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We predict the enhancement of the spin-rotation coupling due to the interband mixing. The Bloch wave
functions in the presence of mechanical rotation are constructed with the generalized crystal momentum which
includes a gauge potential arising from the rotation. Using the eight-band Kane model, the renormalized spin-
rotation coupling is explicitly obtained. As a result of the renormalization, the rotational Doppler shift in electron
spin resonance and the mechanical torque on an electron spin will be strongly modulated.
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I. INTRODUCTION

A variety of coupling of an electron spin with other degrees
is enhanced in solids. The modulation of the electron g factor
in the Zeeman interaction due to the interband mixing has
been widely studied in semiconductors.1 Spin manipulation by
g factor engineering2,3 has attracted interest in the context of
quantum information processing. Spin-orbit interaction (SOI),
the coupling of electron spin and orbital motion, is enhanced
depending on the band structure. Enhancement of SOI is
responsible for the spin Hall effect which plays an important
role in the conversion between charge and spin current4 in the
field of spintronics.5,6

An electron spin also couples to mechanical rotation. In
the presence of mechanical rotation with frequency �, the
spin angular momentum h̄

2σ couples to the rotation as HS =
− h̄

2σ · �, which is known as the spin-rotation coupling.7–9

The quantum-mechanical nature of the Barnett and Einstein–
de Haas effects10,11 can be explained on the basis of the
coupling.12 The bare coupling of a spin and rotation is of
great importance in neutron interferometry13 as well as in tests
of general relativity using spin precession in the gravitational
field of a rotating body.14–18

Rapid progress in nanotechnology has allowed us to study
the coupling of mechanical motion and nanomagnetic systems.
Einstein–de Haas effect in a NiFe film on a microcantilever19

and mechanical torque due to spin flip on a torsion oscillator20

were observed in experiment. Theoretically, rotational doppler
shift in magnetic resonance21 and effects of mechanical
torque in nanostructure22–30 are studied. These phenomena
essentially rely on the spin-rotation coupling HS . However,
the renormalization of the coupling arising from the electronic
structures has not been considered so far.

In this paper, we theoretically investigate the renormal-
ization of inertial effects on spin in a solid using the k · p
perturbation with the generalized crystal momentum due to
mechanical rotation. It is shown that the mechanically induced
SOI, Darwin term, and spin-rotation coupling are enhanced by
the interband mixing of the conduction-band and valence-band
states. The renormalized spin-rotation coupling is responsible
for the enhancement of both the frequency shift in electron spin
resonance (ESR) and the mechanical torque in spin precession.

The outline of the paper is the following. In Sec. II, we
formulate Bloch’s theorem in the presence of mechanical
rotation. In Sec. III, the envelope function approximation in

a rotating frame is presented. In Sec. IV, we show that the
renormalization of spin-rotation coupling due to the interband
mixing by using the eight-band Kane model. In Secs. V and VI,
we discuss that the renormalization provides the enhancement
of the frequency shift in ESR and the mechanical torque in
spin precession. The order of the introduction of the gauge
field and the projection to the conduction electron is discussed
in Sec. VII. The paper ends with a few concluding remarks
in Sec. VIII. SU(2) × U(1) gauge theory in rigidly accelerated
frames are summarized in the Appendix.

II. BLOCH’S THEOREM IN A ROTATING FRAME

Let us consider an electron in a periodic potential in
the presence of mechanical rotation. We start with a simple
Hamiltonian in an inertial frame given by

H0 = p2
0

2m
+ V0(r0), (1)

where V0(r0) is a microscopic periodic crystal potential, r0

and p0 = ih̄ ∂
∂r0

are the coordinate and momentum operator
in the inertial frame, respectively. Performing the unitary
transformation,

U = exp[iJ · �t/h̄], (2)

with J = r0 × p0 + h̄
2σ being the generator of the rotation, one

obtains the Hamiltonian in a rotating frame:12

HR = UH0U
† − ih̄U

∂U †

∂t
= H0 − J · �, (3)

which reads

HR = (p − qAg)2

2m
+ V0(r) + qφg + μBσ · Bg

2
, (4)

where q = −e is the electron charge, μB = eh̄/2m is the Bohr
magneton, r and p are the coordinate and momentum operators
in the rotating frame, respectively, φg = −γ −1

0 (� × r)2/2, and
Ag = γ −1

0 � × r where γ0 = −e/m is the electron charge-
to-mass quotient. The gravitomagnetic field Bg is defined
by31 Bg = ∇ × Ag = 2γ −1

0 �. The gauge fields φg and Ag

originate from −L · � = −(r × p) · � while the effective
Zeeman interaction μBσ · Bg/2 originates from the spin-
rotation coupling HS .

Next, we consider Bloch’s theorem in a rotating frame.
When the rotation � is applied, the crystal momentum is
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defined as

h̄kg = p − qAg (5)

and the eigenfunctions in a periodic potential can be expressed
as ψn,kg

(r) = un,kg
(r)eikg ·r, where un,kg

(r) has the periodicity
of the crystal and n is the band index. The above argument
is verified by the magnetic translation group theory.32 In the
presence of a magnetic field B = ∇ × A, the Hamiltonian is
invariant under the magnetic translation group, and hence, the
momentum is given by h̄k = p − qA whose component does
not commute with each other. Likewise, the Hamiltonian HR

is invariant under the “magnetic” translation group in which
the gauge potential A is replaced by Ag .

III. ENVELOPE FUNCTION APPROXIMATION

Once the Bloch eigenfunctions are obtained, the conven-
tional k · p method can be generalized in the presence of the
mechanical rotation. Here we add the slowly varying potential
V (r) and the SOI due to the crystal potential HSO to HR:

H ′
R = HR + V (r) + HSO, (6)

where

HSO = λ

h̄
(p − qAg) · σ × (∇V0). (7)

The wave function �(r) is expanded in terms of band-edge
Bloch functions un′,0 times spin eigenstates |σ ′〉:

�(r) =
∑
n′σ ′

ψn′σ ′(r)un′0(r)|σ ′〉, (8)

where ψn′σ ′(r) is the slowly varying envelope function that
modulates the quickly oscillating Bloch wave functions
un′0(r). Multiplied from the left by 〈σ | u∗

n0, the equation

H ′
R�(r) = E�(r) (9)

can be reduced to the coupled equation of the envelop function:∑
n′σ ′

H EFA
n′σ ′ ψn′σ ′(r) = Eψnσ (r) (10)

with the multiband Hamiltonian:

H EFA
n′σ ′ =

[
En′ (0) + h̄2k2

g

2m
+ V (r)

]
δnn′δσσ ′

+ h̄kg

m
· Pnn′

σσ ′ + 
nn′
σσ ′ + μBσ · Bg

2
δnn′ , (11)

where

Pnn′
σσ ′ = 〈nσ |

[
p + λ

h̄
σ × ∇V0

]
|n′σ ′〉 (12)

and


nn′
σσ ′ = 〈nσ | p · λ

h̄
σ × ∇V0|n′σ ′〉. (13)

Here we assume V (r),Ag, and ψn′σ ′(r) are slowly varying
within one unit cell, and then they are taken out of the integral
as constant. Using quasidegenerate perturbation theory,1 the
infinite-dimensional Hamiltonian H EFA

n′σ ′ can be converted into
a finite-dimensional one in which the SOI and the effective
Zeeman interaction are renormalized by the interband mixing.

Thus, the mechanism of the renormalization of the spin-
rotation coupling is quite similar to that of the conventional
Zeeman interaction.

IV. k · p PERTURBATION IN A ROTATING BODY

In the following, we consider the renormalization due to the
interband mixing in zinc-blende-type semiconductors close to
the � point of the Brillouin zone using the 8 × 8 Kane model
which includes the k · p coupling between the �c

6 conduction
band and the �v

8 and �v
7 valence bands:1,33

H ′
8×8 =

⎛
⎜⎝

H ′
6c6c H ′

6c8v H ′
6c7v

H ′
8v6c H ′

8v8v H ′
8v7v

H ′
7v6c H ′

7v8v H ′
7v7v

⎞
⎟⎠

=

⎛
⎜⎝

(Ec + V )I2

√
3P T · kg − P√

3
σ · kg√

3P T† · kg (Ev + V )I4 0

− P√
3
σ · kg 0 (Ev − 
0 + V )I2

⎞
⎟⎠ ,

(14)

where V = V (r), Ec and Ev are the conduction- and
valence-band edges, respectively. From Eqs. (12) and (13)
we define the Kane momentum matrix element as P =
(h̄/m) 〈S| px |X〉, and also define the spin-orbit gap as 
0 =
−(3ih̄/4m2c2) 〈X| [∇V0 × p]y |Z〉, where |S〉 is the s-like
conduction band state and |X〉 and |Z〉 are the p-like valence-
band states.1 Note that the conventional crystal momentum
used in the k · p perturbation h̄k = p − qA is replaced by
h̄kg = p − qAg , which includes the inertial effect due to the
gravitomagnetic field Bg . The matrices T = (Tx,Ty,Tz) are
given by

Tx = 1

3
√

2

(−√
3 0 1 0

0 −1 0
√

3

)
, (15)

Ty = −i

3
√

2

(√
3 0 1 0

0 1 0
√

3

)
, (16)

Tz =
√

2

3

(
0 1 0 0

0 0 1 0

)
, (17)

and I2 and I4 are the unit matrices of sizes 2 and 4, respectively.
The matrix H ′

8×8 is then reduced to an effective Hamiltonian
that depends only on the conduction-band electron states using
a method similar to that used for the transformation of the
Dirac equation of a four-spinor wave function into the Pauli-
Schrödinger equation.1 The Schrödinger equation

E� = H ′
8×8� (18)

with � = (ψ6c,ψ8v,ψ7v)T reads

(Ẽ − V ′)ψ6c =
√

3P T · kgψ8v − Pσ · kg√
3

ψ7v, (19)

ψ8v = 1

EG

(
1 + Ẽ − V ′

EG

)−1√
3P T† · kgψ6c, (20)

ψ7v = −1

EG + 
0

(
1 + Ẽ − V ′

EG + 
0

)−1
Pσ · kg√

3
ψ6c. (21)
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Inserting Eqs. (20) and (21) into Eq. (19),[
T · kg

3P 2

EG

(
1 + Ẽ − V ′

EG

)−1

T† · kg

+ σ · kg

P 2/3

EG + 
0

(
1 + Ẽ − V ′

EG + 
0

)−1

σ · kg

]
ψ6c,

= (Ẽ − V ′)ψ6c (22)

where Ẽ = E − Ec and EG = Ec − Ev .
To ensure norm conservation, a renormalized two-

component wave function ψ̃6c is sought that satisfies∫
d3x |�|2 =

∫
d3x |ψ̃6c|2. (23)

From Eqs. (20) and (21), the left-hand side of Eq. (23) is∫
d3x |�|2 ≈

∫
d3x

∣∣∣∣1 + 3P 2(T · kg)(T† · kg)

E2
G

+ P 2(σ · kg)(σ · kg)

3(EG + 
0)2

∣∣∣∣|ψ6c|2. (24)

Here we neglect (Ẽ − V ′)/EG and (Ẽ − V ′)/(EG + 
0).
Hence, we find ψ̃6c = [1 + N ]ψ6c with

N = 3P 2(T · kg)(T† · kg)

2E2
G

+ P 2(σ · kg)(σ · kg)

6(EG + 
0)2
. (25)

Note that N is essential to construct the wave function of the
conduction electron because we need to keep the unitarity of
the full wave function. Otherwise, we violate the unitarity of
the original wave function, and therefore, both the eigenstates
and eigenvalues of the Hamiltonian for the conduction electron
cannot be calculated properly.

Inserting ψ6c ≈ [1 − N ]ψ̃6c into Eq. (22), we obtain an
equation of the conduction band:

(H ′
0 + δH ′)ψ̃6c = Ẽψ̃6c, (26)

where the bare Hamiltonian H ′
0 is defined by

H ′
0 = h̄2k2

g

2m
+ V − h̄σ · �/2 + qλσ · (kg × E) + qλdiv E/2,

(27)

and δH ′ is given by

δH ′ = P 2

3

(
2

EG

+ 1

EG + 
0

)
k2

g

− P 2

3

(
1

EG

− 1

EG + 
0

)
e

h̄
iσ · (kg × kg)

+ eP 2

3

(
1

E2
G

− 1

(EG + 
0)2

)
σ · (kg × E)

− eP 2

6

(
2

E2
G

+ 1

(EG + 
0)2

)
div E, (28)

with E = (−1/e)∇V . Here, we use the following relations:

(σ · kg)(σ · kg) = k2
g + iσ · (kg × kg), (29)

9(T · kg)(T† · kg) = 2k2
g − iσ · (kg × kg). (30)

Thus, we obtain the total Hamiltonian for the conduction
band: H ′∗ = H ′

0 + δH ′, which reads

H ′∗ = h̄2k2
g

2m∗ + V − (1 + δg)
h̄

2
σ · �

+ q(λ + δλS)σ · (kg × E) + q

2
(λ + δλD)div E. (31)

Here, the effective mass m∗, δg, δλS, and δλD are given by

1

m∗ = 1

m
+ 2P 2

3h̄2

(
2

EG

+ 1

EG + 
0

)
, (32)

δg = −4m

h̄2

P 2

3

(
1

EG

− 1

EG + 
0

)
, (33)

δλS = −P 2

3

(
1

E2
G

− 1

(EG + 
0)2

)
, (34)

δλD = P 2

3

(
2

E2
G

+ 1

(EG + 
0)2

)
. (35)

These factors δg, δλS, and δλD are the same as those in an
inertial frame in the presence of the magnetic field.1,33,34

We emphasize that the renormalization of the spin-rotation
coupling can be calculated from the renormalized g factor.
According to the conventional k · p method, the renormalized
Zeeman term is

(g0 + δg)

2
μBσ · B, (36)

where g0 = 2 is the bare g factor. The renormalized g factors
g0 + δg of the zinc-blende-type semiconductors have already
been studied theoretically and experimentally. Therefore, the
renormalization of the spin-rotation coupling can be calculated
by using the well-known values.

The difference between the renormalization factor of spin-
rotation coupling and that of Zeeman coupling can be more
clearly derived from the Pauli-Schrödinger Hamiltonian in
the rigidly accelerating frame with external electromagnetic
fields:35

H ′ = {p − qA′ − (qmλ/h̄)σ × E′}2

2m
+ qA′

0 + μBσ · B′,

(37)

where A′ = A + Ag , A′
0 = φg + (1/q)V + A0 + γ −1

0 a · r + mλ
2

div E′ − mqλ2

h̄2 E′2, E′ = E + (� × r) × B, B′ = B + Bg/2,
Aμ = (A0,A) is the electromagnetic field, and a is the linear
acceleration. The first term indicates that the conventional
kinetic momentum h̄k = p − qA is replaced by h̄k′ = p −
qA′ in the accelerated frame. Therefore, if we start with
Eq. (37), the renormalized Hamiltonian H ′∗ is modified as

H ′∗ = h̄2k′2

2m∗ + V ′ +
(

1 + δg

2

)
μBσ · B − (1 + δg)

h̄

2
σ · �

+ q(λ + δλS)σ · (k′ × E′) + q

2
(λ + δλD)div E′. (38)

The difference between the Zeeman interaction and the spin-
rotation coupling comes from the fact that the bare Zeeman
interaction is μBσ · B while the bare spin-rotation coupling
is μBσ · Bg/2. A detailed discussion on the Hamiltonian H ′
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in terms of the SU (2) × U (1) gauge theory is given in the
Appendix.

V. FREQUENCY SHIFT DUE TO ROTATION IN ESR

The third and fourth terms in Eq. (38) can be rewritten as(
1 + δg

2

)
μBσ · (B + 
B), (39)

where an effective magnetic field 
B is defined by 
B =
− 2+2δg

2+δg
�
γ0

. In Ref. 21, the frequency shift of ESR due to rotation
was pointed out as ω′

ESR = ωESR − � for an isotropic crystal.
By taking account of the interband mixing, the shift reads

ω′
ESR = ωESR − (1 + δg)�. (40)

VI. SPIN PRECESSION IN A ROTATING BODY

Let us consider effects of mechanical rotation on mag-
netization. The SOI is neglected for simplicity. From the
commutation relationship, the equation for spin precession
in a rotating frame can be derived:

σ̇ = −
(

1 + δg

2

)
μBσ × B + (1 + δg)

h̄

2
σ × �. (41)

Because of the renormalized spin-rotation coupling, the torque
term due to the mechanical rotation has the factor 1 + δg.

VII. DISCUSSION

In the derivation above, we first include effects of the
gauge field due to the rotation into the Hamiltonian in
vacuum, and then apply the k · p perturbation with the crystal
momentum k′ = p − qA′ and perform the projection to the
conduction electron. Because the presence of the gauge field
alters the translational symmetry mentioned earlier, the order
of the introduction of the gauge field and the projection
is essential to construct an effective theory, retaining the
fundamental symmetry of the original system. Instead, if
one started with the k · p perturbed Hamiltonian, H ∗, and
performed the unitary transformation U = exp[iJt/h̄], one
would obtain the Hamiltonian: H ∗

R = UH ∗U † − ih̄U ∂U †

∂t
=

H ∗ − r × p · � − h̄
2σ · �, where the spin-rotation coupling

would not be renormalized, namely, the factor 1 + δg is
missing. Technically, this is because rotational effects to the
off-diagonal matrix elements between the conduction and
valence bands are not taken into account properly.

We must care about such an order whenever we treat an
effective Hamiltonian which is reduced from the original
Hamiltonian. If one can use the full set of the vectors in
the original Hilbert space, it is not necessary to care about
the order. However, when we use a reduced Hamiltonian,
the Hilbert space is smaller than the original one. Therefore,
the order is essential to obtain the correct answer. Similar
situations are given in the following examples:

(1) Derivation of the Pauli equation from the Dirac equation.
To obtain the Pauli equation which includes the Zeeman and

spin-orbit interactions, first, we introduce the gauge potential
by replacing the canonical momentum p for the kinetic
momentum p − qA. After that, we reduce the Dirac equation to

the Pauli equation using the low-energy expansion. Otherwise,
one obtains neither Zeeman term nor spin-orbit interaction.

(2) Conventional Kane model.
If one starts with the eight-band Kane model with the

canonical momentum k, namely, the momentum without
the gauge potential A, one obtains the conduction-band
Hamiltonian without renormalized g factor.

Finally, we mention the enhancement factor of the
spin-rotation coupling for semiconductors. The electron
g factor in semiconductors has been widely investigated
for low-dimensional semiconductor nanostructures such as
GaAs/AlxGa1−x and Ga1−xInxAs/InP heteropairs,36 and semi-
conductor quantum dots.37 For lightly doped n-InSb at
low temperature, g ≈ −49 has been employed in a recent
experiment.38 In this case, δg = −51, and then, the rotational
ESR shift due to the 100-kHz rotor is estimated to be 5 MHz
from Eq. (40). This enhancement will be observed in experi-
ment with a ultra-high-speed rotor.39

VIII. CONCLUSION

We have investigated enhancement of the spin-rotation
coupling due to the interbandmixing in zinc-blende-type semi-
conductors. The Bloch’s theorem and the envelope function
approximation in the presence of the mechanical rotation
have been constructed with the generalized crystal momen-
tum which includes the gauge potential due to mechanical
rotation. The effective Hamiltonian for conduction electrons
in an accelerated body was derived from the 8 × 8 Kane
Hamiltonian. The Zeeman, spin-rotation coupling, SOI, and
Darwin terms in the accelerated frame are renormalized by
interband mixing. The renormalized spin-rotation coupling
provides the enhancement of the frequency shift in ESR and
the mechanical torque in spin precession due to the interband
mixing, which will be observed in experiment.
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APPENDIX: SU(2) × U(1) GAUGE THEORY
IN ACCELERATED FRAMES

Here we formulate a SU(2) × U(1) gauge theory in accel-
erated frames, which offers a unified description of inertial
effects on charge and spin currents. It is well known that the
Pauli-Schrödinger equation can be analyzed by the SU(2) ×
U(1) gauge theory where the U(1) gauge potential originates
from electromagnetic fields and the SU(2) counterpart from the
Zeeman and spin-orbit interactions.12,40–42 The SU(2) × U(1)
gauge theory offers clear description of charge and spin physics
in a unified way.

1. Pauli-Schrödinger equation

We start with the Hamiltonian for an electron in a rigidly
accelerated frame in the presence of external electromagnetic
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fields:35

H ′ = (p − qA)2

2m
+ qA0 + ma · r − � · r × (p − qA)

+μBσ · B − h̄

2
σ · �

+ qλ

2h̄
σ · [(p − qA) × E′ − E′ × (p − qA)]

+ qλ

2
div E′, (A1)

where

E′ = E + γ −1
0 a + (� × r) × B. (A2)

Here, prime indicates the values including inertial effects.
The electron charge-to-mass quotient γ0 = q/m is defined
by the bare mass of the electron m and the charge q = −e,
h̄ is the Planck constant divided by 2π , μB = qh̄/2m is the
Bohr magneton, (A0,A) is the U(1) gauge potential, E and B
are the electric and magnetic fields, a and � are the linear
acceleration and rotation frequency, σ is the Pauli matrix, and
λ = h̄2/4m2c2 is the bare spin-orbit coupling.

The third and fourth terms in Eq. (A1) are inertial potentials
due to linear acceleration and rotation, respectively. Especially,
the latter reproduces the Coriolis, centrifugal, and Euler forces.
The fifth term is the Zeeman term and the sixth term is the
spin-rotation coupling. These terms can be combined as

μBσ · B − h̄

2
σ · � = μBσ · B′, (A3)

where

B′ = B + BS, (A4)

and

BS = �

γ0
. (A5)

Thus, the spin-rotation coupling can be interpreted as the
Zeeman interaction due to an effective magnetic field BS ,
which is often referred to as the Barnett magnetic field.10

The last two terms in Eq. (A1) are the spin-orbit interaction
and the Darwin term augmented by the inertial effects. The
spin-orbit interaction is responsible for spin current generation
by mechanical means.35

2. SU(2) × U(1) gauge theory

It is well known that Hamiltonian with spin-orbit interaction
can be rewritten as the SU(2) × U(1) gauge theory which
allows us to understand physics of both charge and spin current
in a unified way.12,40–42 The Hamiltonian (A1) can be written
as

H ′ = 1

2m

(
pi − qA′

i − ηA′a
i τ a

)2 + qA′
0 + ηA′a

0 τ a, (A6)

where

A′
i = Ai − γ −1

0 εijk�j × rk, (A7)

A′
0 = A0 + γ −1

0 a · r + mλ

2
div E′ − m

2
(� × r)2 − mqλ2

h̄2 E′2,

(A8)

A′a
i = −2mqλ

ηh̄
εajiE

′
j , (A9)

A′a
0 = 2μB

η
B ′

a. (A10)

Here τ a = σa/2 is the generator of the SU(2) Lie group and we
choose the “SU(2) charge” as η = h̄. This Hamiltonian consists
of two gauge potentials; the U(1) gauge potential denoted by
A′

μ = (A′
0,A

′
i)(i = 1,2,3) and the SU(2) potential by A′a

μ =
(A′a

0 ,A′a
i ). These relations shows that all of the inertial effects

on spin and charge due to the linear acceleration a and the
rotation � can be expressed by the SU(2) and U(1) gauge
potentials.

a. Gravitomagnetic field vs Barnett magnetic field

The conventional magnetic field B = ∇ × A is modified by
the rotation � in the U(1) gauge field as

∇ × A′ = B + Bg, (A11)

with

Bg = 2γ −1
0 �. (A12)

The effective magnetic field Bg is called the gravitomagnetic
field in the context of general relativity.31 On the contrary, B
in the time component of SU(2) gauge potential A0, which
originates from the Zeeman term, is modified by the Barnett
magnetic field BS = γ −1

0 � as shown in Eq. (A3). Note that the
inertial effect due to the rotation on charge is different from
that on spin by the factor 2. To understand this difference, it is
useful to give another expression of the gravitomagnetic and
Barnett fields by introducing two kinds of g factors defined by

gL = 1 (orbital angular momentum),

gS = 2 (spin angular momentum),
(A13)

and gyromagnetic ratios by

γL = gLμB

h̄
, (A14)

γS = gSμB

h̄
. (A15)

Then, Bg and BS can be written as

Bg = − �

γL

, (A16)

BS = − �

γS

. (A17)

Using these expressions, the generator of the mechanical
rotation, (L + S) · �, is rewritten as

(L + S) · � = mL · Bg + mS · BS, (A18)

where L and S are the orbital and spin angular momentum and
magnetic moments are given by

mL = −γLL, (A19)

mS = −γSS. (A20)

b. Anomalous velocity

The spatial component of the SU(2) gauge potentials A′a
i

yields spin-dependent velocity (anomalous velocity) due to
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v′
i = 1

ih̄
[ri,H ]

= vc,i + vs,i , (A21)

where the spin-independent velocity vc,i and the spin-
dependent velocity vs,i are given by

vc,i = pi − qA′
i

m
, vs,i = qλ

h̄
εijkσjE

′
k. (A22)

In the case that Aμ = 0, � = 0, and a 	= 0, the anomalous
velocity becomes

vs = mλ

h̄
σ × a. (A23)

Then, spin current is generated perpendicular to the effective
electric field due to the linear acceleration γ −1

0 a. In the case
that B 	= 0, � 	= 0, and B ‖ �, spin current is generated
perpendicular to the effective electric field (B · �)r since the
anomalous velocity reads

vs = qλ

h̄
σ × (B · �)r. (A24)

3. Lagrangian formalism and Noether current

According to the Noether’s theorem, continuous symme-
tries of a system are closely related to conserved quantities.
Noether’s theorem in the SU(2) × U(1) gauge theory gives the
relation between charge and charge current as well as spin and
spin current. However, unlike to charge current, spin current is
not a conserved quantity because of the non-Abelian properties
of the SU(2) gauge group.

The Lagrangian density for the SU(2) × U(1) gauge theory
in accelerated frames is given by

L′ = i

2
(ψ̇†ψ − ψ†ψ̇) + ψ†(qA′

0 + ηA′a
0 τ a)ψ

+ m

2
(v′

iψ)†(v′
iψ) − 1

4
F ′

μνF
′
μν − 1

4
F ′a

μνF ′a
μν, (A25)

where

v′
i = 1

m
(pi − qA′

i − ηA′a
i τ a), (A26)

F ′
μν = ∂μA′

ν − ∂νA
′
μ, (A27)

F ′a
μν = ∂μA′a

ν − ∂νA′a
μ + ηεabcA′b

μA′c
ν . (A28)

The Noether currents associated with the U(1) and SU(2)
gauge symmetry are given by

J ′
μ = ∂L′

∂Aμ

= e(ψ†ψ,Re[ψ†v′
iψ]) (A29)

and

J ′a
μ = ∂L′

∂A′aμ

= η

(
ψ†τ aψ,Re

[
ψ† τ

av′
i + v′

iτ
a

2
ψ

])
+ ηεabcA′b

ν F ′c
μν.

(A30)

Then, we obtain the continuity relation in accelerated frames
for charge,

∂μJ ′
μ = 0, (A31)

and for spin,

∂μJ ′a
μ = 0. (A32)

The relation (A31) reads

∂ρ ′
c

∂t
+ div j′c = 0, (A33)

where

j ′
c,μ = (ρ ′

c,j
′
c,i)

= e(ψ†ψ,Re[ψ†v′
iψ]). (A34)

On the contrary, Eq. (A32) reads

∂ρ ′
s

∂t
+ div j′s = −∂μ

(
ηεabcA′b

ν F ′c
μν

) 	= 0, (A35)

where

j ′a
s,μ = (

ρ ′a
s ,j ′a

s,i

)
= η

(
ψ†τ aψ,Re

[
ψ† τ

av′
i + v′

iτ
a

2
ψ

])
. (A36)

Thus, the spin current in accelerated frames j′s is not a
conserved quantity because of the right-hand side of Eq. (A35)
which originates from the non-Abelian properties of the SU(2)
gauge potential A′a

μ .

4. Inertial forces acting on charge and spin current

We can identify the inertial forces acting on charge and spin
current on the basis of the analogy with the Lorentz force in
the conventional electromagnetism:

fc,i = jc,μFμi, (A37)

where jc,μ is the four-vector of the charge current and
the field strength of the conventional electromagnetic field
Fμν = ∂μAν − ∂νAμ. In the SU(2) × U(1) gauge theory in
accelerated frames, we have the inertial force acting on charge
and charge current:

f ′
c,i = j ′

c,μF ′
μi, (A38)

and that on spin and spin current:

f ′
s,i = j ′a

s,μF ′a
μi

= ρ ′a
s E ′a

i + εijkj
′a
s,jB′a

k , (A39)

where the SU(2) “electric” field E ′a
i and “magnetic” field B′a

k

are given by

E ′a
i = ∂0A′a

i − ∂iA′a
0 , (A40)

B′a
k = εklm∂lA′a

m. (A41)

Equation (A38) is a unified expression of the Lorentz force
and the inertial force including the Coriolis force with the
relativistic correction due to the Darwin term. Equation (A39)
is also a unified expression of spin-dependent inertial force.35
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