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Exotic spin, charge and pairing correlations of the two-dimensional doped Hubbard model:
A symmetry-entangled mean-field approach
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Intertwining of spin, charge, and pairing correlations in the repulsive two-dimensional Hubbard model is
shown through unrestricted variational calculations, with projected wave functions free of symmetry breaking. A
crossover from incommensurate antiferromagnetism to stripe order naturally emerges in the hole-doped region
when increasing the on-site coupling. Although effective attractive pairing interactions are identified, they are
strongly fragmented in several modes including d-wave pairing and more exotic channels related to an underlying
stripe. We demonstrate that the entanglement of a mean-field wave function by symmetry restoration can largely
account for interaction effects, and that our approach is exact for a two-site cluster.
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Transition metal oxides are prototypical strongly correlated
systems that exhibit a rich variety of quantum phenomena such
as antiferromagnetism (AF), incommensurate charge and spin
ordering, or high-Tc superconductivity. The understanding of
their subtle competition at low-temperature remains one of
the most challenging topics in condensed matter physics.
According to Anderson’s proposal,1 the two-dimensional
(2D) single-band Hubbard model is expected to provide a
minimal framework for addressing these issues in rare-earth
cuprates. It describes d electrons hopping between the Wannier
states of neighboring lattice sites in a copper-oxygen plane
experiencing a purely local Coulomb repulsion. At half
filling, the interaction strength drives a Mott transition to an
insulator2 with long-ranged AF order.3 When the lattice is
doped away from half filling, the exact form of the phase
diagram is still controversial. Of central interest in this
regime is whether the ground state supports unconventional
fermion-pair condensates or charge inhomogeneities and, if
so, how their order parameters are intertwined with magnetic
properties. Only a partial answer can be currently obtained
through approximate many-body techniques, such as cluster
extensions4,5 of the dynamical mean-field theory,5,6 the two-
particle self-consistent approximation,5,7 Gutzwiller varia-
tional schemes,5,8 or slave-boson approaches.5,9,10 Standard
quantum Monte Carlo simulations (QMC) are also restricted11

owing to the notorious sign problem that is particularly severe
for doped Hubbard models. Although new sign-free stochastic
reformulations have been recently introduced,12,13 they are not,
for now, immune to systematic errors.14 To overcome these
theoretical difficulties, a direct quantum simulation has been
suggested by loading ultracold mixtures of two interacting
fermionic species into optical lattices. Indeed, such atomic
systems allow for an almost perfect implementation of the
Hubbard model with tunable parameters.15 The crossover
from a metallic into a Mott-insulating regime has already
been observed,16 while magnetic ordering and potential exotic
superfluidity remains to be achieved using, e.g., new cooling
techniques.17

Most variational investigations of low-lying states in the
Hubbard model are carried out starting from a simple mean-
field wave function to include quantum correlation effects

through projection techniques. For instance, the celebrated
Gutzwiller ansatz suppresses (totally or partially) double
occupancy in the strong-correlation regime from a d-wave
superconducting state18 or from a Slater determinant with
assumed magnetic and charge orders.18,19 Such a procedure
substitutes for an unrestricted calculation, which is currently
numerically intractable but highly desirable to identify the
low-energy orders that spontaneously emerge from the 2D
Hubbard model. The purpose of this paper is to extract
spin, charge, and pairing correlations that result from an
unbiased energy minimization using an alternative projected
wave function.

The single-band Hubbard Hamiltonian on a D-dimensional
lattice with periodic boundary conditions may be written as

Ĥ = −t
∑

〈�r,�r ′〉σ
ĉ
†
�rσ ĉ�r ′σ + U

∑

�r
n̂�r↑n̂�r↓, (1)

where t is the hopping integral between neighboring sites
〈�r,�r ′〉 and U is the local Coulomb interaction; ĉ

†
�rσ , ĉ�rσ , and

n̂�rσ = ĉ
†
�rσ ĉ�rσ are, respectively, electronic creation, annihi-

lation and density operators at site �r with spin label σ ∈
{↑,↓}. To describe the lowest-energy N -electron eigenstate
for given quantum numbers �, the variational approach we
propose relies on a trial Slater determinant |�〉 = ĉ

†
φ1

· · · ĉ†φN
|0〉

projected on the symmetry subspace associated to �. Here,
ĉ
†
φn

= ∑
�rσ ĉ

†
�rσ φn(�rσ ) creates one electron in the spinor wave

function φn(�rσ ). These single-particle states are constrained
to be normalized and orthogonal, i.e., 〈φn |φn′ 〉 = δn,n′ . For
the Hubbard model (1), � quantum numbers include total
pseudomomentum h̄ �K , total spin S, and its z component Sz, as
well as labels associated with discrete lattice symmetries. In the
language of group theory, � defines an irreducible representa-
tion of the Hamiltonian symmetry group. A symmetry-adapted
mean-field state |�(�)〉 = P̂ (�)|�〉 can thus be obtained by
applying the standard projection operator P̂ (�) given by20

P̂ (�) = d (�)

�

∑

g

(
χ (�)

g

)∗
Ûg, (2)

where the sum runs over all symmetry transformations g

realized by unitary operators Ûg in the many-body Hilbert
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space. The set {χ (�)
g } corresponds to the character of the

representation � and d (�) to its dimension. � = ∑
g 1 is

the order of the symmetry group. In the case of continuous
transformations, the sum has to be supplemented by group
integration with the Haar measure.20 For instance, SU(2)
spin-rotational symmetry restoration can be performed using
Euler’s angles (α,β,γ ) parametrization of rotations, i.e., Ûg =
exp(−iαŜz/̄h) exp(−iβŜy /̄h) exp(−iγ Ŝz/̄h) with �̂S being the
total spin observable. The projection property (P̂ (�))2 = P̂ (�)

and the Hamiltonian invariance under the symmetry group
transformations Ûg allow us to cast the average energy E(�) in
the projected state |�(�)〉 in the form

E(�) = 〈�|Ĥ P̂ (�)|�〉
〈�|P̂ (�)|�〉 . (3)

Symmetry-restored wave functions are usually considered by
applying the quantum number projection (2) on top of a
Hartree-Fock mean-field state.21 However, such a procedure
leads only to a slight improvement of the energy. Here, we
follow an alternative strategy through a direct optimization of
the reference state |�〉 to minimize the projected energy (3). In
this way, the state |�〉 is not a solution of usual Hartree-Fock
equations but corresponds to a stationary point for the energy
only after projection. Furthermore, the variational ansatz is no
longer a single Slater determinant but a linear superposition
of product states that can absorb electronic correlations
beyond mean-field. The crucial difference between symmetry
projections after or before variation of the reference state |�〉
can simply be demonstrated by considering the two-site �ra, �rb

repulsive Hubbard model at half filling. By parametrizing
single-particle states of the Slater determinant |�〉 according
to ĉ

†
φ1

= cos(θ/2)ĉ†�ra↑ + sin(θ/2)ĉ†�rb↑ and ĉ
†
φ2

= sin(θ/2)ĉ†�ra↓ +
cos(θ/2)ĉ†�rb↓, the projected energy (3) in the spin-singlet sub-
space reads E(S=0) = (U sin2 θ − 4t sin θ )/(1 + sin2 θ). The
Hartree-Fock solution (θ = π/2 if U � 2t and sin θ = 2t/U

otherwise) does not correspond to the absolute minimum of
E(S=0). It is obtained for sin θ = (

√
U 2 + 16t2 − U )/(4t) in

which case the exact ground-state energy and wave function
are recovered. In this toy model, the spin projection before
variation of the reference state |�〉 thus yields the exact result
at any coupling U > 0.

In the general case, the expectation values of the many-
body operators Ĥ P̂ (�) and P̂ (�) in the Slater determinant
|�〉 are only expressed, from Wick’s theorem, in terms of
the contractions ρ�rσ,�r ′σ ′ = 〈ĉ†�r ′σ ′ ĉ�rσ 〉� = ∑

n φn(�rσ )φ∗
n(�r ′σ ′).

Therefore, the projected energy (3) is a functional of ρ:
E(�) = E(�)[ρ]. By introducing an N × N Hermitian ma-
trix of Lagrange multipliers λnn′ , stationarity of the La-
grangian function E(�) − ∑

n,n′ λnn′ 〈φn |φn′ 〉 with respect
to single-particle states immediately leads to the self-
consistency equation [h(�),ρ] = 0, where h(�) is an effective
single-particle Hamiltonian defined by the following matrix
elements:

h
(�)
�rσ,�r ′σ ′ = ∂E(�)

∂ρ�r ′σ ′,�rσ
. (4)

These results remain obviously valid irrespective of the precise
form of the operator P̂ (�). In the mean-field approach, P̂ (�) is

set to identity and one recovers from Eq. (3) the usual energy
functional E[ρ] and from Eq. (4) the associated single-particle
Hartree-Fock Hamiltonian:

h[ρ] = −t
∑

〈�r,�r ′〉σ
|�rσ 〉〈�r ′σ |

+U
∑

�rσ
(ρ�rσ̄ ,�rσ̄ |�rσ 〉〈�rσ |−ρ�rσ,�rσ̄ |�rσ 〉〈�rσ̄ |), (5)

where σ and σ̄ are time-reversed conjugate spin states.
Consequently, with or without symmetry restoration, optimal
spin orbitals φn(�rσ ) are obtained as eigenvectors of the
state-dependent Hamiltonian (4). A similar conclusion has
been drawn previously in nuclear physics22 and for molecular
electronic structure.23 The projected-energy derivative with
respect to ρ can be further calculated by noting that the
transformed state |�g〉 = Ûg|�〉 is again a Slater determinant.
Owing to the extended Wick’s theorem for matrix elements,24

the symmetry-entangled mean-field (SEMF) Hamiltonian (4)
finally becomes

h(�)[ρ] = 1
∑

g

(
χ

(�)
g

)∗
det Ag

∑

g

(
χ (�)

g

)∗
A−1

g

× {
(Ug − 1)(E[Rg] − E(�)) + h[Rg]UgB

−1
g

}
. (6)

Here the matrices Ag and Bg depend on the one-body density ρ

and on the matrix representation Ug in the one-electron space
of group transformations according to

Ag = 1 + (Ug − 1)ρ, Bg = 1 + ρ(Ug − 1). (7)

Rg = UgρA−1
g is the transition one-body density matrix24 be-

tween the uncorrelated state |�〉 and its symmetry-transformed
counterpart |�g〉: (Rg)�rσ,�r ′σ ′ = 〈�|ĉ†�r ′σ ′ ĉ�rσ |�g〉/〈� |�g〉. In
practice, no restriction is imposed on the reference state |�〉.
In particular, the usual factorization of |�〉 into a product of
up-spin and down-spin Slater determinants has turned out to be
inefficient. In all following numerical applications, we allow
mono-electronic states to develop spin textures in the x-y plane.
All symmetries of the Hamiltonian (1) are restored, that lead to
a variational wave function formed by the linear superposition
of about 106 symmetry-related Slater determinants for the
rectangular 16 × 4 cell we consider below. On small 4 × 4
clusters, where Hamiltonian diagonalization can be fully
performed, we show in the Supplemental Material that the
ground-state energy and various correlation functions differ
respectively by less than 1% and 2.5% with respect to exact
results.25 At half filling, where unbiased QMC calculations
have been performed,11 the relative error on the energy at
U = 4t is 0.5% (1.5%) on the 6 × 6 (8 × 8) lattice. In several
cases, the SEMF approach outperforms the usual Gutzwiller
variational scheme.

Let us now focus on magnetic and charge correlations from
intermediate to strong coupling. We concentrate on a hole dop-
ing δ = 1/8 where stripe orders and nonconventional super-
conductivity have been reported to compete from experiments
on cuprates.26 Note that large cell sizes are required for the
development of possible incommensurate ordering with long
wavelength. To meet this challenge by means of a variational
calculation with an unrestricted projected wave function, we
applied the above symmetry-entangled mean-field approach
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limiting ourselves to a rectangular 16 × 4 cell with periodic
boundary conditions. A smaller dimension in the x direction
would not allow us to capture translationally invariant filled
vertical stripe phases that are expected from constrained-path
QMC calculations.27 Only zero total pseudomomentum and
spin-singlet states are addressed. These quantum numbers
rigorously characterize the ground state at half filling on a
square lattice.28,29 They are also found for the hole-doped case
in exact diagonalization30 and path-integral renormalization-
group studies31 on small clusters. Furthermore, Nagaoka
ferromagnetism, which could invalidate such a statement, is
not expected for the relatively moderates values U � 12t of
the on-site repulsion we consider. Finally, the A1 irreducible
representation of the C2v lattice group, which embraces s-wave
and d-wave symmetries, is imposed. Since our variational
state is translationally and spin-rotationally invariant, possible
magnetic and charge ordering can only be highlighted through
correlation functions or their Fourier transform. Hence, we
calculate the spin Sm(�k) and charge Sc(�k) structure factors
defined by

Sm(�k) = 4

3

∑

�r
exp(i�k · �r)〈 �̂S�0 �̂S�r〉�(�) ,

(8)
Sc(�k) =

∑

�r
exp(i�k · �r)〈δn̂�0δn̂�r〉�(�) ,

where �̂S�r = 1
2

∑
σ,σ ′ ĉ

+
�rσ �τσ,σ ′ ĉ�rσ ′ is the spin operator at lat-

tice node �r (with �τ being the usual Pauli matrices) and
δn̂�r = ∑

σ (n̂�rσ − 〈n̂�rσ 〉�(�) ) being the local charge fluctuation.
Figure 1(a) shows Sm(�k) in the upper-right quarter of the first
Brillouin zone for relevant parameter values. It entails two
main features: First, a weakly �k-dependent broad background
manifestly appears and is almost insensitive to the interaction.
Second, with increasing U/t , the peak at the AF wave vector
�k = (π,π) decreases (to the extent that it vanishes for U � 8t)
and it leaves place to incommensurate magnetic correlations
signaled by the symmetry-related peaks at �k = (±7π/8, π ).
This physically corresponds to staggered magnetization peri-
odically modulated with the wavelength λm = 16 = 2δ. The
crossover that may be inferred from these spin-spin correla-
tions is further confirmed by the charge structure factor Sc(�k)
shown in Fig. 1(b). Indeed, for intermediate coupling U = 4t ,
no particular signal emerges. On the contrary, from U = 6t

to U = 12t , a peak at �k = (±π/4, 0) gradually develops. It
follows from the translationally invariant superposition of
broken-symmetry charge-density wave states associated to a
hole density profile of wavelength λc = 8. Since λc = λm/2,
this is the signature of filled vertical stripes at the boundaries
of AF domains separated by π phase shifts, in agreement
with the solitonic mechanism proposed by Zaanen and Oleś.32

In short, we have observed, with SEMF wave functions, the
crossover predicted by constrained-path QMC27 from a spin-
density wave to a stripe-like state with increasing Coulomb
interaction.

After having tested our projected wave functions from
the energetical, magnetic, and charge points of view, we
now address the development of pairing correlations. We
apply Yang’s criteria for off-diagonal long-ranged order.33

Upon the diagonalization of a pair-field correlation matrix

FIG. 1. (Color online) Momentum dependence of (a) magnetic
and (b) charge structure factors for a rectangular 16 × 4 cell at hole
doping δ = 1/8 and for several values of interaction strength U/t .

P �r,�r ′ , superconductivity appears as long as one or more
eigenvalue scales as the particle number when the system size
is increased at fixed density. The associated eigenvectors define
pair wave functions. Here, we deal with a finite system and
only electron pairing modes favored by the interaction may be
identified. Moreover, one has to discard fictitious correlations
from noninteracting dressed electrons that only vanish at the
thermodynamic limit. Hence, for spin-singlet pairing, we use
the following matrix P �r,�r ′ :

P �r,�r ′ = 1
2 〈�̂†

�r �̂�r ′ + �̂�r �̂
†
�r ′ 〉(V.C.)

�(�) , (9)

where �̂
†
�r = 1√

2N

∑
�R (ĉ†�R↑ĉ

†
�R+�r↓ − ĉ

†
�R↓ĉ

†
�R+�r↑) is the transla-

tionally invariant and spin-singlet pair-field operator for two
electrons separated by �r and N is the number of lattice
sites; 〈· · · 〉(V.C.) stands for the vertex contribution.34 We
display in Table I the first eigenvalues of the P matrix in
the strongly repulsive regime U = 12t as compared to those
obtained for the attractive coupling U = −4t . In both cases,
positive eigenvalues are obtained. They result purely from
the entanglement realized by symmetry restoration: Without
projection, the matrix elements P �r,�r ′ are all vanishing. For
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TABLE I. First eigenvalues λi of pairing correlation matrix P �r,�r ′

defined by Eq. (9). Results are shown for a 16 × 4 cluster in an s-wave
BCS-like superconducting regime (N = 30 electrons, U = −4t) and
in the striped state obtained for the strong Coulomb repulsion U =
12t at hole doping δ = 1/8 (N = 56 electrons).

U/t N λ1 λ2 λ3 λ4 λ5

−4 30 0.421 0.051 0.046 0.030 0.020
12 56 0.495 0.455 0.442 0.431 0.425

the 2D attractive Hubbard model, off-diagonal long-ranged
order associated to BCS s-wave superconductivity is well
established for moderate interactions, especially in the vicinity
of quarter filing.35 The SEMF approach gives here good
evidence for a precursor to the superconducting behavior,
since one pairing eigenmode clearly outperforms the other
ones. Truly, the associated pair wave function exhibits a
large on-site component accompanied with a small extended-s
contribution. In the repulsive regime, perhaps the most striking
result consists of highlighting the emergence of an effective
attractive interaction in the particle-particle channel. However,
it is strongly fragmented as all first few eigenvalues are
nearly degenerate. Concerning the pairing symmetry, Fig. 2
presents the wave function associated to the leading modes.
On top of the expected d-wave [Fig. 2(a)] and extended
s-wave [Fig. 2(e)] pairing,36 exotic competing modes related
to stripe-like correlations are found. They are characterized

FIG. 2. (Color online) Wave functions �i(�r) associated with
pairing modes defined by eigenvectors of the P matrix (9)
with the largest eigenvalues λi shown in Fig. 2. �̂

†
i =

1√
2N

∑
�r, �R �i(�r)(ĉ†�R↑ĉ

†
�R+�r↓ − ĉ

†
�R↓ĉ

†
�R+�r↑) is the corresponding pair-

field operator. A 16 × 4 lattice with U = 12t is considered at hole
doping δ = 1/8.

FIG. 3. (Color online) Schematic view of (a) singlet-electron
pairing in a correlated AF background and (b) in presence
of a domain wall associated with an underlying filled stripe.
(a) The length of the individual spins mimics the decrease of the
spin autocorrelation function at small distances together with its
long-ranged constant-staggered magnetization. Thus, only nearest-
neighbor pairing dominates. (b) With holes localized in a vertical
filled stripe, the incommensurate magnetic peak implies the repetition
of a similar AF spin pattern between domain walls, with a π phase
shift at the nodes. Therefore, the formation of singlet pairs at distances
x = λm/2 (= λc) is favored.

by pairing at distances close to the charge wavelength λc = 8.
Qualitatively, the formation of a singlet pair in a correlated
AF background can be enhanced at this distance λc = λm/2
provided a domain wall separates the two electrons. This
is schematically depicted in Fig. 3. No significant deviation
appears when reducing U in the stripy regime. For the interme-
diate coupling U = 4t , where no charge order can be detected,
only d-wave [Fig. 2(a)] and extended s-wave pairings are
dominant.

In conclusion, we have performed unrestricted variational
calculations for the 2D hole-doped Hubbard model in a theo-
retical framework where electronic correlations are generated
by the entanglement of a mean-field wave function through
the restoration of all Hamiltonian symmetries. From moderate
to strong coupling, independent energy minimizations lead
to consistent spin, charge, and pairing correlations at doping
δ = 1/8 The spontaneous appearance of incommensurate
spin-density waves evolving into striped states is accompanied
by the development of several competing pairing channels. It
remains to be elucidated if one of them would dominate when
enlarging the variational subspace to bring out a precursor
signal to unconventional superconductivity. Work along this
line is in progress.
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and F. F. Assaad, Phys. Rev. B 77, 085108 (2008).
15W. Hofstetter, J. I. Cirac, P. Zoller, E. Demler, and M. D. Lukin,

Phys. Rev. Lett. 89, 220407 (2002).
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ĉ�r4σ4
〉 is sub-

tracted for each term of the form 〈ĉ†�r1σ1
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