersublattice hopping terms
(see Fig. 1). The parameter t1 corresponds to usual nearest-
neighbor N1 graphene. In this section we considered only
intersublattice hoppings tn in units of t1, such that there
are n − 1 free parameters. The intrasublattice hopping terms
contribute to the identity Pauli matrix σ0 and are neglected

t1

t2
t3

t4
t5

t6 t7
t8 t9

FIG. 1. (Color online) The possible hoppings in the graphene
N9 model. From a central B atom, the neighbors are arranged in
concentric circles. The hopping integrals from the central B atom to
a site placed on a circle is denoted by tn, n growing with the distance
between sites.

in the following. For real-valued tn, the matrix h(k) preserves
time-reversal and inversion symmetries [e.g., h∗(−k) = h(k)
and σ1h(−k)σ1 = h(k)]. Moreover, when considering only
intersublattice hopping tn, there is a sublattice symmetry
characterizing the system. The symmetry is represented by
the operator σ3 which anticommutes with h(k).8 Explicitly,
h(k) reads

h(k) =
(

0 f (k)

f ∗(k) 0

)
, (7)

with f (k) = h1(k) − ih2(k) or

f (k) =
∑

n

tngn(k), (8)

where the functions gn(k) up to N9 are tabulated in Table I
in which a1 = √

3a( 1
2 ,

√
3

2 ) and a2 = √
3a(− 1

2 ,
√

3
2 ) denote the

primitive vectors of the triangular sublattices. The hexagonal
lattice constant a is set to 1 from now on. The explicit form
of the function gn(k) corresponds to a Bloch basis such that
gn(k + G) = gn(k) with G a reciprocal lattice vector.

A. Nearest-neighbor N1 graphene review

Before studying Nn graphene, let us briefly review the
usual properties of N1 graphene where f (k) = t1g1(k). The
two energy eigenvalues are given by ε±(k) = ±|f (k)| and
there is a gap separating the two bands. Band touchings
occur at isolated positions ±K corresponding to zeros of
f (k). For N1 graphene the zeros correspond to the two
nonequivalent Brillouin zone corners ±K = ±(a∗

1 − a∗
2)/3,

where a∗
1 = 4π

3a
(
√

3
2 , 1

2 ) and a∗
2 = 4π

3a
(−

√
3

2 , 1
2 ). At each of these

points, there are two degenerate zero-energy eigenstates. As
illustrated in Fig. 2, the bipartite property allows one to project
one state entirely on the A sublattice and the other on the
B sublattice.9 Altogether there are four zero-energy states,
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TABLE I. Properties of Nn AB intersublattice hopping terms. Physical distance is counted in units of lattice constant a. Chemical distance
is the smallest number of bonds passed while hopping between two sites. In the “neighbors” column are the number of sites counted at a given
physical distance from a chosen central site. In contrast, note that any site has 3n neighbors located at a chemical distance n from it. The
primitive vectors of the triangular sublattice are a1 = √

3a( 1
2 ,

√
3

2 ) and a2 = √
3a(− 1

2 ,
√

3
2 ).

Physical Chemical
Nn Hopping distance distance Neighbors gn(k)

N1 t1 1 1 3 1 + e−ik·a1 + e−ik·a2

N3 t3 2 3 3 eik·(a1−a2) + eik·(a2−a1) + e−ik·(a1+a2)

N4 t4
√

7 3 6 eik·a1 + eik·a2 + e−2ik·a1 + e−2ik·a2 + eik·(a1−2a2) + eik·(a2−2a1)

N7 t7
√

13 5 6 eik·(2a1−a2) + eik·(2a2−a1) + e2ik·(a1−a2) + e2ik·(a2−a1) + e−ik·(2a1+a2) + e−ik·(2a2+a1)

N8 t8 4 5 3 eik·(a1+a2) + eik·(a1−3a2) + eik·(a2−3a1)

N9 t9
√

19 5 6 e−3ik·a1 + e−3ik·a2 + eik·(2a1−3a2) + eik·(2a2−3a1) + e2ik·a1 + e2ik·a2

each labeled by two indices: a valley index corresponding
to ±K and a sublattice index A or B equivalent to the
eigenvalues ± associated with sublattice symmetry operator
σ3. The time-reversal transformation exchanges valley index
without changing sublattice index. Inversion (represented by
σ1) exchanges both valley and sublattice indices. Hence the
product of the two operations exchanges sublattice index only.

In the neighborhood of the band touchings ±K, one can ex-
pand the function f (k) in small momenta q = q(cos θ, sin θ ).
It follows that f (±K + q) � qe∓iθ and the linearity in q

identifies the band touchings as massless Dirac fermions.
More generally, if the band touching has f ∝ (qe−iθ )n, then
its respective chirality is n. This translates to the fact that
the two-dimensional vector (h1,h2) ∝ qn(cos(nθ ), sin(nθ ))
rotates counterclockwise by 2πn for θ sweeping once the
interval [0,2π ). Here, for n = 1, it follows immediately that
Eq. (6) and the low-energy expansion both predict χ (±K) =
±1.

B. Band touchings in Nn graphene

Let us study how the properties of the zero-energy states
are modified when distant-neighbor hoppings are consid-

ered. For Nn graphene, band touchings occur at positions
±k corresponding to zeros of f (k) = ∑

n tngn(k). Previous
solutions, ±K, obey gn(±K) = 0 and thus remain zeros of
f (k) regardless of the new hopping integrals tn>1. To find
the positions of other zeros, one can keep k on the three
high-symmetry lines T joining 
, ±K, and M . These lines are
globally invariant under time reversal, C3, C2 and inversion
with respect to the 
 point. Without loss of generality, let us
analyze the T line, k = k(1,0) (see Fig. 4). Along it gn(k)
is a real function and the condition f (k) = 0 translates into a
polynomial equation h1(x) = 0 for the variable x = cos(

√
3

2 k).
Up to N8 this polynomial reads as

h1(x) = 4

(
x + 1

2

)
p(x), with

p(x) = 4(t7 + t8)x3 + 2(t4 − t8)x2 + (t3 − 4t7 − 3t8)x

+1

2
− t3

2
− t4 + t7 + 3t8

2
. (9)

The maximum number of solutions is given by the degree
of the polynomial and it clearly increases with the range of
hopping, but not systematically since N7 and N8 correspond
to a polynomial with the same degree. When all the solutions

∗1(a) (b)

∗

1

1

11

1

∗

∗∗

∗1

∗1

∗

1

11

1

1

∗∗

∗1

FIG. 2. Real-space representation of the four zero-energy eigenstates of N1 graphene (Ref. 9). Filled (empty) bullets represent A (B)
sublattice sites. Wave function components on different lattice positions are related by Bloch theorem ψk(r + R) = eik·Rψk(r) with R any
Bravais lattice vector. Let us denote ε = eiK·a1 = e2πi/3; then eiK·a2 = ε∗ with 1 + ε + ε∗ = 0 and ε3 = ε∗3 = 1. (a) corresponds to valley K
and the A sublattice and (b) to valley K and the B sublattice. The wave functions in the −K valley are obtained by complex conjugating
the amplitudes at K. Wave-function amplitudes are invariant under C3 rotation around a lattice site and under translations [R⊥ = m(a1 + a2)]
perpendicular to K and exhibit periodicity under translations parallel to K with a period R‖ = 3(a1 − a2). Time reversal exchanges the valley
index without changing the sublattice index. Inversion exchanges both the valley and sublattice indices. The product of the two operations thus
exchanges the sublattice index only.
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are distinct, they correspond to band touchings with linear
dispersion in the kx direction. As anticipated x = − 1

2 (at ±K)
is a solution regardless of the value of tn. Other physically
meaningful solutions must verify |x| � 1. For each such
solution upon applying a C3 rotation, one can associate three
band-touching points at k1 = k(1,0), k2 = k(− 1

2 ,
√

3
2 ), and

k3 = k(− 1
2 ,−

√
3

2 ). From time-reversal symmetry, it follows
that there are three additional touching points at −k1,2,3. Hence
a solution |x| � 1 with x �= {±1,−1/2} implies at least six
nonequivalent band-touching points at ±k1,2,3. In contrast, a
solution x = −1 is associated with a single touching point
at 
, a solution x = − 1

2 to the two nonequivalent BZ corners
±K, and a solution x = 1 to the three nonequivalent M points.
In a Nn graphene model with a polynomial h1(x) of degree
m � n the maximum number of nonequivalent band-touching
points per valley on a T line is thus [1 + 3(m − 1)]. For
example, in N7 graphene the degree of the polynomial is
m = 4, and therefore there are a maximum of ten Dirac points
per valley. As a final remark concerning the band-touching
points, we stress that we cannot exclude the possibility of
having additional touching points outside the high-symmetry
T lines. However, the only case encountered in the numerical
simulations is that of Fermi lines (zero energy lines) which
connect the zero-energy solutions located on the T lines.
These are particular solutions that can be expected when a
nondegenerate zero on the T line exhibits a vanishing chirality
(see Sec. III F for an example).

C. Zero-energy-state wave functions in Nn graphene

Similarly to N1 graphene, there are two degenerate zero-
energy eigenstates that correspond to each band-touching point
of Nn graphene. The bipartite property is still valid for Nn

graphene and it allows one to project one zero-energy state on
the A sublattice and the other on the B sublattice. The real-
space representation of these two energy states is illustrated in
Fig. 3 for a generic k = k(1,0) on a T line. The wave function
exhibits translation invariance in the direction perpendicular
to k and it is multiplied by a phase z2 = e2ik·a1 on both A and
B sublattices when translated by one unit along k. Figure 3
is especially useful as it allows one to quickly construct the
polynomials h1(x) at all orders.

D. Velocities and chirality of Dirac points in Nn graphene

When all the band-touching points on a given T line are
distinct, each one of them may correspond to a Dirac point k.
The energy dispersion near the touching point is obtained by
expanding to first order in small momenta q = q(cos θ, sin θ ),

f (k + q) = q
(
∂kx

h1 cos θ − i∂ky
h2 sin θ

) + O(q2), (10)

where on the T line [k = (k,0)], we used the property
∂ky

h1 = ∂kx
h2 = 0. Let us define the velocities cx = ∂kx

h1

and cy = ∂ky
h2. A band-touching point k is a Dirac point,

if both velocities are nonvanishing at k, cx �= 0 �= cy . More
quantitatively cx and cy read as

cx(x) = ∓2
√

3
√

1 − x2
[
p(x) + (

x + 1
2

)
p′(x)

]
, (11)

cy(x) = −3
[
p(x) − (

x + 1
2

)
r(x)

]
, (12)

1

z∗ z

zz∗

1

1

z2

z2

z2

z∗2

z∗2

z∗2

z∗3 z3

z3z∗3

z∗4

z∗4

z∗4

z4

z4

z4

FIG. 3. Real-space representation of a generic zero-energy eigen-
state of Nn graphene projected on the sublattice A (in valley K). Wave
function components on different lattice positions are related by Bloch
theorem ψk(r + R) = eik·Rψk(r) with R any Bravais lattice vector.
For k on high-symmetry lines we have z = eik·a1 and z∗ = eik·a2 (for
k �= ±K, 1 + z + z∗ �= 0 and z3 �= 1 �= z∗3). The three additional
states are obtained by performing a C3 rotation around the center of
a hexagon. Solutions in the opposite valley are obtained by complex
conjugating the amplitudes. A similar picture can be drawn for states
projected of the B sublattice.

where the sign ∓ of cx corresponds to band touchings
associated with the ±K valley, and the polynomial r(x) is
given by

r(x) = 16t8x
3 + 4(t4 − t8)x2 + 4(t4 − 4t8)x

+ 1 + t3 − 6t4 + 2t7 + 5t8. (13)

To simplify the above equations, it is opportune to study
separately the velocities for band touchings at the ±K points
(x = −1/2), and eventual solutions away from the ±K points
on the T line for x �= −1/2 and p(x) = 0. Let us take the band
touchings only at the K valley, knowing that the cx changes
sign at the opposite valley. The corresponding velocities read

x = − 1
2 : cx = cy = − 3

2 (1 − 2t3 − t4 + 5t7 + 4t8),

x �= − 1
2 :

{
cx = −2

√
3
√

1 − x2
(
x + 1

2

)
p′(x)

cy = 3
(
x + 1

2

)
r(x).

(14)

The above equations indicate that the two velocities are equal
in magnitude and eventual Dirac points will have isotropic
cones at ±K. Also note that a merging of Dirac points in the
K valley creates an energy dispersion of higher order in q and
this is equivalent to vanishing of the velocities cx,y |K = 0. At
band touchings different from ±K one can use the condition
p(x) = 0 to simplify the expression of the r(x) polynomial:

r(x) = 2(1 − x)[4(t7 − t8)x2 + 4(t7 − t8)x + t3 − 2t4 + t8].
(15)

At time-reversal points 
(x = 1) and M(x = −1) the velocity
cx is always zero. The 
 point (center of the BZ) is the band
bottom and presents an isotropic energy dispersion; therefore
cy vanishes together with cx [as seen from Eq. (15)]. In
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contrast, at the M point, cy is not necessarily zero. For example,
in N3 graphene this allows for M band touchings with linear
dispersion in kx and quadratic in ky . These semi-Dirac points
correspond to a merging of two Dirac points with opposite
chirality.

If all the band touchings are Dirac points, then their chirality
(6) follows from Eqs. (14):

x = − 1
2 : χ (±K) = ±1,

(16)
x �= − 1

2 : χ (±ki) = ∓sgn[p′(x)r(x)],

where ±ki denotes the position of the additional Dirac points
associated with the ±K valley. The next sections exemplify
the above theory to the concrete cases of N3 and N4 graphene.

E. Dirac points and merging for N3 graphene

The isotropic N3 graphene was already investigated in
Ref. 10. Here the presence of a sufficiently strong t3 hopping
integral was shown to produce three more satellite band-
touching points orbiting around each regular Dirac point (±K).
Indeed solving Eq. (9) (with t4 = t7 = t8 = 0), it follows that
in addition to solution x = − 1

2 (at ±K), there is a solution
x = t3−1

2t3
which may give rise to up to six touching points at

±k1 = ±k(1,0), ± k2 = ±k

(
−1

2
,

√
3

2

)
,

(17)

±k3 = ∓k

(
1

2
,

√
3

2

)
, k = 2√

3
arccos

(
t3 − 1

2t3

)
,

where ±ki points are associated with the ±K valley. A
physically meaningful solution corresponds to |x| � 1 and
hence has an existence domain given by

t3 ∈ (−∞,−1) ∪ (1/3,∞). (18)

For t3 ∈ (−1,−∞) satellite touching points appear at 
 (t3 =
−1) and move along the T line and reach the � point (x =
1/2, t3 = −∞), midway between K and 
. For t3 ∈ (1/3,∞)
satellite touching points appear at M (t3 = 1/3) and move
along the T line and reach again � (x = 1/2, t3 = ∞) (see
Fig. 4). For t3 �= 1/2, the satellites are Dirac points away from
the regular Dirac points ±K, x = t3−1

2t3
�= −1/2. The chirality

associated with the three satellite Dirac point k1,2,3 in valley

Γ K M−K Σ

FIG. 4. (Color online) Evolution in BZ of a satellite Dirac point
in N3 graphene on the high-symmetry T line: 
-K-M . The evolution
of the satellite point is represented in blue when t3 varies from −∞
to −1 and in red when t3 varies from 1/3 to ∞.

K reads

χ

(
x = t3 − 1

2t3

)
= −sgn[t3(1 + t3)]. (19)

The chirality χ is always opposite to points associated with
the −K valley.

As already emphasized,10 there is a particular value,
t3 = 1/2, that corresponds to a merging of three satellite
Dirac points with a central regular Dirac point. This case is
realized when x = −1/2 is a double root of the polynomial
h1(x). Here p(x) = 0 and therefore the velocities cx,y vanish
simultaneously, indicating the formation of a band touching
with a higher than linear dispersion. Note, however, that at the
merging point, χ (x = −1/2) = sgn(cxcy) is not well defined.
Nevertheless, from Eq. (19) it is apparent that the satellite
points close to merging at ±K have an opposite chirality
from the central Dirac point χ (±K) = ±1. Then the sum rule
dictates that the chirality at the merging point is the sum of
chiralities over the colliding Dirac points. At ±K merging this
yields χ (t3 = 1/2) = ±(1 − 3) = ∓2.7,11

The chirality of the merging point can be equally deter-
mined by expanding the energy dispersion at ±K. It suffices
to find it at K, knowing that time-reversal symmetry demands
opposite chirality at −K. Expanding at t3 = 1/2 in small
momenta q = q(cos θ, sin θ ) it follows that

f (±K + q) = 9
8q2e±2iθ + O(q3). (20)

This indicates that the band touching at the merging of all
the Dirac points in a valley has a quadratic dispersion and a
topological charge of ∓2 in valley ±K.

F. Dirac points for N4 graphene

For N4 graphene, solving Eq. (9) yields, besides the solution
x = − 1

2 (at ±K), two additional solutions x± = − 1
4t4

[t3 ±
(t2

3 + 8t2
4 + 4t4t3 − 4t4)1/2] (x+ � x−) such that there are up to

seven band-touching points per valley. More quantitatively, for
0 � t3,t4 � 1, one obtains the existence domains for additional
solutions when |x±| < 1. Explicitly, |x+| < 1 for

t4 � 1

10
and 2

(√
t4 − t2

4 − t4
)

� t3 � 1 + 2t4

3
.

(21)
Similarly, |x−| � 1 holds for(

t4 � 1

10
and t3 � 1 + 2t4

3

)
or(

t4 � 1

10
and t3 � 2

(√
t4 − t2

4 − t4
))

. (22)

The existence domains are represented graphically in Fig. 5.
Note that the two solutions coexist when t3 � 1+2t4

3 . In the
coexistence region one can generally expect to have seven
Dirac points per valley (see Fig. 6).

In their existence domain, Eq. (16) determines the chirality
in the K valley

χ (x±) = ±sgn(t3 − 2t4). (23)

However, the chirality information is exact when the solutions
x± stand for Dirac points. The model presents a rich phe-
nomenology and the investigation of the solutions indicates
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FIG. 5. (Color online) (a) |x−| � 1. (b) |x+| � 1. Existence
domains and corresponding chirality of solutions |x±| � 1 in (t4,t3)
parameter space and in the K valley. The region with positive
(negative) chirality is represented in red (blue). The green line t3 = 2t4
where chirality changes is associated with the existence of Fermi lines
instead of Dirac points. The supermerging point t3 = 2

5 and t4 = 1
5

at the intersection of the t3 = 2t4 line with the domain border curve
t3 = 2(

√
t4 − t2

4 − t4) is indicated in yellow.

that for particular parameters there are also band touchings
different from the simple Dirac point case.

Remember that each solution x± stands for a triplet of
solutions at each valley. Then there are different scenarios
for the behavior of Dirac points. There are cases similar to
the N3 graphene where there is a single triplet of solutions
merging to the central Dirac point to yield a point with high-
energy dispersion. There are cases where the two triplets merge
with one another to yield a new triplet of band touchings
with quadratic dispersion in one direction and linear in the
other. There is also a unique supermerging point where all

−π −π/2 0 π/2 π−π

−π/2

0

π/2

π

FIG. 6. (Color online) The zero lines of h1(k) = 0 (in green) and
h2(k) = 0 (in red) for N4 graphene. A small perturbation (+0.001)
of t4 at the merging point t3 = 2/5, t4 = 1/5 creates six Dirac points
around the stable Dirac point K. In the inset there is a zoom around K.
The Dirac points are represented by full circles, •; there is a central
K Dirac point in black, and two sets of satellite Dirac points, in blue
and red.
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FIG. 7. (Color online) Cross-section slice through the energy
dispersion of the conduction band near zero energy. A triplet of
semi-Dirac points is formed around the central Dirac point at K.
On the parameter line t3 = 2(

√
t4 − t2

4 − t4) (here with t4 = 0.25) the
triplets of satellite points merge on the high-symmetry lines to form
the semi-Dirac points.

Dirac points in a valley merge. A completely new feature to
the phenomenology of band touchings in N4 graphene is the
formation of Fermi lines for specific values of parameters.

The first case is that of a line in parameter space where only
one triplet given by the |x±| solutions merges with the central
Dirac point. These are obtained under the condition that either
x+ = −1/2 or x− = −1/2,

x± = −1

2
⇐⇒ t3 = 1 − t4

2
, t3 ≶ 2t4. (24)

A different case is that of the triplet satellite Dirac
points merging two by two to form semi-Dirac points, i.e.,
band touchings with quadratic dispersion in the direction of
merging and linear in the direction perpendicular to it.12–17

They correspond to a scenario where two Dirac points with
opposite chirality collide. From the condition x+ = x−, they

are determined on the line t3 = 2(
√

t4 − t2
4 − t4). This case is

represented in Fig. 7.
At the intersection of line t3 = 2t4 with the domain border

curve t3 = 2[
√

t4(1 − t4) − t4] (t3 = 2
5 and t4 = 1

5 ), there is a
supermerging point where there is a unique band touching per
valley that can be understood as a collision of all additional
Dirac points into the central (±K) one. This point in parameter
space has a topological charge given by the sum of all Dirac
point chiralities. Because of the cancellation of the triplet
charges, the final point will have a charge ±1 in the valley ±K.
Expanding in small momentum q = q(cos θ, sin θ ) around the
supermerging point at ±K yields an effective f function in the
K valley,

f (±K + q) = − 27
40q3e∓iθ + O(q4). (25)

This result reinforces the sum rule calculation by showing a
band touching with cubic dispersion, but with a low topological
charge ±1 at ±K.

Finally, there is a phenomenologically new situation that
is absent in the previously studied N3 graphene. Note that
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FIG. 8. (Color online) An expansion in small momentum q
around the K point of N4 graphene illustrates the formation of Fermi
lines (lines of zeros for the energy dispersion) around the regular Dirac
point K in graphene, on the parameter line t3 = 2t4. The hopping
parameters are chosen near the supermerging at t3 = 2/5 + 2δ and
t4 = 1/5 + δ with δ = 0.001.

on line t3 = 2t4 the chirality (23) is zero even though
there are nondegenerate solutions x− �= x+ away from the
supermerging. This case corresponds to the existence of closed
Fermi lines in the Brillouin zone that link the two solutions.
Hence, in contrast with the cases studied until now, here
the energy dispersion exhibits a line of zeros outside the T

line. One of the cases is represented in Fig. 8, where the x±
solutions are connected by a Fermi line. However, even for
a vanishing x+ solution, Fermi lines subsist and link band
touchings associated only with the x− solution. Aside from
these numerical observations of the Fermi line at t3 = 2t4,
it remains a daunting task to analytically solve for general
solutions away from the high-symmetry lines. However, one
can investigate analytically the peculiarity of this case by
considering the behavior of the energy dispersion near the
T lines. The absolute value of the energy for t3 = 2t4 is

E = |4t4x
2 + 4t4xy − 4t4 + 1|

√
4x2 + 4xy + 1, (26)

where x = cos(
√

3kx/2) and y = cos(3ky/2). It is immediate
to verify that the derivatives in the ky direction for a zero-
energy solution x± on the T line k(1,0) vanish at all orders.
This indicates that the solutions x± are not longer pointlike
band touchings, but extend as Fermi lines in the ky direction.

G. Supermerging at ±K in Nn graphene

In the two preceding sections it was shown that for N3 and
N4 graphene it is possible to adjust the parameters t3,t4 so that
for each valley all the additional touching points merge with the
usual Dirac points at ±K (a supermerging point). This means
that x = −1/2 is a double (respectively, triple) zero of h1

for N3 graphene, t3 = 1/2 (N4 graphene, t3 = 2/5,t4 = 1/5).
The possibility of finding a set of parameters tn for which
all the additional touching points merge with the usual Dirac
points at K appears to be valid for all Nn graphene and
relies essentially on the fact that the polynomial h1(x) is
of a degree equal to or less than the number n − 1 of free
parameters tn. [More precisely, it can be proven that a model
with hopping terms at a chemical distance m will result in
polynomial h1(x) of maximum order m.] Note that because
the number of free parameters grows faster than the degree
of the polynomial there are no longer unique supermerging

TABLE II. Supermerging characteristics at K. The function f

from the effective low-energy Hamiltonian Heff = 1
2 σ+f + H.c. is

written as a function of small momenta π = qx + iqy and up to a
multiplicative constant which is neglected.

Supermerging

Graphene t1 t3 t4 t7 f (K + q) Charge

N1 1 0 0 0 π∗ 1
N3 1 1/2 0 0 π 2 −2
N4 1 2/5 1/5 0 π∗2π 1
N7 1 7/12 1/4 1/12 π∗π 3 −2

points for graphene Nm, with m > 7. At this supermerging the
components cx,y vanish and therefore one needs to go beyond
a linear expansion to characterize the neighborhood of K. As
an example, it was shown in Ref. 10 that for N3 graphene at the
supermerging one obtains f (±K + q) � q2e±2iθ which now
identifies a gapless quadratic dispersion, with a phase that is
understood as resulting from the sum of the respective chirality
of all the merging Dirac points. Similarly, for N4 graphene, it
followed that f (±K + q) � q3e∓iθ . The location of the unique
supermerging band touching and their associated topological
charge are given in Table II. Note that the energy dispersion
of supermerging band touchings has a higher than linear
dispersion. However, the topological charge of the converging
triplets of satellite points is alternating and hence the resulting
topological charge remains low.

Finally, note that the above scenario of a unique supermerg-
ing together with an alternating ±1 and ∓2 topological charge
at ±K (see Table II) is not generally valid in Nn graphene,
and in fact it already breaks down in the N8 model. For N8
graphene, the supermerging is no longer unique, but becomes
a line in (t3,t4,t7,t8) parameter space. Nevertheless, Eq. (9)
implies that in N7 and N8 graphene there is the same number
of satellite Dirac points per valley, because p(x) remains a
third order polynomial. An expansion near the supermerging
point for N7 graphene (see Table II) yields in the K valley

f (K + q) = 27
64π∗[π3 − 12t8(π3 − π∗3)], (27)

with π = qx + iqy . For vanishing t8, one recovers a topologi-
cal charge −2 for the band touching at K, at the supermerging
in N7 graphene. However, when t8 reaches the critical value
1/12 the band touching clearly exhibits the topological charge
4. This scenario can be explained by a change in chirality for a
triplet of Dirac points in the vicinity of the supermerging line
(1 − 3 + 3 − 3) → (1 − 3 + 3 + 3). However, the behavior of
solutions on the supermerging line in N8 graphene is beyond
the scope of the present paper.

The Nn graphene model was shown to exhibit more than
one touching point in each valley. Now it remains to answer the
question whether large Chern number phases become possible
when gapping them with a Haldane mass. As long as the
position of the band touchings and their respective chirality is
known, determining the topological phase diagram is within
analytical grasp.
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IV. CHERN NUMBER PHASE DIAGRAM FOR THE LONG
DISTANCE HOPPING HALDANE MODEL

The Haldane model is built on the hexagonal lattice for
N1 graphene by adding N2 (intrasublattice) hopping t2, such
that when hopping is performed clockwise in the unit cell an
electron gains a phase φ. However, there is no net magnetic
flux in the unit cell. The N2 hopping term leads to two
contributions of respective form h0(k)σ0 with h0(k) = h0(−k)
and h3(k)σ3 with h3(k) = −h3(−k). These two contributions
break chiral symmetry, but do not break inversion sym-
metry. The first contribution breaks particle-hole symmetry,
while the second breaks time-reversal symmetry. As noted
before, the first contribution does not weight on the Chern
number calculation and therefore can be discarded, provided
the second contribution produces the necessary mass term
from Eq. (5) that gaps the Dirac points. That is to say, the
topological properties of each band are unaffected by smooth
deformations that preserve a finite direct gap at all momenta.
As we shall see later, the second contribution h3σ3 allows for
a Chern phase diagram with only odd (even) Chern number
phases when added to the Nn graphene model. In order to
have a Chern phase diagram allowing for transition between
even and odd Chern number phases, it is necessary to add a
mass term that breaks inversion symmetry. The simplest such
term is of the form Mσ3 and corresponds to a different on-site
potential energy on each sublattice.

The mass term h3σ3 in the original Haldane model breaks
time-reversal and inversion symmetry. It reads

h3 = M − 2t2 sin φ{sin(k · a2) − sin(k · a1)

+ sin[k · (a1 − a2)]}. (28)

When intrasublattice hopping between distant sites is allowed,
the generalized mass term reads

h3 = M −
∑

n

2t (n) sin(nφ){sin(nk · a2) − sin(nk · a1)

+ sin[nk · (a1 − a2)]}, (29)

where n is an integer that indicates that hopping takes place
between AA or BB sites situated at a distance of n

√
3a. Here

will be considered only the first two terms in this expression,
corresponding to a hopping across two unit cells (see Fig. 1
and Table III). The term containing the hopping integral t5 just
multiplies the identity Pauli matrix and is neglected. Interesting
for the topology of the problems are hoppings along the links
where the electrons gain the phase φ. Here only the first two
terms in the mass term are considered: t2 and t6.

The goal of this part is to illustrate how gapping the
graphene system with 2n Dirac points can yield Z topological

TABLE III. The first hopping integrals tn contributing to the
Haldane mass. The hopping distances are expressed in units of lattice
constant.

Hopping Physical distance Chemical distance

t2
√

3 2
t5 3 4
t6 2

√
3 4

phases characterized by a large Chern number (up to C = ±n).
The following sections investigate cases where different mass
term gaps the previously obtained Nn graphene. The strategy
will be to illustrate the possibility of large Chern phases by
considering first the action of t2 Haldane mass on different
models of Nn in Sec. IV A. In Sec. IV B it is shown that the
addition of t6 terms allows one to further increase the absolute
value of the Chern number.

A. t2 Haldane model

The N1 graphene with a hopping t2 constitutes the original
Haldane model. The phase diagram is obtained by observing
that h3 changes sign between the Dirac points (±K) of
graphene. Therefore the Hamiltonian exhibits three topologi-
cal phases: a trivial insulating phase and two C = ±1 quantum
anomalous Hall (QAH) phases. Equation (5) yields in this case

C = 1
2 (sgnM− − sgnM+), (30)

where M± = M ∓ 3
√

3t2 sin φ is the mass term at ∓K. The
phase diagram is represented in Fig. 9. The lines M± = 0
represent topological transition lines where the bulk gap closes
at least at one of the ±K points.

Larger Chern phases become possible when the underlying
model is N3 graphene. Now the mass term takes different
values between a regular Dirac point and its satellites.
Therefore the topological charges can add up to yield Chern
|C| = 2 phases.

Momentum ±ki locates any satellite point of ±K and,
manifestly, the expression for χ (ki) holds in the range of
existence of separate satellite points.

Let us define the mass at the regular Dirac points M± =
h3(∓( 4π

3
√

3
,0)). Similarly, the mass at the satellite points k �= K

is denoted by m± = h3(k) in valley ∓K. Then from Eq. (5) it
follows that the Chern number is

C = 1
2 [(sgnM− − sgnM+) − 3(sgn m− − sgn m+)], (31)

−π −π/2 0 π/2 π

φ

−6

−4

−2

0

2

4

6

M
/t

2

−1 1

FIG. 9. (Color online) Chern number phase diagram for the
Haldane Hamiltonian as a function of the on-site energy M divided
by the hopping integral t2 as a function of the flux φ. The
topologically nontrivial insulating phases are color identified and
have the topological index denoted inside the respective regions. The
topologically insulating regions, C = 0, are white.
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where the mass terms of the Dirac points read

M± = M ∓ 3
√

3t2 sin φ,
(32)

m± = M ∓ 2
t2

t3
(1 + t3)

√
1 −

(
1 − t3

2t3

)2

sin φ.

Equation (31) yields the phase diagram for the system when
all eight Dirac points are present. When there are no satellite
Dirac points [t3 ∈ (−1,1/3)], the topology of the system is in
fact identical to the original system t3 = 0 and therefore it has
the phase diagram in Fig. 9. When t3 is varied to go outside the
region (−1,1/3), two phases of higher Chern number develop
around the M = 0 line. For example, from Eqs. (32), we see
that at M = 0 a regular Dirac point and its satellites will have
the same mass. Therefore the Chern number reduces to C =
sgnM+ − sgnM−. This yields topological phases indexed
by ±2. By increasing |M|, one crosses a transition line where
the Haldane mass of all satellite points in the system becomes
identical, while it remains different for the regular Dirac points.
This transition is given by

m± = 0. (33)

This region extends up to the last topological transition
line given by M = ±3

√
3t2 sin φ. In this region the Chern

number reduces again to the original case (t3 = 0) with C =
1/2(sgnM− − sgnM+). When M is increased even further,
all Dirac points are gapped identically and therefore this is the
topologically trivial region. In Fig. 10 is represented a typical
phase diagram for the case where satellite Dirac points are
present.

Note that at the merging point t3 = 1/2 the C = ±1 phases
completely vanish, and the phase C = ±2 would have maximal
area delimited by M = ±3

√
3t2 sin φ. Then at the topological

transition from the |C| = 2 phase to the trivial insulator, there
is a quadratic band touching that is represented in Fig. 11(a).

The phase diagram in the N3 Haldane model (Fig. 10)
has the nice feature that it accommodates lines of transition
where the Chern number changes by three units. This is real-
ized by the formation of three Dirac points at the topological
transition. These band touchings come from the vanishing of

−π −π/2 0 π/2 π

φ

−6

−4

−2

0

2

4

6

M
/t

2

2 −2

−1

−1

1

1

FIG. 10. (Color online) Chern number phase diagram for the t2
Haldane model on N3 graphene. The hopping parameters are t2 = 1/3
and t3 = 0.35 in units of t1.
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FIG. 11. (Color online) (a) Energy dispersion at the topological
transition between C = −2 and C = 0 phases at the merging point
between the regular −K and its three satellites −ki in N3 graphene.
The energy dispersion in N3 Haldane shows a quadratic band touching
at −K. The parameters are chosen φ = π/2, M = √

3, t2 = 1/3, and
t3 = 1/2. (b) Energy dispersion for the N3 Haldane model at the
transition between C = 1 and C = −2 phases. The Dirac cones form
at the satellite points of −K for t2 = 1/3, t3 = 0.35 in units of t1. The
change in Chern number by three units is reflected in the presence of
three Dirac cones at the topological transition.

the Haldane mass at the three satellite Dirac points previously
found in N3 graphene. For example, let us take parameters
t1 = 1, t2 = 1/3, and t3 = 0.35 from the phase diagram in
Fig. 10. Then fixing φ = π/2, there are two transition points
betweenC = −2 andC = 1 phases near ±K. In particular, near
−K, the Dirac points form at the satellites where m+ = 0. The
energy dispersion at the topological transition is illustrated in
Fig. 11(b).

Similarly one can take as the underlying model the N4
graphene model which contains the t4 hopping. This was
shown to produce seven Dirac points per valley. Hence one can
expect the presence of larger Chern phases. This is exemplified
in Fig. 12, where a choice of particular parameters yields
|C| = 4 QAH phases. Note the presence of multiple Dirac
points is reflected in the phase diagram as a multiplication of
transition lines in the M direction for fixed magnetic flux φ

( �=0,π ) (Fig. 13).

B. t6 Haldane model

The existence of 2n Dirac points for a submodel containing
only two sigma matrices allows one, in principle, to build

−π −π/2 0 π/2 π

φ

−2.0

−1.5
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0.0

0.5

1.0

1.5

2.0

M 1−1

1

1−1

−1

4

4

−4

−4

FIG. 12. (Color online) Chern number phase diagram showing
the existence of two sets of satellite Dirac points and large QAH
phases in the t2 Haldane model on N4 graphene. The parameters are
t1 = 1, t2 = 1/3, t3 = 0.59, and t4 = 0.4.
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FIG. 13. (Color online) All QAH phases possible for N3 graphene
with t6 Haldane mass; here the phase diagram for the parameter choice
t1 = 1, t2 = 1/3, t3 = 0.35, and t6 = 0.26 illustrates this point. For
M = 0, the possible Chern phases have only even Chern numbers.

topological insulators with Chern phases C = n. For the N3
graphene model with eight Dirac points, one can have a large
Chern number C = ±4. To actualize all possible topological
phases it is sufficient to add a t6 mass term. It has the
effect to produce oscillations in the phase dependent Haldane
mass, such that the term changes sign between a regular
graphene Dirac point and its satellites in N3 graphene. As
expected, all phases are attainable under this modification of
the Hamiltonian.

The mass term becomes

h3 = M − 2t2 sin φ{sin(k · a2) − sin(k · a1)

+ sin[k · (a1 − a2)]} − 2t6 sin(2φ){sin(2k · a2)

− sin(2k · a1) + sin[2k · (a1 − a2)]}. (34)

The new phase diagram is computed by considering the
mass term (34) at the eight N3 graphene Dirac points. Then
the topological transition lines are given by the zeros of the
new mass terms M′

± and m′
± expressed as a function of the

previous mass terms from Eq. (32),

M′
± = M± ± 3

√
3t6 sin 2φ,

(35)
m′

± = m± ∓ 2t6 sin 2φ(2 sin 2κ − sin 4κ),

where κ = arccos[(t3 − 1)/(2t3)] in the domain of existence
of the satellite Dirac points in N3 graphene.

The dependence of the mass term on sin 2φ makes possible
large Chern number phases |C| = ±4 by having the mass
term changing sign between the regular Dirac cones and its
time-reversed one and its own satellites (see Fig. 14). When
system parameters are varied, the N6 Haldane model can
present all Chern phases between −4 and 4. A phase diagram
that illustrates this point is represented in Fig. 14. The phase
diagram was also sampled by numerical integration over the
BZ in Eq. (4) and the results were in agreement.

Let us consider briefly the case of N4 and N7 graphene by
adding, respectively, t4 and t7 hopping terms. With hopping
integral t1 fixed as before, there are two free parameters t3
and t4. The parameter space becomes too large to describe

−π −π/2 0 π/2 π

−π

−π/2

0

π/2

π

K−K

FIG. 14. (Color online) A Dirac point that is represented by • (◦)
has chirality + (−). The colored lines represent lines of zeros for h1

(green), h2 (red), and the mass term h3 (blue). The regular Dirac points
placed at (± 4π

3
√

3
,0) are gapped by a Haldane mass that has opposite

sign. Also the mass term changes sign between the regular Dirac
point and its satellites. For parameters t1 = 1, t2 = 1/3, t3 = 0.35,
t6 = 0.26, M = 0, and φ = π/8 the phase is C = −4.

analytically the dynamics of the Dirac points and to track
at the same time the sign of the mass at the Dirac points.
The general thesis, however, remainscorrect. Larger and larger
QAH phases become possible. In the case of N4 graphene
there is a maximum of six Dirac points near a K point; for N7
graphene there are nine possible Dirac points per valley. That
indicates that with a proper mass term one can have the largest
Chern phases |C| = 7 (in N4 graphene) or |C| = 10 (in N7
graphene). In Fig. 15 is represented a Haldane t6 mass on a N4
graphene with QAH phases |C| � 5. It appears that one needs
even longer hopping terms in the Haldane mass to realize the
largest |C| = 7 phase.
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FIG. 15. (Color online) Haldane model from N4 graphene with a
t6 mass term. Hopping integrals t1 = 1, t2 = 1/3, t3 = 0.43, t4 = 0.3,
and t6 = 0.35. For M = 0, the possible Chern phases have only odd
Chern numbers.

115402-10



DISTANT-NEIGHBOR HOPPING IN GRAPHENE AND . . . PHYSICAL REVIEW B 87, 115402 (2013)

Note that in all the cases the presence of distant-neighbor
hoppings in Haldane mass potentially leads to more bulk gap
closings at a given on-site energy M for φ varying from −π

to π . This is reflected in the structure of the phase diagrams,
which present oscillations of the topological phase boundaries
in the φ direction. This accounts for the oscillatory nature of
the Haldane mass, which can pass more times through zero (as
a function of the flux), when it contains strong distant-neighbor
hopping terms.

V. CONCLUSION

We have shown that in a graphenelike system adding
distant-neighbor hopping integrals leads to the apparition of
satellite Dirac points in the spectrum near the regular ±K
points of graphene. The number of additional Dirac points
grows as more distant neighbors are considered. Here, Dirac
points up to N7 (next × 6-nearest-neighbor) graphene model
are determined. Each new distant hopping integral between
AB sites potentially yields a triplet of Dirac points near K
(and because TRI, a triplet at −K). For N7 graphene there is a
maximum of three triplets of satellites created.

The position of the nodes in the dispersion requires solving
a polynomial whose degree grows as more distant neighbors
are considered. Analytically, one can hope to determine their
position only for a limited number of added neighbors (here
N4 graphene). Already, for N4 graphene, the investigation
revealed a rich phenomenology for band touchings in the
system. Besides Dirac point band touchings, there are semi-
Dirac points (band touchings with a linear dispersion in
one direction and quadratic in the other), or higher-energy
dispersion points. Among the latter, we show that there is
a unique supermerging band touching at ±K that can be
understood from a collision scenario of all possible Dirac
points under a variation of the hopping integrals. Their
uniqueness in hopping integral parameter space indicates that
they are extremely unstable. Moreover, the peculiarity of this
point resides in the fact that is characterized by a high-energy

dispersion, but a low topological charge. This is due to the fact
that the supermerging points result from a union of Dirac points
organized in triplets with alternating chirality. Numerical and
analytical investigations also revealed a new phenomena in
N4 graphene: the formation of Fermi lines for a particular
choice of parameters. The particular constraints to obtain them
indicate again that they are unstable band touchings.

The creation of multiple Dirac points is a precondition to
achieve phases with a large Chern number. This is put to test by
implementing the Haldane model in the distant-neighbor hop-
ping graphene. The Haldane mass term gaps the Dirac points
such that new QAH phases appear. We have presented various
Chern number phase diagrams to illustrate the role of distant
hoppings in the Haldane mass term: The flux dependence
allows one to resolve neighbor Dirac points with the different
chirality by gapping them with an opposite mass. Said differ-
ently, the mass term now changes sign not only between K
and −K, but also between the satellite created near the regular
Dirac points. In principle, for 2n Dirac points in the modified
graphene, phases with Chern number |C| = n can be created.

As a final remark concerning these Nn graphene-Haldane
models, we stress that we do not claim that such long-range
hopping is relevant to graphene physics. We believe, however,
that the phenomenology of complex band touchings and
large Chern number phases that appears in this two-band
long-range hopping model is rather universal and might
appear as the effective low-energy physics of a more realistic
nearest-neighbor model with N orbitals or N atoms per unit
cell. In support of this view there is a recent work18 that
establishes a mapping of the low-energy physics of the bilayer
graphene (four atoms per unit cell) with that of N3 graphene
near supermerging.
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