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A thin film of a topological insulator (TI) on a dielectric substrate and a bulk TI–dielectric film–bulk TI structure
are considered as natural double-well heterostructures suitable for realizing the counterflow superconductivity.
The effect is connected with pairing of electrons and holes belonging to different surfaces of TI and the transition
of a gas of electron-hole pairs into a superfluid state. The case of TI heterostructures subjected to a strong
perpendicular magnetic field is considered. It is shown that such systems are characterized by two critical
temperatures—a mean-field temperature of pairing and a much smaller temperature of the superfluid transition.
The dependence of the critical temperatures on the magnetic field is computed. The advantages of TI based
structures in comparison with GaAs heterostructures as well as graphene based heterostructures are discussed.

DOI: 10.1103/PhysRevB.87.115313 PACS number(s): 71.35.Ji, 73.20.−r, 73.22.Gk

I. INTRODUCTION

During the last two decades spontaneous interlayer phase
coherence in quantum Hall bilayers was the subject of
comprehensive investigations. According to the theoretical
predictions,1–6 a double-layer electron system subjected to
a strong magnetic field directed perpendicular to the layers
should demonstrate unusual transport behavior at the total
filling factor of Landau levels close to νT = 1. Such behavior
is connected with the interlayer pairing of electrons and holes
belonging to the zeroth Landau level (the formation of stable
magnetoexcitons) and the transition of the magnetoexciton
gas into a superfluid state. The superfluid state is expected to
reveal itself in a flow of antiparallel electrical supercurrents in
adjacent layers and in the vanishing of the Hall voltage. The
effect was realized in AlGaAs heterostructures by a number
of groups.7–9 A huge increase in the counterflow conductivity
and a strong lowering of the Hall voltage was observed at
temperatures below 1 K. Nevertheless, in these experiments a
state with infinite counterflow conductivity was not registered.
It can be accounted for the presence of unbound vortices,10–13

but the question is still open.
The typical magnetic field used for the observation of the

effect in AlGaAs heterostructures is B ∼ 2 T. At such a field
one can fulfill the condition for the filling factor νT = 1 as well
as the requirement for the magnetic length � = √

h̄c/eB to be
larger or of order of the interlayer distance d. But this field
does not provide smallness of the Coulomb energy Ec = e2/ε�

(ε is the dielectric constant of the matrix) compared to the
distance between Landau levels h̄ωc = h̄2/m∗�2 (m∗ is the
effective mass of carriers). In that case the validity of the lowest
Landau-level approximation (commonly used in theoretical
studies) is questionable. The opposite inequality Ec < h̄ωc

can be achieved at higher magnetic fields that corresponds to
smaller �, but smaller � require smaller d. Then, the interlayer
tunneling amplitude increases, that is a negative factor for the
counterflow superconductivity.14–16

Graphene systems open new prospects for realizing the
magnetoexciton superfluidity in bilayers.17–22 In graphene the
relation between the Coulomb energy and the distance between
Landau levels does not depend on the magnetic field. The
zeroth Landau level in graphene is separated from the nearest

positive and negative levels by the gap �E01 = √
2h̄vF /�,

where vF ≈ 106 m/s is the Fermi velocity in graphene. The
inequality Ec < �E01 is equivalent to ε > αeff/

√
2, where

αeff = e2/h̄vF ≈ 2.2 is the effective fine-structure constant for
suspended graphene. The latter is fulfilled in graphene-based
heterostructures, where SiO2, Al2O3, or BN compounds are
used as the dielectric parts.23,24

As was shown in Refs. 19 and 20, an imbalance of
filling factors of graphene layers is required for realizing the
magnetoexciton superfluidity in bilayer graphene structures. It
is connected with an additional fourfold degeneracy of Landau
levels due to the spin and valley degrees of freedom. This
behavior is in similarity with one for the νT = 2 quantum Hall
bilayers.25 The imbalance can be created by an electrostatic
field applied perpendicular to the graphene layers. The change
in the electrical field should follow the change in the magnetic
field. It is required to keep the ratio E/B close to the value
E/B = αc/ε, where α ≈ 1/137 is the fine-structure constant.
For instance, for ε = 4 and B ≈ 1 T the electrical field
E ≈ 5 × 103 V/cm is required.

The discovery of topological insulators (see Refs. 26 and
27 and references therein) stimulates new proposals toward
realizing the superfluidity of spatially indirect excitons.28–32

The idea28–32 is that the surface of the topological insulator (TI)
may work as a natural two-dimensional conductor, while the
interior of TI works as a dielectric. The electron spectrum of the
TI surface states is similar to the graphene spectrum: it contains
Dirac cones. The TI surface should therefore demonstrate the
same quantum Hall behavior as graphene. On the TI surface the
number of Dirac cones is odd, in particular, the most studied
three-dimensional TI Bi2Se3 belongs to a so-called one-cone
family. Thus, TI systems have the same advantage as graphene
systems—the smallness of the Coulomb energy comparing to
the distance between Landau levels, but, at the same time,
they are free from the disadvantage caused by the additional
degeneracy of Landau levels in graphene.

In this paper we analyze two types of structures: a TI film
on a dielectric substrate, and a bulk TI–dielectric film–bulk
TI heterostructure. In Sec. II we obtain the zero-temperature
phase diagram in the coordinates “the ratio d/�–the dielectric
constants.” It is shown that for the TI film on a substrate
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the range of allowed d/� (d is the TI film thickness) is
restricted from below and from above and it shrinks under
increase in the dielectric constant of the substrate εs . For
known TIs the dielectric constant εT I is large (∼102) and
the typical situation corresponds to εs/εT I � 0.1. In this
case the state with electron-hole pairing is expected in the
range d/� = 0.5–2. For the TI–dielectric film–TI structure the
range of allowed d/� (d is the dielectric film thickness) is
restricted only from above and it shrinks under decrease in the
dielectric constant of the dielectric film εd . For εd/εT I � 0.1
the maximum allowed d/� is small (�0.2).

In Sec. III the mean-field critical temperature Tmf and the
temperature of the superfluid transition Ts as the functions
of the magnetic field are computed. The temperature Tmf is
given by the self-consistence equation for the order parameter.
The temperature Ts is the Berezinskii-Kosterlitz-Thouless
transition temperature. We find that the strong inequality
Ts � Tmf is fulfilled. For the TI film structures the super-
fluid state is reached at temperatures higher than for the
TI–dielectric film–TI structures. The temperature Ts is a
nonmonotonic function of the magnetic field B. At fixed B

it increases under decrease in εs and under increase in εd .

II. ZERO-TEMPERATURE PHASE DIAGRAM

Let us consider the electron surface states of a one-cone
TI in a quantizing magnetic field directed perpendicular
to the surface. The low-energy Hamiltonian has the form
H0 = ±vF (pxσy − pyσx) + mσz, where σi are the Pauli ma-
trices that act in the spin space, p = −ih̄∇ + eA/c is the
momentum operator, A is the vector potential, m is the Zeeman
splitting, and vF is the Fermi velocity that is the material
parameter (typically, vF ≈ 5 × 105 m/s). The eigenproblem
is given by the Dirac equation(

m ∓ivF

(
P− + e

c
A−

)
±ivF

(
P+ + e

c
A+

) −m

)(
	↑
	↓

)

= E

(
	↑
	↓

)
, (1)

where P± = −ih̄(∂x ± i∂y) and A± = Ax ± iAy . The upper
(lower) sign in Eq. (1) corresponds to the top (bottom) surface.

The eigenproblem (1) yields the following energies for the
Landau levels:

E0 = −m, E±N = ±
√

2

(
h̄vF

�

)2

N + m2,

where N = 1,2, . . . . The eigenfunctions are presented in the
Appendix.

It is implied that at zero magnetic field the Fermi level
is tuned to the Dirac point E = 0. It can be done by the
appropriate doping of TI.33 In the magnetic field the zeroth
Landau level is shifted from zero. But if the number of surface
carriers is conserved, the Fermi level is shifted as well and it
coincides with the zeroth Landau level. We note that in the case
considered the Zeeman splitting m = gμBB/2 (where μB is
the Bohr magneton, and g is the gyromagnetic ratio) is small
in comparison with the distance between the Landau levels
(e.g., m/E1 ≈ 3 × 10−3 at B = 1 T).

The Coulomb interaction Hamiltonian for the electrons in
the zeroth Landau level reads

H = 1

2

∑
i,i ′

∫
d2rd2r ′Vi,i ′(|r − r′|):ρ̂i(r)ρ̂i ′(r′):, (2)

where Vi,i ′ (r) is the potential of the Coulomb interaction
between electrons located on the i and i ′ working surfaces,

ρ̂i(r) =
∑

X1,X2

�∗
0,X1

(r)�0,X2 (r)c+
i,X1

ci,X2 (3)

is the electron density operator in the second quantization
representation, c+

i,X (ci,X) is the creation (annihilation) operator
for the electron in the zeroth Landau level on the surface i,
�0,X(r) is the eigenfunction [see the Appendix, Eq. (A1)], and
:Ô: means the normal ordering of an operator Ô.

Substituting (A1) and (3) into (2) we obtain the following
expression for the Coulomb interaction Hamiltonian:

H = 1

2S

∑
ii ′

∑
X,X′,q

Vii ′ (q)e−q2�2/2+iqx (X′−X)

× c+
i,X+qy�2/2c

+
i ′,X′−qy�2/2ci ′,X′+qy�2/2ci,X−qy�2/2, (4)

where Vii ′ (q) are the Fourier components of the potential and
S is the area of the system.

In what follows we neglect the influence of outer boundaries
on the interaction between electrons on the working surfaces
and consider the model heterostructure “an infinitely thick
dielectric 1–the working surface 1–a dielectric 2 of thickness
d–the working surface 2–an infinitely thick dielectric 3.” In
the general case the dielectrics 1, 2, and 3 are characterized by
different dielectric constants ε1, ε2, and ε3, correspondingly.
For such a structure the quantities Vii ′ (q) read as

V11(q) = 4πe2

q

ε2 + ε3 + (ε2 − ε3)e−2qd

(ε2 + ε3)(ε2 + ε1) − (ε2 − ε3)(ε2 − ε1)e−2qd
,

(5)

V22(q) = 4πe2

q

ε2 + ε1 + (ε2 − ε1)e−2qd

(ε2 + ε3)(ε2 + ε1) − (ε2 − ε3)(ε2 − ε1)e−2qd
,

(6)

V12(q) = 8πe2

q

ε2e
−qd

(ε2 + ε3)(ε2 + ε1) − (ε2 − ε3)(ε2 − ε1)e−2qd
.

(7)

The pairing of electrons of surface 1 with holes of surface
2 is characterized by the order parameter

�X = 〈	|c+
1Xc2X|	〉, (8)

where |	〉 is the many-particle wave function. In (8) the
relation between the electron annihilation and hole creation
operator ciX = h+

iX is taken into account. We consider the
many-particle wave function

|	〉 =
∏
X

(uc+
1Xh+

2X + v)|vac〉 =
∏
X

(uc+
1X + vc+

2X)|0〉 (9)

that is an analog of the wave function introduced in the
Bardeen-Cooper-Schrieffer (BCS) theory of superconductiv-
ity. The u-v coefficients satisfy the relation |u|2 + |v|2 = 1.
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We parametrize them as u = cos(θ0/2) and v = eiϕ0 sin(θ0/2).
In Eq. (9) |0〉 is the state with the empty zeroth Landau level,
and |vac〉 is a “vacuum” state defined as |vac〉 = ∏

X c+
2X|0〉.

The energy of the state (9) E = 〈	|H |	〉 reads

E = S

8π�2

(
W cos2 θ0 −

[
J11 + J22

2
(1 + cos2 θ0)

+ (J11 − J22) cos θ0

]
− J12 sin2 θ0

)
, (10)

where

W = 1

2π�2
lim
q→0

[
V11(q) + V22(q)

2
− V12(q)

]
= e2d

ε2�2
(11)

is the energy (per particle) of the direct Coulomb interaction,
and

Jik = 1

2π

∫ ∞

0
qVik(q)e− q2�2

2 dq (12)

are the energies of the intralayer and interlayer exchange
interaction.

In the state (9) the filling factors of the zeroth Landau level
on surfaces 1 and 2 are

ν1(2) = 1 ± cos θ0

2
. (13)

The difference ν̃ = ν1 − ν2 = cos θ0 (the filling factor im-
balance) is determined by the condition of minimum of the
energy (10) and it may vary under variation in the magnetic
field.

The minimum is reached at

cos θ0 =

⎧⎪⎨
⎪⎩

1, at J11−J22
2(W+J12)−J11−J22

> 1;

−1, at J11−J22
2(W+J12)−J11−J22

< −1;
J11−J22

2(W+J12)−J11−J22
, otherwise

(14)

[it follows from the direct computations that 2(W + J12) −
J11 − J22 > 0 for any d and εi]. According to Eq. (14) in the
general case the filling factor imbalance depends on the ratio
between εi and on the parameter d/�.

In the state (9) the modulus of the order parameter is equal
to |�| = sin θ0/2. Zero imbalance (cos θ0 = 0) corresponds
to the maximum order parameter. This case is realized in
the symmetric heterostructures (ε1 = ε3). In the asymmetric
heterostructures the imbalance is nonzero which results in the
lowering of the order parameter. If the imbalance becomes
maximum (ν̃ = ±1) the order parameter goes to zero. The
direct evaluation of (14) shows that the imbalance increases
under decrease in d/� and it reaches the maximum at some
nonzero value of that ratio. Thus, there is the critical d/� below
which electron-hole pairing does not occur in the asymmetric
system.

A restriction on the parameter d/� also comes from the
dynamical stability condition (the condition for the collective
mode spectrum to be real valued). To obtain the spectrum of
excitations we follow the approach of Ref. 34 and consider the
many-particle wave function that accounts for the fluctuations
of the phase and modulus of the order parameter

|	〉 =
∏
X

(
cos

θX

2
c+

1X + eiϕX sin
θX

2
c+

2X

)
|0〉. (15)

In the quadratic approximation the energy of the fluctuations
can be presented in the diagonal form

Ef l = 1

2

∑
q

(m∗
z (q) ϕ∗(q))K(q)

(
mz(q)
ϕ(q)

)
, (16)

where

mz(q) = 1

2

√
2π�2

S

∑
X

(cos θX − cos θ0) e−iqX (17)

and

ϕ(q) =
√

2π�2

S

∑
X

ϕXe−iqX (18)

are the Fourier components of the fluctuations of the filling
factor imbalance and the phase of the order parameter,
correspondingly. The matrix K in (16) is

K(q) =
(

Kzz(q) 0
0 Kϕϕ(q)

)
(19)

with the components

Kzz(q) = 2(H (q) − FS(q) + FD(0) + cot2 θ0�(q)), (20)

Kϕϕ(q) = 1
2 sin2 θ0�(q), (21)

where

H (q) = 1

2π�2

(
V11(q) + V22(q)

2
− V12(q)

)
e−q2�2/2, (22)

�(q) = FD(0) − FD(q), (23)

FS(q) = 1

4π

∫ ∞

0
pJ0(pq�2) (V11(p) + V22(p)) e−p2�2/2dp,

(24)

and

FD(q) = 1

2π

∫ ∞

0
pJ0(pq�2)V12(p)e−p2�2/2dp. (25)

In (24) and (25) J0(q) is the Bessel function.
The quantities mz(q) and ϕ(q) are the canonically con-

jugated variables. They satisfy the equations of motion
h̄ϕ̇(q) = Kzz(q)mz(q), h̄ṁz(q) = −Kϕϕ(q)ϕ(q) from which
the following expression for the collective mode spectrum
comes from

�(q) = √
Kzz(q)Kϕϕ(q). (26)

Analysis of (26) shows that at d/� larger than some critical
one the quantity �(q) becomes imaginary valued at finite q. It
signals for the dynamical instability of the system.

Thus, for the TI–dielectric film–TI structure (the symmetric
structure) the range of existence of the superfluid state is given
by the inequality d/� < d̃c1, where d̃c1 is the function of the
ratio εd/εT I . This function is shown in Fig. 1(a). One can see
that the range of d/� suitable for realizing the magnetoexciton
superfluidity broaden out under an increase in εd . For the TI
film on a dielectric substrate (the asymmetric structure) the
range of existence of the superfluid state is d̃c2 < d/� < d̃c1,
where d̃c1 and d̃c2 are the functions of two ratios: ε1/ε2 and
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FIG. 1. The zero-temperature phase diagrams for the TI–
dielectric film–TI heterostructure (a) and for the heterostructure “TI
film on a dielectric substrate” (b).

ε2/ε3. Here we specify ε1 = 1, ε2 = εT I = 80 and present the
dependencies of d̃c1 and d̃c2 on the dielectric constant of the
substrate εs [Fig. 1(b)]. One can see that the latter case is in
some ways opposite to the previous one: the use of dielectric
substrates with larger ε results in shrinking of the range of
allowed d/�. We emphasize that the filling factor imbalance
can be controlled by the gate voltage applied to the system.
Therefore, in systems subjected to an electrical field directed
perpendicular to the working surfaces the lower and upper
critical d/� will differ from ones presented in Fig. 1.

As was already mentioned in the Introduction, for graphene-
based heterostructures, in difference with TI heterostructures,
the use of the electrical gate is the necessary condition for
realizing the magnetoexciton superfluidity. The difference is
connected with the presence of only one Dirac cone on the
surface of a TI as compared to four Dirac cones in graphene.
The advantage of the one cone specifics of TI was discussed
previously in connection with electron-hole paring in the
absence of a magnetic field.28–32 In such systems the electric
gate is in any case required and the advantage consists of a
reduction of screening of the interlayer Coulomb attraction
between elections and holes. For the electron-hole pairing in
the zeroth Landau level the screening is not so important.

Actually, the effect of screening is small if the Coulomb
energy does not exceed the gap between the zeroth and N = 1
Landau level. But just due to the one cone specifics of the TI
the state with spontaneous interlayer phase coherence in the
zeroth Landau level is stable with respect to ones without
such coherence. Also, since in difference with graphene
and GaAs heterostructures, the zeroth Landau level in the
TI is completely spin polarized (see the Appendix), low-
energy excitations connected with spin (and valley) degrees
of freedom are forbidden. It allows us to consider the TI as a
refined system for realizing the magnetoexciton superfluidity.

III. FINITE-TEMPERATURE PROPERTIES

Let us consider finite-temperature behavior of the system
in the framework of the mean-field approach.35,36

One obtains from (4) the following mean-field Hamiltonian:

HMF =
∑
X

[∑
i

εic
+
iXciX − (J12�c+

1Xc2X + H.c.)

]
, (27)

where � = 〈c+
2Xc1X〉 is the mean-field order parameter,

εi = Di − Jiiνi − μ (28)

with νi = 〈c+
iXciX〉, the mean-field filling factors,

D1 = 1

2π�2
lim
q→0

[
V11(q)

(
ν1 − 1

2

)
+ V12(q)

(
ν2 − 1

2

)]
,

(29)

D2 = 1

2π�2
lim
q→0

[
V22(q)

(
ν2 − 1

2

)
+ V12(q)

(
ν1 − 1

2

)]
,

(30)

and μ, the chemical potential. In (29) and (30) the interaction
with the positive background is taken into account.

The Hamiltonian (27) is diagonalized using the u-v trans-
formation

c1X = uαX + v∗β+
X ,

(31)
c2X = u∗β+

X − vαX,

where u = cos(�/2) and v = sin(�/2)eiϕ . The condition of
vanishing nondiagonal terms in the transformed Hamiltonian
yields the following relations:

sin � = J12|�|√
ε̃2 + J 2

12|�|2
, cos � = ε̃√

ε̃2 + J 2
12|�|2

, (32)

where

ε̃ = ε1 − ε2

2
= 1

2

[(
W − J11 + J22

2

)
ν̃ − J11 − J22

2

]
. (33)

The transformed Hamiltonian has the form

HMF =
∑
X

(Eαα+
XαX + Eββ+

XβX) (34)

with the spectrum

Eα(β) =
√

ε̃2 + J 2
12|�|2 ± ε1 + ε2

2
. (35)
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The condition ν1 + ν2 = 1 yields the
relation

1 = 1 + NF (Eα) − NF (Eβ), (36)

where NF (E) is the Fermi distribution function. The rela-
tions (35) and (36) lead to the condition

ε1 + ε2 = 0. (37)

Note that Eq. (37) can be satisfied under the appropriate
choice for the chemical potential μ. It corresponds to that the
chemical potential is determined by the relation ν1 + ν2 = 1.
Under accounting Eq. (37) the spectrum (35) is reduced to

Eα = Eβ = E =
√

ε̃2 + J 2
12|�|2.

Equation (36) is the first one in a set of three self-consistence
equations. The other two equations read as

ν̃ = − ε̃

E tanh
E

2T
,

(38)

� = J12�

2E tanh
E

2T
.

It follows from (38) that at � �= 0 the following relation is
fulfilled:

J12ν̃ + 2ε̃ = 0. (39)

Equation (39) yields

ν̃ = J11 − J22

2(W + J12) − J11 − J22
(40)

that coincides with Eq. (14) under assumption that
|J11 − J22| < 2(W + J12) − J11 − J22. If the latter inequality
is not fulfilled, Eq. (39) cannot be fulfilled as well, and the
order parameter � = 0 (electron-hole pairing does not occur).
Thus, in the paired state the filling factor imbalance does not
depend on temperature and is given by Eq. (40).

Equations (38) yield the mean-field critical temperature of
pairing35

Tmf = J12

2

|ν̃|
ln 1+|ν̃|

1−|ν̃|
, (41)

where ν̃ is given by Eq. (40).
The temperature Tmf is the function of d/�. For a given

sample the distance d is fixed and the parameter d/� depends
only on the magnetic field. Therefore, it is instructive to present
the critical temperature as the function of the magnetic field.
We choose the Bd = φ0/πd2 units for B, where φ0 = hc/2e

is the magnetic flux quantum [B/Bd = (d/�)2]. The quantity
e2/d is used as the energy unit. In computation Tmf we account
for the dynamical stability condition, implying that Tmf = 0
at d/� > d̃c1. The result of computations for two types of
heterostructures is presented in Fig. 2.

The critical temperature Tmf is not a temperature of the
superfluid transition. The superfluid transition temperature is
given by the Kosterlitz-Thouless equation

Ts = π

2
ρs(Ts), (42)

where ρs(T ) is the superfluid stiffness. Equation (42) can be
applied under assumption that the gas of bound electron-
hole pairs exists. The latter requires Ts < Tmf . Evaluation
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FIG. 2. The dependence of the mean-field critical temperature on
the magnetic field for the TI–dielectric film–TI heterostructure (a)
and for the heterostructure “TI film on a dielectric substrate” (b).

of Ts shows (see below) that, actually, the strong inequality
Ts � Tmf is fulfilled. The temperature Tmf can therefore be
interpreted as an analog of the ionization temperature. One
can see from Fig. 2(b) that the dependence of Tmf on B/Bd is
saturated at large B. It is connected with that Tmf is determined
by the binding energy. The limit B � Bd corresponds to � � d

and in the latter case the binding energy is determined in the
main part by the interlayer distance d.

The superfluid stiffness is the coefficient of the expansion
of the free energy in the gradient of the phase of the superfluid
order parameter:

F = F0 + S

2
ρs(∇ϕ)2.

We compute ρs(T ) as follows. We consider the many-particle
wave function

|	〉 =
∏
X

(
cos

θX

2
c+

1,X+Qy�2/2 + ei(QxX+ϕX)c+
2,X−Qy�2/2

)
|0〉.

(43)

Equation (43) describes the state with a uniform gradient of
the phase of the order parameter: ∇ϕ = Q = (Qx,Qy). To see
that we neglect for a moment the fluctuations (θX = θ0 and
ϕX = 0) and define the space-dependent order parameter

�(r) =
∑
X,X′

ψ∗
X(r)ψX′(r)〈	|c+

1Xc2X′ |	〉. (44)

In (44) ψX(r) = (
√

π1/2Ly�)−1 exp[−iXy/�2 − (x − X)2/2�2]
is the one-particle wave function for the zeroth Landau level,
and Ly is the size of the system in the y direction. The direct
calculation yields

�(r) = sin θ0

2
e−Q2�2/2eiQ·r. (45)
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Equation (45) shows that Q is indeed the gradient of the phase
of the order parameter.

The free energy is given by the formula

F = E0(Q) − T S = E0(Q) + T
∑

q

ln(1 − e−�(q,Q)/T ),

(46)

where

E0(Q) = E0(0) + S

8π�2
sin2 θ0 [FD(0) − FD(Q)] (47)

is the energy of state (43), S is the entropy of the gas of
elementary collective excitations, �(q,Q) is the spectrum of
excitations, and E0(0) is the energy given by Eq. (10).

At Q = 0 the spectrum �(q,0) = �(q) [Eq. (26)] is
isotropic. Anisotropy of �(q,Q) is connected with the ap-
pearance of a specific direction in the system (the direction of
the phase gradient).

Considering state (43) and repeating the same steps as in
obtaining the spectrum (26) we find �(q,Q) for q directed
parallel to the x axis.

The energy of fluctuations has the form (16), where the
matrix K depends on Q:

K(q,Q) =
(

Kzz(q,Q) Kzϕ(q,Q)
K∗

zϕ(q,Q) Kϕϕ(q,Q)

)
(48)

with q = qix ,

Kzz(q,Q) = 2(H (q,Q) − FS(q) + FD(Q) + cot2 θ0�(q,Q)),

(49)

Kϕϕ(q,Q) = 1
2 sin2 θ0�(q,Q), (50)

Kzϕ(q,Q) = iK̃zϕ(q,Q)

= i cos θ0 [FD(|q − Q|) − FD(|q + Q|)] /2, (51)

H (q,Q) = 1

2π�2

(
V11(q) + V22(q)

2

−V12(q) cos(|q × Q|�2)

)
e−q2�2/2, (52)

and

�(q,Q) = FD(Q) − FD(|q + Q|) + FD(|q − Q|)
2

. (53)

The spectrum has the form

�(q,Q) = √
Kzz(q,Q)Kϕϕ(q,Q) + K̃zϕ(q,Q). (54)

One can see that expression (54) is invariant with respect to
rotation of the coordinate axes. The restriction q = qix can
therefore be omitted and Eq. (54) yields the spectrum at the
general q. The spectrum Eq. (54) is anisotropic because of its
dependence on the angle between q and Q.

Expanding (46) in Q we arrive at the following expression
for the superfluid stiffness:

ρs = ρs0 + δρs(T ), (55)

where

ρs0 = sin2 θ0

8π�2
F

′′
D(Q)|Q=0

= �2

32π2
sin2 θ0

∫ ∞

0
p3V12(p)e−p2�2/2dp (56)

is the zero-temperature superfluid stiffness, and

δρs(T ) = 1

S

∑
q

[
NB(q)

∂2�(q,Q)

∂Q2

− 1

T
NB(q)(1 + NB(q))

(
∂�(q,Q)

∂Q

)2 ]∣∣∣∣
Q=0

(57)

is its temperature correction. In (57) NB(q) = (e�(q)/T − 1)−1

is the Bose distribution function.
One can show that δρs(T ) < 0. We note that Eq. (57)

generalizes the expression for the superfluid stiffness.37 The
case of Ref. 37 corresponds to a Bose gas in a free space. In that
case the Galilean transformation yields the following spectrum
of excitations: �(q) = �0(q) + h̄2q · Q/M with �0(q), the
excitation spectrum in the reference frame, where the Bose
gas is at rest, and M is the mass of the Bose particle. Then,
Eq. (57) is reduced to the common one.37 The dependence of
the spectrum �(q,Q) [Eq. (54)] on Q is more complicated and
the first term in (57) should be taken into account.

The dependence of the superfluid transition temperature on
the magnetic field is shown in Fig. 3. One can see that at all
B the inequality Ts � Tmf is satisfied. The temperature Ts is
a nonmonotonic function of the magnetic field. The superfluid
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FIG. 3. The dependence of the superfluid transition temperature
on the magnetic field for the TI–dielectric film–TI heterostructure (a)
and for the heterostructure “TI film on a dielectric substrate” (b).
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state can be realized in the whole range of allowed d/�

(d̃c1 < d/� < d̃c2), but at d/� near the upper and lower range
limit the temperature Ts approaches zero. The maximum
temperature is reached in the middle of that range.

For the TI film structure the temperature of the superfluid
transition is higher if a substrate with a lower dielectric
constant εs is used. For the TI–dielectric film–TI structure
the decrease in the dielectric constant of the film εd results in
lowering the superfluid transition temperature.

IV. CONCLUSION

In conclusion, we have shown that TI heterostructures are
suitable for realizing the superfluidity of spatially indirect
magnetoexcitons. The structure “TI film on a substrate” is
preferable to the TI–dielectric film–TI structure. The main
disadvantage of the latter one is that the dielectric layer
separating two TIs should be rather thin. For instance, for
B = 1 T, εd = 12, and εT I = 80 the dielectric layer should not
be thicker than 8 nm. For the same parameters the thickness of
the TI film for the substrate with εs = 12 can be up to 50 nm.
The TI film structure has the problem of shorting two working
surfaces through the side surface. But this problem can be
resolved by depositing a magnetic insulator on the side surface.
It opens a gap in the energy spectrum of the side surface states:

E = ±
√

m2 + v2
F p2 (with m = JHSz � Ts , where JH is the

energy of the exchange coupling of the electron and ion spin,
and Sz is the value of the spin of the magnetic ions) and prevents
the interlayer leakage of the counterflow current through the
side surface.

Taking d = 10 nm we evaluate that the maximum temper-
ature of the superfluid transition Ts is about 1 K for the TI film
structures and is about 0.2 K for the TI–dielectric film–TI struc-
tures. Graphene heterostructures are characterized by slightly
higher20 temperatures of the transition into the superfluid
state, but the disadvantage of graphene heterostructures is that

the magnetoexciton superfluidity can be realized only under
application of the interlayer gate voltage.
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APPENDIX: LANDAU-LEVEL EIGENFUNCTIONS

In the Landau gauge A = (0,xB,0) Eq. (1) yields the
following eigenfunctions: For the zeroth Landau level

�0,X(r) = e−ikye−(x−X)2/2�2

π1/4
√

Ly�

( 0
1

)
, (A1)

where k is the wave number connected with the guiding center
of the orbit X by the relation k = X/�2.

For nonzero levels

�±N,X(r) = e−ikye−(x−X)2/2�2

π1/4
√

2NN !Ly�

1√
(E±N−m)2

2N
+ (

h̄vF

�

)2

×
(

(E±N − m)HN−1
(

x−X
l

)
± h̄vF

�
HN

(
x−X

l

) )
, (A2)

where HN (x) are the Hermite polynomials.
In a moderate magnetic field and in the absence of magnetic

exchange interactions the strong inequality m � h̄vF /� is
fulfilled and the relation between the components of the
eigenfunction (A2) is practically the same as for the Landau-
level eigenfunctions in graphene.

The important difference between graphene and a topologi-
cal insulator is that the zeroth Landau level on the TI surface is
completely spin polarized. Due to the square root dependence
of the Landau-level energies on the magnetic field even in a
rather small field the states with an admixture of the opposite
spin polarization (e.g., the states in the N = 1 Landau level)
are separated from the zero level spin-polarized states by a
large energy gap.
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