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Quantum criticality at the Chern-to-normal insulator transition
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Using the noncommutative Kubo formula for aperiodic solids and a recently developed numerical
implementation, we study the conductivity σ and resistivity ρ tensors as functions of Fermi level EF and
temperature T for models of strongly disordered Chern insulators. The formalism enabled us to converge the
transport coefficients at temperatures low enough to enter the quantum critical regime at the Chern-to-trivial
insulator transition. We find that the ρxx curves at different temperatures intersect each other at one single critical
point, and that they obey a single-parameter scaling law with an exponent close to the universally accepted
value for the unitary symmetry class. However, when compared with the established experimental facts on the
plateau-insulator transition in the integer quantum Hall effect, we find a universal critical conductance σ c

xx twice
as large, an ellipse rather than a semicircle law, and absence of the quantized Hall insulator phase.
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I. INTRODUCTION

The criticality at the localization-delocalization transition
(LDT) is believed to be universal and entirely determined
by the generic symmetries of the systems (with certain
special exceptions).1 One manifestation of this universality
is a common scaling exponent ν per generic symmetry class,
describing the diverging behavior of the localization length ξ

at the mobility edge: ξ ∼ (EF − Ec
F )−ν . This in turn leads to

a temperature scaling of the transport coefficients at LDT:2

ρ(EF ,T ) = F
((

EF − Ec
F

)
(T/T0)−κ

)
, κ = p/2ν, (1)

when combined with the concept of temperature-induced
effective size introduced by Thouless,3 and with the single-
parameter scaling hypothesis.4,5 In Eq. (1), F is a system
dependent function, T0 is a reference temperature, and p is the
dynamical exponent for dissipation. Besides these universal
scaling laws, there are other interesting universal aspects of
the LDT, such as the existence of a single critical point (as
opposed to a line of critical points) for the unitary symmetry
class, universal values of the critical transport coefficients
and universal renormalization flow diagrams of the transport
coefficients with the temperature or with the system size.

Such universal characteristics at the plateau-plateau (PPT)
and plateau-insulator (PIT) transitions in the integer quantum
Hall effect (IQHE) have preoccupied the experimental6–25 and
theoretical22,26–35 condensed matter communities for decades,
resulting in some of the best experimental data and computer
simulations available for a quantum transition. With the
discovery of topological insulators (TI),36–43 the principles
of universality will receive renewed scrutiny. The TIs have
bulk extended states even in the presence of strong disorder,44

hence they are expected to display sharp LDTs. As such,
the transport measurements at the transitions could be as
clean and revealing as the ones in IQHE. The TIs can fall
in different symmetry classes45,46 and, even within the same
symmetry class, the topological materials can be very different
from one another,47,48 thus providing the perfect laboratory to
test the principles of universality. The computer simulations
have already began this process (note that these are all zero-
temperature finite-size scaling simulations).49–60 One question
that received great attention from these works is if the scaling

exponents of the symplectic models at the metal-to-normal
insulator and at the metal-to-topological insulator are the same.
So far, the answer seems to be affirmative.

Although there are substantial experimental transport data
for TIs, only recently the focus was fully tuned on the
topological-to-nontopological phase transition.61–63 And even
these experiments need to be further refined for the quantum
criticality to be revealed. Traditionally, the experiment was
always ahead of the theoretical simulations in this domain
(see Ref. 35 for a discussion), but we strongly believe that
this state of affairs will be soon reversed by the adoption of
the noncommutative geometry program for aperiodic solids,
initiated by Bellissard et al. in the 90’s.64–66 For example,
this natural formalism for treating disordered solids under
magnetic fields enabled us to develop extremely accurate,
stable, and efficient simulations of the zero- and finite-
temperature transport coefficients,44,67–69 to a point where
qualitative and quantitative agreement between experiment
and simulation was possible for PIT in IQHE.35 In this article,
we announce several predictions based on the noncommutative
Kubo formula on the quantum criticality at the Chern-to-
normal insulator transition. On a broader note, we want to
announce that this type of simulations reached a level where
they can provide qualitative and quantitative guidance for
the experiments on quantum criticality at the topological-to-
nontopological phase transitions.

The search for possible Chern insulator (CI) materials have
intensified and several theoretical studies have already singled
out possible CI candidates.70–81 This and the fact that the CIs
and the IQHE liquids belong to the same unitary symmetry
class motivated us to focus exclusively on CIs in this study.
For the spin-up sector of the Kane-Mele (KM) model37 with
strong disorder, we were able to converge (i.e., eliminate any
finite-size effects) the finite-temperature conductivity σ and
resistivity ρ = σ−1 tensors, at temperatures low enough to
enter the quantum critical regime at the transition between a
CI and a normal insulator. We compare these results with the
known facts for the PIT in IQHE.17,19–22,24,82–85

We find that, like at PIT in IQHE, the graphs of ρxx as a
function of electron density, recorded at different temperatures,
intersect at one single critical point, and they collapse into a
single curve after a single-parameter rescaling. The scaling
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exponent κ is in good agreement with what one would predict
by using the universally accepted value of the finite-size
scaling exponent ν = 2.58 ± 0.03,54,86–91 and with p fixed
like in our simulations (p = 1). We clearly see the expected
renormalization flow of σ with the temperature, but the
separatrix is not a semicircle like at PIT in IQHE, but rather an
ellipse. At the critical point, we find σxy ≈ 1

2
e2

h
and, quite

interestingly, σxx ≈ e2

h
rather than 1

2
e2

h
(to be precise, the

numerics place σxy between 0.5–0.6 e2

h
at PIT50,92–96). The

main surprise was, however, the absence of the quantized Hall
insulator phase, characterized by σ = 0 but ρxy = h

e2 .
To probe the broader applicability of our conclusions,

we have repeated the computations for the spin-up sector
of the Bernevig-Hughes-Zhang (BHZ) model.39 Although in
this case the calculations are not converged well enough
for accurate quantitative predictions, they already support
the qualitative conclusions we reached for the KM model:
existence of a single critical point and absence of the quantized
Hall insulator phase. The critical values of the transport
coefficients remain the same. Unfortunately, the data for
BHZ model display a poorer scaling, indicating that lower
temperatures are needed. As such, the scaling exponent for
this second set of calculations is inconclusive. We plan to
re-examine the issue in future simulations with larger system
sizes, which will enable us to further reduce the temperature
without introducing size effects.

II. THE NONCOMMUTATIVE KUBO FORMULA

The key for our simulations is the noncommutative Kubo
formula:64–66

σij (EF ,T ) = −T
(
[xi,H ](1/τ + LH )−1[xj ,�FD(H )]

)
, (2)

where T represents the trace over volume, H is the disordered
Hamiltonian, x is the position operator, τ is the relaxation time
for dissipation, �FD is the Fermi-Dirac distribution for a given
T and EF , and LH is the Liouvillian acting on the observables
(i.e., operators):

LH A = i[H,A]. (3)

In real condensed matter systems: τ ∼ T −p, where p is the
dynamical exponent appearing in Eq. (1).

As usual, the conductivity tensor σjk of Eq. (2) provides the
link between the charge current density and the homogeneous
static electric field E that drives the system:

Jj =
d∑

k=1

σjkEk. (4)

Here, J is the time average of the expected value of the current
density operator. The state of the system evolves according
to the dynamics induced by H − eEx, and by random
(in time), instantaneous electron scattering events. Realistic
electron-electron and electron-phonon scattering matrices can
be consider, however, Eq. (2) assumes the relaxation time
approximation.

Extended discussions of the physical assumptions, the
derivation, and the noncommutative formalism, together with
convergence tests and applications to the disordered Hofstadter
model can be found in Ref. 68. Another complete discussion

of the Kubo formalism was given in this very journal (see
Ref. 69), together with applications to a disordered model of a
quantum spin-Hall insulator. For these reasons, here we only
discuss the significance of Eq. (2) and its relation with other
works. Equation (2) represents the thermodynamic limit of the
formal Kubo formulas written in terms of the eigenfunctions
and eigenvalues of the equilibrium Hamiltonian, found in the
classical solid state textbooks [see, for example, Eq. (3.385)
and its finite-temperature version in Ref. 97]. Finite-volume
versions of the Kubo formula for aperiodic systems can be
also derived using the traditional quantum master equation.98

In this type of analyses, the Kubo formula is formulated as
the infinite-volume limit of the finite-volume expressions.
The existence of this limit for aperiodic systems is virtually
impossible to prove without the noncommutative formalism.
What is special about the latter is that it enables one to work
directly in the thermodynamic limit. For example, the trace per
volume is rewritten using the Birkhoff ergodic theorem, and
the Liouvillian can be defined as a normal operator on a well
defined Hilbert space (hence a spectral decomposition exists
for it).

At the practical level, an explicit Kubo formula for infinite
volume is important because it enables one to analyze how
fast are the various finite-volume approximations converging
in the thermodynamic limit. In particular, it enabled us to de-
velop a canonical finite-volume approximation that converges
exponentially fast in the thermodynamic limit, a fact that was
established with mathematical rigor.68 This canonical finite-
volume approximation and its numerical implementation have
been extensively discussed in Refs. 68 and 69. Here, we closely
follow these two references.

III. QUANTUM CRITICALITY IN THE SPIN-UP SECTOR
OF THE KANE-MELE MODEL

In the absence of Rashba interaction, the spin sectors
decouples and the KM model reduces to a disconnected sum of
two Chern insulators. The Hamiltonian in the spin-up sector
(tuned in the middle of the CI topological phase) takes the
form:

H0 =
∑

〈nm〉
|n〉〈m| + 0.6i

∑

〈〈nm〉〉
τn(|n〉〈m| − |m〉〈n|). (5)

Here, τn represents the isospin of the site n of the honeycomb
lattice, and 〈〉/〈〈〉〉 symbolize first/second nearest neighbors.
We add the random potential Vω = W

∑
n ωn|n〉〈n| to H0,

where the ω’s are independent random variables uniformly
distributed in [− 1

2 , 1
2 ]. We fix W = 4 (= 2 × the clean

insulating gap), in order to achieve the strong disorder regime
where the insulating (spectral) gap is closed and only a
mobility gap remains. The simulations are performed on a
finite-size lattice containing 80 × 80 unit cells. By repeating
the simulations with different lattice sizes, we concluded
that the effects due the finite size of the simulation box are
practically negligible for the temperatures considered in the
present study (the effective Thouless length3 is smaller than
the simulation box).

In the above conditions, all the quantum states of the
model are localized, except for the states in two nar-
row energy regions separating the CI from the normal
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FIG. 1. (Color online) (a) The spectrum of the disordered Chern
insulator is localized everywhere except for two thin energy regions.
(b) The expected flow of the transport coefficients when the
temperature is lowered to zero. Different flow lines correspond to
different Fermi levels. The dashed line represents the separatrix,
which is expected to satisfy a semicircle law.

insulator [see Fig. 1(a)]. The existence of such delocalized
quantum states can be demonstrated44 with mathematical
rigor using the theory of noncommutative Chern number,64

while numerically, it has been demonstrated using recursive
Green’s function and transfer matrix calculations,51,74,99,100

level statistics analysis,44,67,101 simulations of the edge cur-
rents and computations of the edge conductance.102–104 Near
the transitions, the field-theoretic arguments developed by
Pruisken and collaborators105–108 for IQHE predict the T -
driven flow-diagram shown in Fig. 1(b), which was observed
and confirmed in IQHE by experiment.7,109

The simulated σ is reported in Fig. 2 as a function of
Fermi level, for kT = 1/τ = 0.01, 0.02, 0.03, 0.04, 0.06, and
0.08 (hence we fix p = 1 in our simulations). In this figure,
we can see an energy region where, especially for the lower
temperatures, σyx takes the quantized value of −1, indicating
that the system is in the CI phase. When moving away
from this energy region, σyx starts to converge towards 0,
indicating that the system enters the normal insulator phase.
The σyx curves computed at different temperatures intersect
each other at practically one point. Examining the data for
the direct conductivity, we see σxx decreasing as T → 0 for
most part of the energy spectrum, a hallmark of the insulating
phase, with the exception of two distinct energy regions
where σxx increases as temperature decreases. These latter
energy regions appear exactly where σyx switches between
its quantized values and, as such, they must harbor extended
quantum states.64 The energy regions where σxx increases as
T → 0 appear to become smaller and smaller as T is lowered,
and the maximum value of σxx stabilizes at a finite value (as
opposed to diverging to infinity). An important question is
if these regions reduce to a point as T → 0. A more refined
analysis based on Fig. 3 shows that this is, indeed, the case,
and gives the critical Fermi levels Ec

F ≈ ±1.02. The values of
σ at Ec

F are marked in Fig. 2 and are σ c
xx ≈ e2

h
and σ c

xy ≈ 1
2

e2

h
.

These critical values for the conductance are reproduced when

σxx (e2/h)

EF

σyx (e2/h)
Tem

perature

σ x
x (

e2 /h
)

σxy (e2/h)

FIG. 2. (Color online) σ as a function of EF at kT = 1/τ = 0.01,
0.02, 0.03, 0.04, 0.06, 0.08, simulated on an 80 × 80 lattice. An
average over many disorder configurations was considered (as many
as 67 for T = 0.01 and 24 for T = 0.08). The marks posted on the
graph give σ at the critical point. The inset shows the flow of our
data in the (σxy,σxx) plane as T → 0. The dotted line suggests the
separatrix for the flow.

the simulations are repeated for the spin-up sector of the BHZ
model. Furthermore, the PIT is known to exhibit a universal
critical conductance,18 though with a different value, so we are
led to conjecture that the Chern-to-normal insulator transition
also exhibits a universal conductance, with the universal values
stated above.

When the data points from the main plot in Fig. 2 are placed
in the (σxy,σxx) plane, we obtain the flow diagram shown in
the inset of Fig. 2. The separatrix for this flow, marked with the

ρ x
x (

h/
e2 )

EF kT

EF Critical 
point

(a) (b)

Tem
perature

ρ y
x (

h/
e2 )

EF

FIG. 3. (Color online) (a) ρxx (and ρxy in the inset) as function
of EF at kT = 0.01, 0.02, 0.03, 0.04, 0.06, and 0.08. (b) ρxx as a
function of temperature for various EF values. The arrow indicates
the transition from CI to the normal insulator.
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dotted line, has the shape of a semiellipse with the semiaxes
1
2

e2

h
and e2

h
. At PIT in the IQHE, the separatrix strictly obeys the

semicircle law: σ 2
xx + (σxy − 0.5e2/h)2 = (0.5e2/h)2.19 Let

us point out that the values σxy > 0.5 occur when EF is located
inside the old clean insulating gap, while the values σxy < 0.5
occur when EF is located in the high-density spectrum resulted
from the localization of the clean energy bands. As such, the
flow (as T → 0) starts from the inside (outside) of the ellipse
and moves towards the separatrix for σxy > 0.5 (σxy < 0.5), a
markedly different behavior when compared with PIT.

The existence of a unique critical point (as opposed to
a line of critical points) at the Chern-to-normal transition
can be established with great confidence by examining the
resistivity tensor, plotted in Fig. 3. From the expression
ρxx = σxx/(σ 2

xx + σ 2
xy), it follows that ρxx → 0 inside the CI

phase, while ρxx → ∞ inside the normal insulating phase,
when T → 0. As a consequence, the ρxx-curves at different
T must cross each other, very much like the σyx curves do in
Fig. 2. Since the plots are symmetric relative to the zero energy,
we can focus only on the positive energies. Figure 3(a) strongly
suggests that all ρxx curves cross each other at a single point,
exactly how it was observed at PIT. To accurately pinpoint
this crossing point, we replotted ρxx in Fig. 3(b), this time as
function of temperature, for each positive EF value appearing
in Fig. 3(a). The flow of ρxx with decreasing T curves down
at lower EF ’s and it curves up at higher EF ’s. There is a clear
separatrix between these two distinct tendencies, very much
like in the experimental data on the PI transition in Ref. 110,
or on the metal-insulator transition in Ref. 111. This enables
us to accurately identify the critical point: Ec

F = ±1.017, and
then to determine the value of the conductivity tensor at the
critical point: σ c

xy = −0.53 e2

h
and σ c

xx = 1.09 e2

h
.

The inset in Fig. 3(a) reports ρyx = σxy/(σ 2
xx + σ 2

xy) as a
function of EF , which decreases from 1 to 0 almost with
the same rate as σyx . As one can see, there is absolutely no
tendency for ρxy to stay quantized at h

e2 through the transition
or further into the normal insulating phase. Such quantization
of ρxy would have been incompatible with the critical values
of σ determined above. It is also known that a quantized ρxy is
equivalent with the semicircle law,20 but the separatrix shown
in the inset of Fig. 2 has an elliptical shape quite different
from a semicircle. We want to point out that these facts are
also true for the simulations with the BHZ model. As such,
we can conclude with great confidence that the quantized Hall
insulator phase is absent for this system. This is in striking
contrast with the PIT in IQHE, for which we did observe
the quantized Hall insulating phase,35 using same type of
calculations.

We now zoom into the region around Ec
F and start the

scaling analysis. Since the scaling occur in the asymptotic
limit T → 0, we keep for this analysis only the lowest four
temperatures. As shown in Fig. 4, the ρxx curves collapse
almost perfectly on top of each other after the energy axis
is rescaled as EF → Ec

F + (EF − Ec
F )(kT /kT0)−κ (kT0 =

0.04). The best overlap of the rescaled curves is obtained
for κ = 0.21 ± 0.01, a value that is in good agreement with
k = 0.194 ± 0.2 obtained from the expression κ = p/(2ν)
with the universally accepted value ν = 2.58 ± 0.03, and
p = 1 like in our simulations.

ρ x
x (

h/
e2 )

EF EF

before rescaling after rescaling

FIG. 4. (Color online) ρxx at different temperatures collapses
onto a single curve after the single-parameter rescaling: EF → Ec

F +
(EF − Ec

F )(T/T0)−κ , with Ec
F = 1.017, T0 = 0.04, and κ = 0.21.

IV. CRITICAL REGIME IN THE SPIN-UP SECTOR OF
THE BERNEVIG-HUGHES-ZHANG MODEL

This section reports the simulations based on the non-
commutative Kubo formula, for the Chern insulator (CI)
corresponding to the spin-up sector of the Bernevig-Hughes-
Zhang (BHZ) model (tuned in the middle of the topological
phase):39

h(k) = σx sin kx + σy sin ky + 2(1 + cos kx + cos ky)σz, (6)

where the σ ′s represent the Pauli’s matrices. This model
can be represented on a two-dimensional square lattice with
two orbitals per site. The lattice sites are indexed by n and
the orbitals by α. In this real-space representation, we add
the random potential Vω = W

∑
n,α ωn,αc

†
n,αcn,α , where c

†
n,α

creates an electron in state α at site n, and ω’s are independent
random variables uniformly distributed in [−1/2,1/2]. We
fixed W = 5 (= 2.5 × the clean insulating gap), to achieve
the strong disorder regime where the insulating gap is closed
and only a mobility gap remains. As in the previous section,
the lattice-size was taken to be 80 × 80 unit cells. An average
over many disorder configurations was considered for different
temperatures, specifically: 68 configurations for kT = 0.01,
67 for kT = 0.02 and 23 for kT = 0.04, 0.06, and 0.08.

Figure 5 reports the simulated conductivity tensor σ as
function of Fermi level EF , at various temperatures T . The data
display the same general features as seen in Fig. 2. In particular,
σxy takes quantized values in certain energy regions and, in
the energy region where σxy shifts between the quantized
values, σxx becomes independent of temperature, signaling
the presence of extended states. A more refined analysis based
on Fig. 6 reveals again a single critical point, located at the
critical Fermi level Ec

F ≈ 0.94. The critical σ values at Ec
F

were found again to be σ c
xx ≈ e2

h
and σ c

xy ≈ 1
2

e2

h
(the exact

values are marked on the graph). The inset of Fig. 5 shows the
T -driven flow of σ in the (σxy,σxx) plane. While it generally
resembles the flow in Fig. 2, a closer analysis reveals that the
calculations are not well converged on the normal insulator
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σxx (e2/h)

EF

σxy (e2/h)
σxx (e2/h)

σxy (e2/h)

Tem
perature

FIG. 5. (Color online) The simulated σ for BHZ model as a
function of EF at kT = 1/τ = 0.01, 0.02, 0.04, 0.06, 0.08, simulated
on an 80 × 80 lattice. The inset shows the T -driven renormalization
flow of σ in the (σxy,σxx) plane.

side (near σxy = 0). Lower temperatures will be definitely
needed to obtain the correct separatrix (which we believe it
will look very similar to that for KM model).

Figure 6 reports the simulated resistivity tensor ρ (a) as a
function of EF , at various temperatures, and (b) as function of
kT , at various Fermi levels. The flow with T in Fig. 6(b) is used
to accurately determined the critical point, whose coordinates
were given above. Apart from some structure in the curves,
there are no major differences when Fig. 6 is compared with
Fig. 3. The inset reports ρxy as function of EF and, here too,
there is no trace of the quantized Hall insulator phase.

Figure 7 reports the scaling analysis for the BHZ model.
Only the lowest three temperatures have been considered. The

ρ x
x (

h/
e2 )

EF kT

EF

ρxy (h/e2)

EF

Critical 
point

(a) (b)

Tem
perature

FIG. 6. (Color online) (a) ρxx for BHZ model as a function of
EF at kT = 0.01, 0.02, 0.04, 0.06, and 0.08. The inset reports ρxy .
(b) ρxx as a function of temperature for various EF values. The arrow
indicates the transition from CI to the normal insulator.

ρ x
x (

h/
e2 )

EF EF

before rescaling after rescaling

FIG. 7. (Color online) Single-parameter rescaling for BHZ
model: EF → Ec

F + (EF − Ec
F )(T/T0)−κ , with Ec

F = 0.94, T0 =
0.01, and κ = 0.14.

best overlap of the rescaled curves is obtained for κ = 0.14 ±
0.01, but as already anticipated, the overlap is quite poor. As
such, we conclude that this numerical value is inconclusive.

When searching for a reason for the poorer convergence of
the results in the BHZ model, we found that, in all our previous
simulations,44,67,74,112 the band energy states in the BHZ model
localize much slower than in the KM model. The only major
qualitative difference between KM and BHZ models is that
the latter has one split-Dirac point, located at k = 0, while
the former has two split-Dirac point located at k 	= 0. This
may indeed alter the physics of impurity scattering processes,
resulting in the distinct behaviors that we observed in our
present study. What is certain is that lower temperatures are
needed to fully enter the critical regime in the BHZ mode,
something that we defer to future investigations.

V. CONCLUSIONS

In conclusion, the simulations based on the noncommu-
tative Kubo formula and a recently developed numerical
implementation enabled us to converge the transport coef-
ficients at temperatures low enough to enter the quantum
critical regime at the Chern-to-normal insulator transition,
at least for the Kane-Mele model. When compared with the
available experimental facts and our previous simulations for
PIT in IQHE, the results on the two strongly disordered
Chern insulator models show similarities but also important
differences. The similarities include: the existence of a single
critical point and the single-parameter scaling behavior; the
KM model, for which the full critical regime seemed to
be reached by our calculations, displays a scaling exponent
consistent with the universally accepted value for the unitary
class. Among the dissimilarities were the absence of the
quantized Hall insulator phase, a universal critical value
of σ c

xx ≈ e2

h
instead of σ c

xx ≈ 1
2

e2

h
, and the violation of the

semicircle law.
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