
PHYSICAL REVIEW B 87, 115135 (2013)

Competing electronic orders on kagome lattices at van Hove filling
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The electronic orders in Hubbard models on a kagome lattice at van Hove filling are of intense current interest
and debate. We study this issue using the singular-mode functional renormalization group theory. We discover
a rich variety of electronic instabilities under short-range interactions. With increasing on-site repulsion U , the
system develops successively ferromagnetism, intra-unit-cell antiferromagnetism, and charge bond order. With
nearest-neighbor Coulomb interaction V alone (U = 0), the system develops intra-unit-cell charge density wave
order for small V , s-wave superconductivity for moderate V , and the charge density wave order appears again
for even larger V . With both U and V , we also find spin bond order and chiral dx2−y2 + idxy superconductivity
in some particular regimes of the phase diagram. We find that the s-wave superconductivity is a result of charge
density wave fluctuations and the squared logarithmic divergence in the pairing susceptibility. On the other hand,
the d-wave superconductivity follows from bond order fluctuations that avoid the matrix element effect. The
phase diagram is vastly different from that in honeycomb lattices because of the geometrical frustration in the
kagome lattice.
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I. INTRODUCTION

The kagome lattice model has attracted considerable at-
tention due to its high degree of geometrical frustration. In
the Mott insulating limit, several possible states have been
proposed as the ground state of the Heisenberg model in this
lattice, such as the U(1) algebraic spin liquid (SL),1 the valance
bond solid,2 the triplet-gapped SL,3 and the singlet-gapped
SL with signatures of Z2 topological order.4 On the other
hand, several exotic phases have been proposed for the kagome
Hubbard model, such as the ferromagnetism at electron filling
1/3 (or 5/3) per site,5 the fractional charge at 1/3 filling
for spinless fermions,6 and the Mott transition in anisotropic
kagome lattices.7,8

Of particular interest is the possible phases at the van Hove
filling (the filling fraction is 2/3 ± 1/6 per site), where the
Fermi surface (FS) is perfectly nested and has saddle points
on the edges of the Brillouine zone. These properties of the
normal state make it unstable against infinitesimal interactions.
Similar FS appears in triangle and honeycomb lattices and was
shown to develop, under short-range repulsive interactions, a
chiral spin-density-wave (SDW) state9–11 or a chiral dx2−y2 +
idxy superconducting state.12,13 Both states break time-reversal
and parity symmetries and are topologically nontrivial. Given
the similar FS, a simple FS nesting argument would predict
similar phases in the kagome model. This seems to be the
case in a recent variational cluster perturbation theory (with
an additional spin disordered phase).14 However, as already
realized in Ref. 14 and emphasized in Ref. 15, the interaction
vertex viewed in the band basis has a strong momentum
dependence (matrix element effect). This is because the
character of the Bloch state on the FS depends on the position
of the momentum. The matrix element effect weakens the
nesting effect significantly for a local interaction U , leading
to a new phase diagram in a recent analytical renormalization
group study.15 Such an analysis would be exact for a featureless
fermi surface and infinitesimal interactions. In this paper, we
are interested in finite interactions together with perfect fermi
surface nesting and van Hove singularity.

The functional renormalization group (FRG) method is a
differential perturbation theory with respect to the increment
of the phase space (starting from the high energy window)
rather than in the interaction itself. It provides the flow of
one-particle irreducible vertex functions versus the running
parameter that controls the phase space.16 The FRG is capable
of treating interactions up to a moderate size (at the tree level).
It also treats particle-particle and particle-hole channels on
equal footing. The way how interaction vertices diverge during
the flow indicates what kind of ordering is to be realized at
low-energy scales in the system. The applicability of FRG
has been demonstrated in the contexts of cuprates17 and iron
based superconductors.18 Recently, a singular-mode functional
renormalization group (SMFRG) method was developed and
applied to investigate topological superconductivity in corre-
lated electron systems with or near van Hove singularities.11,19

In this paper, we perform an SMFRG study of the model at
van Hove filling. We discover a rich variety of electronic insta-
bilities under short-range interactions. With increasing on-site
repulsion U , the system develops successively ferromagnetism
(FM), intra-unit-cell antiferromagnetism (AFM), and charge
bond order (CBO). With nearest-neighbor Coulomb inter-
action V alone (U = 0), the system develops intra-unit-cell
charge density wave (CDW) order for small V , s-wave
superconductivity (sSC) for moderate V , and CDW appears
again for even larger V . With both U and V , we also find
SBO and chiral dx2−y2 + idxy superconductivity (dSC). Our
results are summarized in the phase diagram in Fig. 9. We find
that the sSC is a result of CDW fluctuations and the squared
logarithmic divergence in the pairing susceptibility. On the
other hand, the dSC follows from bond order fluctuations that
avoid the matrix element effect. The phase diagram is vastly
different from that in honeycomb lattices.

The rest of the paper is arranged as follows. In Sec. II,
we define the model and illustrate the matrix element effect.
In Sec. III, we introduce the FRG method. In Sec. IV, we
first discuss the leading instabilities at typical points in the
parameter space, and conclude by a discussion of the phase
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diagram. Finally, Sec. V is a summary and perspective of this
work.

II. THE MODEL AND THE MATRIX ELEMENT EFFECT

The Hubbard model we used for the kagome lattice is given
by

H = −t
∑

〈ij〉σ
(c†iσ cjσ + H.c.) − μNe

+U
∑

i

ni↑ni↓ + V
∑

〈ij〉
ninj , (1)

where t is the hopping integral, 〈ij 〉 denotes bonds connecting
nearest-neighbor sites i and j , σ is the spin polarity, μ is the
chemical potential, Ne is the total electron number operator,
U is the on-site Hubbard interaction, and V is the Coulomb
interaction on nearest-neighbor bonds. Figure 1(a) shows the
structure of the kagome lattice. The different symbols denote
the three sublattices, and a and b are the two principle
translation vectors. Figure 1(b) shows the band structure of
the model along high symmetry cuts in the Brillouin zone.
The lower two bands cross at the Dirac point. The highest
band is a flat band. The dashed line highlights one of the
two levels with van Hove singularity. Figure 1(c) shows the
normal state density of states. The three sharp peaks arise from
the van Hove singularities in the lower two bands and the third
flat band. Figure 1(d) shows the FS and the character of the
Bloch states thereon. The FS appears to be perfectly nested.
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FIG. 1. (Color online) (a) Structure of the kagome lattice. Here,
a = (1,0) and b = (1/2,

√
3/2) are the lattice unit vectors. The labels

1–3 denote the three sublattices. (b) The tight-binding dispersion
along high-symmetry cuts. The dashed line is the Fermi level
corresponding to the van Hove filling. (c) Normal state density of
states. (d) Fermi surface and sublattice weights in the Bloch states
thereon. On the endpoint of a Fermi surface segment, the Bloch state is
contributed completely by one sublattice as indicated by the numbers.
Within the segment, the characters are mixed as a superposition of
the sublattice characters on the two endpoints. The arrow indicates
one of the nesting vectors. (e) The largest eigenvalue of χ0(q) as a
function of q.

However, the character changes along each segment. The end
points of each segment are saddle points. They have pure but
different sublattice characters. The characters are mixed within
the segment as shown by the color (or gray) scale.

Consider the local interaction U for the moment. Such an
interaction causes scattering at any wave vector. The nested FS
would favor scattering connected by the nesting vectors and
would lead to antiferromagnetism in a usual case. However,
since U preserves sublattice indices, the character variation
along the FS causes significant momentum dependence if U

is projected onto the band basis, a matrix element effect as
emphasized in Ref. 15. This effect hampers the scattering
significantly. To have a better idea of this effect, we calculate
the zero-frequency bare spin susceptibility χ0(q) for site-
local spin densities, where q is the momentum transfer. The
susceptibility is a matrix function in terms of the sublattice
labels (α and β),

χ
αβ

0 (q) = − T

N

∑

k,m

Gαβ(k,iωm)Gβα(k + q,iωm), (2)

where T is the temperature, N is the number of unit cells, k
is the lattice momentum, ωm is the Matsubara frequency, and
G(k,iωm) is the bare Green’s function (in the sublattice basis).
Figure 1(e) shows the largest eigenvalue of χ0(q) as a function
of q (for T = 0.001t). Instead of isolated peaks, we see branch
cuts of maxima in the momentum space. These cuts cross at the
origin where there is in fact a logarithmic singularity due to the
saddle points. (The singularity is smeared by the finite size and
finite temperature in the calculation.) It is clear that site-local
ferromagnetism rather than antiferromagnetism is the most
favorable spin order, in contrast to the case in the honeycomb
lattice.10,11 The lesson we learned from the above analysis is
that for a multi-sub-lattice system, the matrix element effect
could weaken the nested scattering and alter the usual intuition
regarding FS nesting. There is, however, a caveat in this
kind of Stoner analysis, since it ignores mode-mode coupling
between the particle-hole channels and between particle-hole
and particle-particle channels. To treat all channels on equal
footing, we now switch to FRG.

III. THE SMFRG METHOD

In the following, we apply a particular implementation of
FRG, i.e., the SMFRG, which appears advantageous to treat
systems with or near van Hove singularities.11,19,20 In this
implementation, a generic four-point vertex function �1234,
which appears in the interaction c

†
1c

†
2(−�1234)c3c4, where

1 = (k,α) is a dummy label indicating the lattice momentum
and sublattice label, is decomposed into the pairing (P ), the
crossing (C), and the direct (D) channels as

�
αβμν

k+q,−k,−p,p+q →
∑

mn

f ∗
m(k,α,β)Pmn(q)fn(p,ν,μ),

�
αβμν

k+q,p,k,p+q →
∑

mn

f ∗
m(k,α,μ)Cmn(q)fn(p,ν,β),

(3)
�

αβμν

k+q,p,p+q,k →
∑

mn

f ∗
m(k,α,ν)Dmn(q)fn(p,μ,β).

Here, fm is a set of orthonormal lattice form factors. A
form factor defines a particular composite boson with definite

115135-2



COMPETING ELECTRONIC ORDERS ON KAGOME . . . PHYSICAL REVIEW B 87, 115135 (2013)

collective momentum in the particle-hole or particle-particle
channel, bearing a definite irreducible representation under
the point group. The fact that the same generic vertex can be
decomposed into different channels reflects the fact that these
channels have mutual overlaps. The momentum space form
factors are related to the real counterparts as, fm(k,α,β) =∑

r∈m fm(r,α,β)e−ik·r where r belongs to a set of bond vectors
connecting sublattices α and β and is assigned to m. In our
practice, the bond vectors are truncated up to those connecting
the eighth neighbors (or third similar-sublattice neighbors). In
the following, we use m = (l,α,δ) to characterize the form
factor label m, with l indicating the symmetry of the form
factor, α one of the two sublattice labels, and δ a basis bond
vector that can generate the set of bond vectors under the point
group. This is applicable since we set the symmetry center
at an atomic site so that the symmetry group is C2. Under
this point group, α and β are invariant. There are only two
irreducible representations Ag (even) and Au (odd) for C2. We
notice that form factors centered on different sublattices can
combine to form a representation of the C6v group. On the other
hand, even though the real-space range of the form factors is
truncated (since usual order parameters are short-ranged) the
range of composite boson scattering is unlimited. This enables
us to address the thermodynamic limit.

In the SMFRG, P , C, and D are substituted into inde-
pendent sets of one-loop and one-particle irreducible FRG
Feynman diagrams where they would become potentially
singular. (For example P is substituted into the particle-particle
diagram.) This leads to the differential change ∂P , ∂C, and ∂D

with respect to the change of the running scale �, which we
chose as the infrared cutoff of the Matsubara frequency. Since
there are overlaps among the three channels, the full change is a
sum of the partial one plus the overlaps. In this sense, SMFRG
takes care of mode-mode coupling and treats all channels
on equal footing. This enables an initially repulsive pairing
channel to become attractive at low-energy scales, and is thus
able to reflect the well-known Kohn-Luttinger anomaly.21 The
technical details have been exposed elsewhere.11,22

The effective interaction in the superconducting (SC),
SDW, and CDW channels are given by VSC = −P , VSDW =
C, and VCDW = C − 2D, respectively. By singular value
decomposition, we determine the leading instability in each
channel,

V mn
X (qX) =

∑

α

Sα
Xφα

X(m)ψα
X(n), (4)

where X = SC, SDW, CDW, Sα
X is the singular value of

the αth singular mode, φα
X and ψα

X are the right and left
eigenvectors of VX, respectively. We fix the phase of the
eigenvectors by requiring Re[

∑
m φα

X(m)ψα
X(m)] > 0 so that

Sα
X < 0 corresponds to an attractive mode in the X channel. In

the pairing channel, qSC = 0 addresses the Cooper instability.
The ordering wave vector in the SDW/CDW channel q =
qSDW/CDW is chosen at which VSDW/CDW(q) has the most
attractive eigenvalue. We note that such a vector has symmetry-
related images, and may change during the FRG flow before
settling down to fixed values. On the other hand, given the
most singular mode, an effective field can be defined for the

ordered state (or the condensed composite boson),

HSC =
∑

m,k

ψSC(m)f ∗
m(k,α,β)c†k,α,↑c

†
−k,β,↓ + H.c.,

HCDW =
∑

m,σ,k

ψCDW(m)f ∗
m(k,α,β)c†k+qCDW,α,σ ck,β,σ + H.c.,

HSDW =
∑

m,k

ψSDW(m)f ∗
m(k,α,β)c†k+qSDW,α,↑ck,β,↓ + H.c.,

(5)

up to global factors. It is understood that the sublattice labels
α and β are determined by m according to our construction
of form factors. The order parameters are encoded in the
coefficients in the above field operators. Two remarks are in
order. First, there is a residual SU(2) degeneracy in the case of
triplet pairing and in the SDW order parameters. Second, the
order parameters are, in general, nonlocal in real space (unless
the contributing form factors are all local).

IV. SMFRG RESULTS

In this section, we provide the SMFRG results for the model
defined in the previous section. We begin by discussing the
results at specific points in the parameter space (U,V ), and
summarize the systematic results on a dense grid of (U,V ) by
a phase diagram.

Ferromagnetic order. For U = 2t and V = 0, Fig. 2(a)
shows the flow of the most negative singular values (denoted
as S) in the SC, SDW, and CDW channels. Clearly, the
SDW (green solid line) is the leading instability. During the
flow, qSDW evolves from q1 = (π,π/

√
3) and settles down

at q2 = 0. The renormalized interaction
∑

m V mm
SDW(q) for

m = (Ag,α,0) (α = 1,2,3), which has dominant value in the
leading singular mode, is shown in Fig. 2(b). It has a strong
peak at momentum q = 0. Because the dominant form factor
is local, the ordered spin density is site-local. The effective
field operator HSDW according to Eq. (5) can be rewritten as
HSDW = ∑

iσ hiσc
†
iσ ciσ with the order parameter hi shown

in Fig. 2(c). This describes a FM order. The SC and CDW
channels turn out to be subleading from Fig. 2(a).

Intra-unit-cell antiferromagnetic order. For U = 2.5t

and V = 0, the flow of the singular values is shown in Fig. 3(a).

FIG. 2. (Color online) Results for U = 2t and V = 0. (a) FRG
flow of (the inverse of) the most singular values S in the SC (blue
dashed line), SDW( green solid line), and CDW (red dashed-dot
line) channels. (b) The renormalized interaction

∑
m V mm

SDW for m =
(Ag,α,0) (α = 1,2,3) as a function of the collective momentum q.
The hexagon indicates the Brillouin-zone boundary. (c) The order
parameter hi (drawn as arrows) associated with the dominant SDW
singular mode.
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FIG. 3. (Color online) Results for U = 2.5t and V = 0. (a) FRG
flow of the most singular values S in the SC (blue dashed line), SDW
(green solid line), and CDW (red dashed-dot line) channels. (b) The
renormalized interaction

∑
m V mm

SDW for m = (Ag,α,0) (α = 1,2,3)
as a function of q. (c) The order parameter hi associated with one
of the two degenerate SDW modes. (d) The spin structure in the
mean-field-ordered state, which combines the two degenerate singular
modes.

Again, the SDW channel is the leading instability. During the
flow, qSDW evolves from q1 = (π,π/

√
3) and settles down at

q2 = 0, in the same fashion as above. Figure 3(b) shows the
interaction

∑
m V mm

SDW(q) for m = (Ag,α,0) (α = 1,2,3). It also
has a strong peak at momentum q = 0. There are in fact two
degenerate singular modes [apart from the SU(2) degeneracy].
One of them leads to the order parameter hi shown in Fig. 3(c),
with the ratio 0 : −1 : 1 on the three sublattices. The other
mode leads to a ratio 2 : −1 : −1 (not shown). Both modes are
antiferromagnetic within the unit cell, but are ferromagnetic
from cell to cell. Comparing to the FM state, we call such a
state the AFM state, although the ordering momentum is zero.
A mean-field analysis shows that in the ordered state the two
degenerate modes are mixed in such a way that the spin pattern
is as shown in Fig. 3(d), with an angle of 120◦ between nearby
spins. The SC and CDW channels remain to be subleading
from Fig. 3(a).

Charge bond order. From Figs. 2 and 3, we find that the
CDW channel is enhanced with increasing U . This trend
continues until the CDW channel becomes dominant for
U > 2.85t . Figure 4(a) shows the FRG flow for U = 3.5t and
V = 0. During the flow, the qCDW evolves but settles down at
q = (0,2π/

√
3) (or its symmetric images) in the given view

field. The dominant renormalized interaction
∑

m V mm
CDW(q)

for m = (Au,1,1/4x̂ + √
3/4ŷ), m = (Au,2,1/2x̂), and m =

(Au,3,1/4x̂ − √
3/4ŷ) is shown in Fig. 4(b), where we see

isolated peaks at the six nesting vectors (three of which are
independent and correspond to the three form factors). We
find that the effective field HCDW constructed according to
Eq. (5) for the above singular modes can be rewritten as

FIG. 4. (Color online) Results for U = 3.5t and V = 0. (a) FRG
flow of the most singular values S in the SC (blue dashed line), SDW
(green dashed-dot line), and CDW (red solid line) channels. (b) The
renormalized interaction

∑
m V mm

CDW for m = (Au,1,1/4x̂ + √
3/4ŷ),

m = (Au,2,1/2x̂) and m = (Au,3,1/4x̂ − √
3/4ŷ) as a function of

q. The three independent peaks correspond to the three form factors,
respectively. (c) The real space structure of the order parameter χij

associated with one of the dominant CDW modes with the ordering
momentum Q = (0,2π/

√
3). The different color (or brightness) on

the thick lines indicates positive or negative sign of χij .

HCDW = ∑
〈ij〉σ χij (c†iσ cjσ + H.c.), and is thus a CBO state.

The pattern of the order parameter χij depends on the ordering
vector Q. For Q = (0,2π/

√
3), it is shown in Fig. 4(c). Notice

that the field χij is nonzero on parallel thick lines orthogonal to
Q. This is also the case for the other ordering momenta related
to Q by C6v operations. Clearly, the CBO breaks both rotation
and translation symmetries. The reason that the nesting vector
is at work here is because the bond-centered charge density∑

σ (c†iσ cjσ + c
†
jσ ciσ ) connects different sublattices and can

take advantage of the intersaddle scattering connected by the
nesting vector. Notice that this kind of order is already beyond
the mean-field theory. It is a result of the overlap between the
SDW and CDW channels as seen from Fig. 4(a) where the
SDW channel dominates at high energy scales. The pairing
channel is still subdominant here.

Intra-unit-cell charge density wave: We now consider the
effect of the nearest-neighbor interaction V . Figure 5(a) shows
the FRG flow for U = 0 and V = 0.25t . It is clear that the
CDW channel (red solid line) is the leading instability. During
the flow, the qCDW evolves from q1 = (0,2/

√
3)π to q2 =

(0,0.385)π and finally settles down at q3 = 0. The dominant
renormalized interaction

∑
m V mm

CDW for m = (Ag,α,0) (α =
1,2,3) shown in Fig. 5(b) has a sharp peak at q = 0. There
are two degenerate singular modes. The effective field HCDW

constructed according to Eq. (5) can be rewritten as HCDW =∑
iσ ηic

†
iσ ciσ with the order parameter ηi shown in Figs. 5(c)

and 5(d) for the two singular modes. This is an intra-unit-
cell CDW state. It beaks rotational symmetry but does not
break the translation symmetry. It is therefore an analog of the
Pomeranchuk instability on square lattices.23 The SDW and
SC channels are subleading in this case.

S-wave superconductivity. The FRG flow for U = 0 and
V = 0.5t is shown in Fig. 6(a). We find that the SC channel
is the leading instability. Figure 6(b) shows the renormalized
interaction V mm

SC for m = (Ag,1,0). (By symmetry, interactions
involving form factors centered on the other sublattices
contribute similarly.) Inspection of the eigenfunction φSC

reveals that it has dominant values for Ag form factors
involving r = 0 and subdominant values for Ag form factors
involving r connecting nearest similar-sublattice neighbors.
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FIG. 5. (Color online) Results for U = 0 and V = 0.25t . (a) The
FRG flow, the most singular values S in the SC (blue dashed line),
SDW (green dashed-dot line), and CDW (red solid line) channels.
(b) The renormalized interaction

∑
m V mm

CDW for m = (Ag,α,0) (α =
1,2,3) as a function of q. (c) and (d) The order parameter ηi associated
with the two degenerate CDW singular modes. The length of the
arrows indicates the amplitude and the direction of the arrow indicates
the sign of the order parameter.

The gap function from HSC constructed according to Eq. (5)
projected on the fermi surface is shown in Fig. 6(c). Clearly,
it is an sSC gap function. Such a pairing symmetry persists
for small U > 0. However, the dominant pairing amplitude for
U = 0 is on-site, while the amplitude on bonds (connecting
nearest similar-sublattice) increases and eventually dominates
with increasing U . In that case, the gap function oscillates on
the fermi surface without changing the symmetry. Inspection
of Fig. 6(a) reveals that such s-wave pairing follows from
the overlap with the CDW channel. A cartoon picture of this
pairing mechanism is as follows. The CDW order under a
nearest V tries to have fully filled and empty sites nearby. If
this order is not yet static, the dynamical CDW fluctuations can

FIG. 6. (Color online) Results for U = 0 and V = 0.5t . (a) The
FRG flow the most singular values S in the SC (blue solid line),
SDW (green dashed line), CDW (red dashed-dot line) channels. (b)
The renormalized interaction V mm

SC (q) for m = (Ag,1,0) as a function
of q. (c) The momentum space gap function on the Fermi surface
associated with the SC singular mode.

FIG. 7. (Color online) Results for U = V = 0.75t . (a) FRG flow
of the most singular values S in the SC (blue dashed line), SDW(
green solid line), and CDW (red dash-dotted line) channels. (b) The
renormalized interaction

∑
m V mm

SDW for m = (Au,1,1/4x̂ + √
3/4ŷ),

m = (Au,2,1/2x̂), and m = (Au,3,1/4x̂ − √
3/4ŷ) as a function of

q. The three independent peak momenta correspond to the three
form factors, respectively. (c) The real-space structure of the order
parameter ξij associated with one of the SDW singular modes with
the ordering momentum Q = (0,2π/

√
3). The different color (or

brightness) on thick lines indicates positive or negative values of ξij .

also be viewed as relocations (or scattering) of local electron
pairs, thus overlap to the pairing channel.

Spin bond order. The FRG flow for U = V = 0.75t is
shown in Fig. 7(a). Clearly, the SDW (green solid line) is
the leading instability. During the flow, qSDW evolves from
q1 = (0,2/

√
3)π to q2 = 0 and finally settles down at q3 = q1.

Figure 7(b) shows the renormalized interaction
∑

m V mm
SDW

for m = (Au,1,1/4x̂ + √
3/4ŷ), m = (Au,2,1/2x̂), and m =

(Au,3,1/4x̂ − √
3/4ŷ), where we see isolated peaks at the six

nesting vectors (three of which are independent and correspond
to the three form factors). The effective field operator in the real
space can be written as HSDW = ∑

〈ij〉σ ξij σ (c†iσ cjσ + c
†
jσ ciσ )

[apart from the SU(2) degeneracy]. The pattern of the order
parameter ξij depends on the ordering vector Q. For Q =
(0,2π/

√
3), it is shown in Fig. 7(c). As in the case of CBO

state, the order parameter ξij is nonzero on parallel thick lines
orthogonal to Q. This describes an SBO state. The SC and
CDW channels are subleading in this case.

Chiral dx2−y2 + idxy superconductivity. Figure 8(a) shows
the FRG flow for U = 2t and V = 1.5t . Clearly, the SC chan-
nel is the leading instability. Figure 8(b) shows the renormal-
ized interaction V mm

SC for m = (Ag,1,1/2x̂ + √
3/2ŷ). Such a

form factor shows the pairing is on third-neighbor bonds (or
nearest similar-sublattice neighbor bonds). From the singular

FIG. 8. (Color online) Results for U = 2t and V = 1.5t . (a) FRG
flow, the most singular values S in the SC (blue solid line), SDW
(green dashed line), and CDW (red dashed-dot line) channels. (b) The
renormalized interaction V mm

SC (q) for m = (Ag,1,1/2x̂ + √
3/2ŷ) as

a function of q. (c) The momentum space gap function on the Fermi
surface associated with one of the two degenerate SC singular modes.
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FIG. 9. (Color online) The phase diagram of the kagome lattice at
van Hove filling versus U and V (in units of t). The electronic orders
and the associated ordering momenta are FM (Q = 0), intra-unit-cell
AFM (Q = 0), CBO (Q = M), intra-unit-cell CDW (Q = 0), SBO
(Q = M), dx2−y2 + idxy-wave SC (dSC, Q = 0) and s-wave SC (sSC,
Q = 0). Here, M is one of the nesting vectors connecting the saddle
points on the Fermi surface.

mode φSC, we construct the effective pairing operator HSC

and get the gap function in the momentum space as shown in
Fig. 8(c). This is clearly a dxy-wave gap function. In fact, there
is another degenerate singular mode that gives a dx2−y2 -wave
gap function (not shown). Using the renormalized pairing
interaction, we performed mean-field calculations to find that
the ordered state is a chiral dx2−y2 + idxy superconducting
state, which we call the dSC state. The chiral state is fully
gapped on the Fermi surface and thus saves more energy.
Figure 8(a) shows that the SDW and CDW channels are
dominant at high-energy scales. Inspection of the later stage of
the FRG flow reveals that the singular modes in these channels
contains dominant CBO and SBO components (on nearest
bonds). We shall come back to this point later.

The phase diagram. Apart from the typical results discussed
above, we have performed systematic SMFRG calculations on
a dense grid in the (U,V ) plane. The interactions are chosen
to be smaller than the total bandwidth (6t). Projected on the
Fermi surface they are even smaller. In such a case, the FRG
method is expected to be reliable. The results are summarized
as a phase diagram shown in Fig. 9. The CBO and SBO states
have ordering momenta at one of the nesting vectors, while the
others order at zero momentum without breaking translation
symmetry. However, the CDW and AFM states have intra-
unit-cell structures. This phase diagram can be understood as
follows.

Along the U = 0 axis, the s-wave superconductivity ap-
pears between the intra-unit-cell CDW states at small and
large values of V . This is counterintuitive at a first sight
since increasing V would always favor CDW. However, the
numerical result is reasonable for the following reasons. While
the CDW susceptibility behaves as ln(W/�) at the running
scale � because of the van Hove singularities in the normal
state density of states (here W is of the order of the bandwidth),
the SC susceptibility diverges as ln2(W/�) due to a further
Cooper instability.12 Therefore once the initially repulsive
pairing channel becomes slightly attractive via the overlap

with the CDW channel, the pairing interaction could grow
in magnitude faster than the CDW interaction, and could
eventually overwhelm the CDW interaction. This explains the
emergence of the s-wave superconductivity for moderate V .
However, if V is initially small, the overlap with the SC channel
is small during the flow. On the other hand, if V is large
enough, the CDW channel diverges before the SC channel
takes advantage of the fast growth. These considerations are
consistent with our results along the U = 0 axis.

In the phase diagram, we see that both CBO and SBO
phases are in proximity to the d-wave SC phase. This is
a reasonable result since we find that the bond orders are
on nearest-neighbor bonds, while the d-wave pairing are on
third-neighbor bonds (or nearest similar-sublattice neighbor
bonds). It is the even order processes involving the bond-
density interactions that have overlap with the above singlet
pairing interaction, which are therefore immune to the sign
structure in the SBO and CBO interactions. On the other hand,
the on-site repulsion disfavors s-wave pairing. This makes
d-wave pairing viable. Interestingly, by utilizing the bond
order fluctuations, the pairing mechanism avoids the matrix
element effect that would frustrate site-local spin fluctuations
at the nesting vector.

Along the V = 0 axis, our SMFRG result predicts the
charge bond order for large U . This is indeed a spin disordered
phase as found in Ref. 14, and is beyond the mean-field theory
but consistent with the lack of a well defined site-local spin or-
dered phase. The reason that a large U favors a spin disordered
state rather than local spin moment ordering is twofold. First,
the matrix element effect weakens nested scattering and favors
ferromagnetic ordering. Second, a sufficiently large U makes
the nested scattering more important as compared to the case
of small U . This would favor antiferromagnetic ordering. The
site-local spin ordering is thus frustrated by the competition
of ferromagnetism and antiferromagnetism. The compromise
is the CBO state, which is an analog of the valence bond solid
and reflects the short-range spin correlations.

Finally, for U ∼ t and with increasing V , the succes-
sive orders are FM, CBO, SBO, dSC, sSC, and CDW.
This sequence is reasonable as follows. The CBO and SBO
states take advantage of V since by connecting different
sublattices it avoids the matrix element effect. However, a
large V favors CDW. In the intermediate region, the CBO/SBO
fluctuations drive dSC while CDW fluctuations drives sSC, as
discussed above. This explains why there is a transition from
dSC to sSC with increasing V .

V. SUMMARY AND PERSPECTIVE

In summary, we have studied the extended Hubbard model
on kagome lattice at van Hove filling using the SMFRG
method. We discovered a variety of phases in the parameter
space. Along the V = 0 axis and with increasing on-site re-
pulsion U , the system develops successively ferromagnetism,
intra-unit-cell antiferromagnetism, and charge bond order.
With nearest-neighbor Coulomb interaction V alone (U = 0),
the system develops intra-unit-cell CDW order for small V ,
s-wave superconductivity for moderate V , and CDW appears
again for even larger V . With both U and V , we also find
spin bond order and chiral dx2−y2 + idxy superconductivity.
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We find that the s-wave superconductivity is a result of
CDW fluctuations and the squared logarithmic divergence
in the pairing susceptibility. On the other hand, the d-wave
superconductivity follows from bond order fluctuations that
avoid the matrix element effect. We summarized the results by
the phase diagram in Fig. 9. It is vastly different from that in
honeycomb lattices, and the difference can be attributed to the
frustrating matrix element effect. Notice that the above results
are for upper van Hove filling. Since the band is not symmetric
about the Dirac point, the matrix element effect at these two
filling levels are slightly different, and the corresponding phase
diagrams may also be different. We leave this for further
investigations.

We notice that the spin-1/2 kagome lattice has been realized
in herbertsmithite ZnCu3(OH)6Cl224,25 and its isostructural
Mg-based paracatamite MgCu3(OH)6Cl2.26 Also, the optical
kagome lattice has been simulated experimentally in ultracold
atomic gases, and the optical wavelengths can be suitably
adjusted for fermionic isotopes such as 6Li and 40K.27 With the
possibility of tuning U and V continuously, the optical lattice
with ultracold atomic gases is most promising to realize the
predictions presented in this paper.

Recently, we became aware of a parallel work in which a
similar scenario is addressed.28 Since the results there differ
to some extent to ours, it is important to provide an unbiased
comparison between the two FRG schemes. As is clear in
Sec. III, our decomposition of the interaction vertex is exact if
the form factor set is complete. It conserves momentum and
respects all symmetries in the underlying system. Moreover,
since we work in the orbital basis, virtual excitations from all
bands (including the flat band) are included. In comparison,
the patch-FRG used in Ref. 28 considers the band cut by the
Fermi level only. It discretizes the Fermi surface into points
and projects the momentum dependence of the interaction
vertex onto such points, with three free Fermi momenta (say
k1,2,3). There are truncation errors even in the limit of infinite
patches since the radial dependence is ignored. The vertex is

not even Hermitian for general free momenta since the forth
momentum k4 = k1 + k2 − k3 is not necessarily on the Fermi
surface. During the one-loop integration in the radial direction
of the patches, momentum conservation would be broken if
the forth momentum k4 shifts between different patches. All
such truncations do no harm in simple systems where the
orbital-wise components of the Bloch states do not change
significantly within a patch and between the patches. However,
in the kagome model under concern, the character of the Bloch
states varies violently. An improper treatment of such features
is counter-acting, in the first place, the matrix-element effect
emphasized here and in Ref. 28. We believe this is the reason
why exceptionally large interactions (up to twice of the total
bandwidth) are needed to drive an instability and some phases
are missing in Ref. 28. In the large U limit, the model can
be mapped to a doped t-J model, and it is known that the
ground state is the valance bond solid,29 which is a linear
combination of our CBO patterns. Thus our SMFRG correctly
captures this phase from the weak coupling side. In contrast,
in Ref. 28, the FM state persists for U up to twice of band
width. Moreover, pairing on very long bonds is found and
taken as an advantage of the patch-FRG.28 The point we would
emphasize is that our SMFRG is capable of capturing such a
pairing if it would be dominating. The reason that the pairing
operator is usually local or short-ranged is because long-range
interactions (renormalized) in the particle-hole channels are
needed to offer an overlap to such a pairing channel, but once
this is true the system would have already become unstable in
the particle-hole channel.
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