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We find an exotic spin excitation in a magnetically ordered system with spin orbit magnetism in two dimensions,
where the order parameter has a net spin current and no net magnetization. Starting from a Fermi liquid theory,
similar to that for a weak ferromagnet, we show that this excitation emerges from an exotic magnetic Fermi liquid
state that is protected by a generalized Pomeranchuk condition. We derive the propagating mode using the Landau
kinetic equation and find that the dispersion of the mode has a

√
q behavior in leading order in two dimensions.

We find an instability toward superconductivity induced by this exotic mode, and a further analysis based on
the forward scattering sum rule strongly suggests that this superconductivity has p-wave pairing symmetry. We
perform similar studies in the three-dimensional case, with a slightly different magnetic system, and find that
the mode leads to a Lifshitz-like instability, most likely toward an inhomogeneous magnetic state in one of the
phases.
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I. INTRODUCTION

The Landau Fermi-liquid theory is a very successful theory
in condensed-matter physics. It provides a phenomenological
framework for describing thermodynamics, transport, and
collective modes of itinerant fermionic systems. In the Landau
theory, the interactions among quasiparticles are described
by the Landau parameters F

s,a
l , where l denotes the orbital

angular momentum partial-wave channel, and s and a denote
spin-symmetric and -antisymmetric channels, respectively. It
has been proved by Pomeranchuk that for the Fermi surface to
be stable, the Landau parameters should satisfy the relation
F

s,a
l > −(2l + 1). Whenever the relation is violated, there

will exist an instability of the Fermi surface known as a
Pomeranchuk instability,1 such as the Stoner ferromagnetism
when Fa

0 → −1+ or phase separation when F s
0 → −1+. In

1959, Abrikosov and Dzyaloshinskii2 developed a ferromag-
netic Fermi-liquid theory (FFLT) of itinerant ferromagnetism
based on Landau Fermi-liquid theory, whose microscopic
foundations were established later by Dzyaloshinskii and
Kondratenko.3 Further studies have been made of this state
using a generalized Pomeranchuk instability based on the
FFLT of Blagoev et al.4 and Bedell and Blagoev.5

Recently, Pomeranchuk instabilities in higher angular
momentum partial-wave channels have been studied by many
authors, such as the quantum nematic Fermi-liquid phase as a
result of an instability in the F s

2 channel6–11 and the so-called
α and β phases the in Fa

1 channel by Wu et al.12,13 In these
papers, mean-field theory is used based on the microscopic
Hamiltonian to demonstrate the instabilities of the disordered
phase and to classify the possible phases of the ordered state.
The Goldstone modes are studied within the random-phase-
approximation (RPA) approach. Among these instabilities, the
Fa

1 channel is especially interesting since the order parameter,
which is proportional to the spin current, is closely related to
the spin orbit coupling. In fact, the spin-orbit-coupled Fermi
liquid is well studied.14–16 In this system, due to the broken
spin rotation symmetry, Landau parameters with more general
forms are calculated,16 and new collective modes induced by
spin orbit coupling are studied.15

In this paper, we study a system that dynamically generates
the spin-orbit coupling through the generalized Pomeranchuk
instability in the Fa

1 channel. This system was first studied by
Wu and Zhang,12 where mean-field theory was used based on
the microscopic Hamiltonian to demonstrate the instabilities of
the disordered phase and to classify the possible phases of the
ordered state and Goldstone modes were studied within the
RPA approach. Here, we use the traditional Fermi-liquid
theory, similar to the FFLT, in the weak magnetic limit to study
the generalized Pomeranchuk instability in the Fa

1 channel in
two-dimensional (2D) and three-dimensional (3D) systems.
We start from the state with an ordered phase, using the
Landau kinetic equation to study the collective modes. In this
symmetry-broken phase we find an exotic collective mode.
We further find a superconducting instability induced by this
mode. We also carry out a similar calculation in a 3D system
with a slightly different model and find the mode leads to a
Lifshitz-like instability toward an inhomogeneous magnetic
state.

II. GENERALIZED POMERANCHUK INSTABILITY

Similar to what was done in the weakly ferromagnetic
system,4 we expand the deviation of the energy around the
ordered ground state in the spirit of Landau up to second order
in the deviations, δnpσ of the momentum distribution function:

δ

(
�

V

)
= 1

V

∑
pσ

(
ε0

pσ − μ
)
δnpσ

+ 1

2V

∑
pσ,p′σ ′

f σσ ′
pp′ δnpσ δnp′σ ′ + · · · , (1)

where ε0
pσ is the quasiparticle energy and f σσ ′

pp′ are the
quasiparticle interactions in the presence of the internal
field. In the limit of a weakly ordered system, we can treat
the quasiparticle interaction as rotationally invariant in spin
space;17 then

f σσ ′
pp′ = f s

pp′ + f a
pp′σ · σ ′ + O

(
m2

1

)
. (2)
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Given the distribution function for the ordered state, we can
calculate the free energy, and the minimization of the free
energy leads to the generalized Pomeranchuk condition.

III. MODEL IN TWO DIMENSIONS

In two dimensions, we start with the model

m0
p(r) = − 1

N (0)

∂n0
p

∂ε0
p
m1(ẑ × p̂). (3)

This model defines a spin orbit magnetism (SOM) state with
zero net magnetization but nonzero spin current proportional
to m1, which can be seen as

σ 0(r) = 2
∑

m0
p(r) = 0, (4)

jσ,i = 2
∑

p

vp,im0
p(r)

(
1 + Fa

1

2

)

= 1

2
vf

(
1 + Fa

1

2

)
m1(ẑ × î ). (5)

To understand the instability to this ground state, we first
use Eq. (1) to calculate the free-energy change based on this
model using [δnp] = m0

p · �σ in spin space:

δ

(
�

V

)
= 1

N (0)

(
1 + Fa

1

2

)
m2

1 + βm4
1 + · · · , (6)

which means that this ground state is protected by a generalized
Pomeranchuk condition in the Fa

1 channel since we work in the
ordered state. Here, β > 0 is a phenomenological parameter
making sure the model is valid and this term is the next-
leading-order term allowed by symmetry. The minimum of
the free energy for Fa

1 < −2 leads to the equilibrium order

parameter (ground-state spin current) m1 ∼ |1 + Fa
1

2 | 1
2 , and in

the limit Fa
1 → −2−, m1 is small, i.e., in the weakly ordered

limit.

A. Collective modes

In this section, we study an important feature of this
new exotic magnetic Fermi liquid (EMFL) ground state, the
collective modes, which exhibit exotic dispersion relations.

1. Hydrodynamic-like approach

We investigate the free oscillation of the momentum
dependent magnetization δmp. These oscillations of δmp can
be determined from the linearized Landau kinetic equation in

the spin channel:18

∂δmp(r,t)
∂t

+ vp · ∇
[
δmp(r,t) − ∂n0

p

∂ε0
p
δhp(r,t)

]

= −2
[
m 0

p (r,t) × δhp(r,t) + δmp(r,t) × h 0
p (r,t)

]
+ I [mp], (7)

where h0
p = −B + 2

∑
p′ f

a
pp′m′

p and δhp = −δB +
2
∑

p′ f
a
pp′δm′

p are the effective equilibrium field and its
fluctuation, respectively. To study the free oscillations when
B = 0 we set δB = 0. At low temperature the collision
integral I [mp] is negligible, and it can be ignored in what
follows.

To derive the dispersion relations, we do a Fourier transfor-
mation of Eq. (7), plug in our model, Eq. (3), and set δmp(q) =
(− 1

N(0) )
∂n0

p

∂ε0
p
�νp(q) = ∑

l(− 1
N(0) )

∂n0
p

∂ε0
p
�νl(q)eilφp . Finally, Eq. (7)

becomes∑
l,m

[
ω − q · vp

(
1 + Fa

|l|
al

)]
�νl(q)eilφp

= 2m1i
∑
l,m

(
f a

1

2
− f a

|l|
al

)
(ẑ × p̂) × �νl(q)eilφp , (8)

where al = δl,0 + 2(1 − δl,0).
Projecting Eq. (7) to each component of eilφp , we take

the l = 0,1, − 1 component of the equation and keep the
expansion of Fa

l only up to the l = 1 term. The equations
for the l = 0, l = 1, and l = −1 momenta are

ω�ν0 − qvf

2

(
1 + Fa

1

2

)
eiφq �ν1 − qvf

2

(
1 + Fa

1

2

)
e−iφq �ν−1 = 0,

(9)

ω�ν1 − qvf

2

(
1 + Fa

0

)
e−ilφq �ν0 − m1i

(
f a

0 − f a
1

2

)
�ν0 × L1 = 0,

(10)

ω�ν−1 − qvf

2

(
1 + Fa

0

)
eilφq �ν0 − m1i

(
f a

0 − f a
1

2

)
�ν0 × L2 = 0,

(11)

where L1 = (i,1,0) and L2 = (−i,1,0) are two complex
vectors. Considering each component of the vectors, we can
solve these nine equations and get the dispersion relation of
the collective modes. The dispersion relations for the gapless
modes are given by

ωc = ±1

2

√∣∣2 + Fa
1

∣∣(2f a
0 − f a

1

)
m1vf q − ∣∣2 + Fa

1

∣∣(1 + Fa
0

)
v2

f q2 → ±1

2

√∣∣2 + Fa
1

∣∣(2f a
0 − f a

1

)
m1vf q. (12)

In this hydrodynamic-like approach, the truncation of the
Fermi-surface distortions up to l = 1 is reasonable since
if we include the l = 2 distortion terms, we will find that
|�ν±2|
|�ν±1| = qvf

2ω
(1 + Fa

1
2 ), which is very small for small momentum

transfer. In this sense, the inclusion of �ν±2 will not qualitatively
change the dispersion of the collective modes.

To determine if the mode in this EMFL is propagating or
Landau damped, we need to consider the particle-hole (p-h)
continuum. The continuum can be determined from Eq. (7),
and for two dimensions we find that ω±

ph = q · vp ± m1|f a
1 |.

This mode is very exotic since it propagates with a
√

q

dispersion relation for small momentum, unlike the magnons
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FIG. 1. (Color online) Collective mode together with the p-h
continuum in a 2D system. The dashed line indicates that the
collective mode merges inside the continuum. Here, we take F a

0 =
0.1, F a

1 = −2.1, m1 = 0.12n, and n is the particle density.

found in the ferromagnetic and antiferromagnetic phases. We
realize that, due to the

√
q dispersion, this mode will have

higher-order temperature dependence in, e.g., the specific
heat, making it difficult to detect in low-temperature specific-
heat measurements. Given that it is separated from the p-h
continuum, it may be possible using neutron scattering to
detect this spin mode. Taking reasonable values of the Landau
parameters and the order parameter, we evaluate the dispersion
relation of the collective mode and p-h continuum. The result
is presented in Fig. 1.

In Fig. 1, we show the collective mode together with the
p-h continuum. Clearly, we can see that this gapless mode can
propagate for small momentum and merges into the continuum
for relatively large momentum.

2. Dynamical response function

We can check the validity of the hydrodynamic approach,
for studying the collective modes, by calculating the dynamical
spin response function using �χ = − �ν0

δB
. Here we use the

Landau kinetic equation [Eq. (7)],19 where we keep δB in
the equation. The details of the calculation are given in the
Appendix. By solving for the poles of the spin response
function, we can also get the dispersion of the collective mode:

ωc = ±1

2
4

√
1 − f a

0

2f a
0 − f a

1

√∣∣2 + Fa
1

∣∣(2f a
0 − f a

1

)
m1vf q,

(13)

which is consistent with the result we found in the previous
hydrodynamic-like approach with

√
q dispersion in leading

order. In comparing Eqs. (11) and (12), the leading-order
behavior is not exactly the same. This is because in the previous
hydrodynamic-like approach, we truncated the Fermi-surface
distortion at l = 1. In the calculation of the response function,
we truncate the Landau parameters at l = 1, but we keep the
Fermi-surface distortion to all orders. Although the inclusion
of the higher-order distortions will not dramatically change the
leading-order

√
q behavior, which is already shown above, it

can still slightly modify the prefactor.

B. Superconductivity instability

In this EMFL state it is possible that the new spin wave
mode could give rise to a superconducting instability. The
response function for this mode for small momentum and
energy transfer is approximately given by

χ ∼ 2N (0)

Fa
0 − Fa

1
2

ω2
c

ω2 − ω2
c

. (14)

The structure resembles that of the response function of a
phonon, which makes it possible that the spin-fluctuation-
mediated interaction can cause the pairing of two quasiparti-
cles and lead to superconductivity. Since this pairing is caused
by spin fluctuations, we expect that the superconductivity is un-
conventional, in the sense that the pairing symmetry is different
from the normal s-wave phonon-mediated superconductors.
It is actually p wave, which is demonstrated below by the
argument from the forward scattering sum rule.

Within the framework of Landau Fermi-liquid theory, based
on the forward scattering sum rule,4,18 we can demonstrate the
instability towards superconductivity and analyze the pairing
symmetry of it. In Fermi-liquid theory, the scattering amplitude
for small momentum transfer can be expanded as N (0)aσσ ′

pp′ =∑
l (As

l + Aa
l σσ ′)Pl(p̂ · p̂′).18 In the case of weak magnetic

ordering the quasiparticle scattering amplitude Aα
l can be

expressed by Landau parameters as Aα
l = Fα

l

1+Fα
l /al

, where

α = a,s and al has the same definition as above.18 The forward
scattering sum rule states that the triplet scattering of two
quasiparticles with the same momenta must vanish. Therefore,
to the leading order of m1, we have

∑
l(A

s
l + Aa

l ) = 0. Since
in our model, we only consider the interaction up to l = 1, we
can truncate the equation up to l = 1; then

Aa
0 + As

0 + Aa
1 + As

1 = 0. (15)

In our magnetically ordered state close to the phase transition,
Fa

1 → −2−, and it follows that Aa
1 → +∞, which requires

at least one of the first three terms in Eq. (15) to diverge as
−∞ when approaching the transition point. First, the diverging
of As

1 implies the vanishing of the effective mass, and since
we assume a finite density of state on the Fermi surface, it
will not occur in our system. Then only As

0 and Aa
0 are left

to satisfy Eq. (15). Taking As
0 as an example, let As

0 → −Aa
1

diverge to −∞, which indicates instabilities in both spin and
charge sectors, respectively. This leads to phase separation
at the point of the magnetic phase transition. We can now
look at the scattering amplitude in both spin singlet and triplet
channels, where the expansion is still truncated up to l = 1:

a
singlet
pp′ = As

0 − 3Aa
0 + (

As
1 − 3Aa

1

)
(p̂ · p̂′), (16)

a
triplet
pp′ = As

0 + Aa
0 + (

As
1 + Aa

1

)
(p̂ · p̂′). (17)

In the magnetically ordered state close to the transition,
consider the scattering of a pair of quasiparticles with opposite
momentum; the scattering amplitude becomes

asinglet = 2Aa
1 → +∞, (18)

atriplet = −2Aa
1 → −∞. (19)
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Obviously, we see a strong repulsion in the singlet channel
and a strong attraction in the triplet channel, indicating
an instability towards p-wave superconductivity. The same
scenario happens if we let Aa

0 diverge.

IV. MODEL IN THREE DIMENSIONS

We also study the same model in a 3D system, where the
Fermi-surface distortion is very different from that in the 2D
case. In the 2D system, since the quasiparticle momentum p
lives in the xy plane, the magnitude of mp is independent of
the direction of p, which means the Fermi-surface distortion is
isotropic and there is a constant gap between the two branches
of the Fermi surface with different spin polarizations. In a 3D
system, however, the gap will depend on the direction of p,
and there are nodes located at the north and south poles of the
Fermi surface, which makes the p-h continuum very different
from that in the 2D case. The p-h continuum is no longer
gapped at zero momentum; instead, it sweeps a finite region
at zero momentum, which will Landau damp the

√
q mode,

and it will not propagate at all. In order to avoid this problem,
we introduce an additional Ferromagnetic order in our model,
which will gap out the p-h continuum at zero momentum, so
that a small window will be opened to let the collective mode
propagate. So the new model becomes

m0
p(r) = − 1

N (0)

∂n0
p

∂ε0
p

[m0ẑ + m1(ẑ × p̂)], (20)

which defines a state with magnetization proportional to m0

and spin current proportional to m1, similar to the 2D case
except for the nonzero magnetization.

Similar to what we do in the 2D case, we can also calculate
the free-energy change based on this model:

δ

(
�

V

)
= 1 + Fa

0

N (0)
m2

0 + 2

3N (0)

(
1 + Fa

1

3

)
m2

1 + o
(
m2

0,m
2
1

)
,

(21)

which means that this ground state is also protected by
generalized Pomeranchuk conditions.

A. Competing of two phases

Since there are multiple order parameters, it is necessary to
study the competition between the different order parameters.
This is the leading-order result, and to study the competition
between these two orders, we need to add higher-order terms
to the free energy, so that we have

δ

(
�

V

)
= 1 + Fa

0

N (0)
m2

0 + 2

3N (0)

(
1 + Fa

1

3

)
m2

1

+Bm2
0m

2
1 + Cm4

0 + Dm4
1 + · · · , (22)

where B,C,D are phenomenological parameters and they
satisfy C,D > 0, B > −2

√
CD. By minimizing the free

energy, we can get three kinds of phase diagrams for different
values of B (−2

√
CD < B <0, 0 < B <

√
CD, and B >√

CD).
These three kinds of phase diagrams are similar, and

we take the case B >
√

CD as an example; Fig. 2 shows
the schematic phase diagram in this case. The boundary

FIG. 2. (Color online) Schematic phase diagram in the case B >√
CD. Phase boundaries between phases II, III, and IV are described

by the equations 1 + Fa
1
3 = D

B
(1 + F a

0 ) and 1 + Fa
1
3 = B

4C
(1 + F a

0 ).

between phase II and phase IV is described by the equation
1 + Fa

1
3 = D

B
(1 + Fa

0 ), and the boundary between phase III and

phase IV is described by the equation 1 + Fa
1

3 = B
4C

(1 + Fa
0 ).

The phase diagram consists of four different phases, as listed
in Table I. Among the four phases, phases I and II are
paramagnetic and ferromagnetic phases; phase III is the SOM
phase we introduced above with net spin current but no net
magnetization, and phase IV can be regarded as the mixed
order of phases II and III with both net magnetization and
net spin current. The phase diagram indicates that by properly
tuning the Landau parameters Fa

0/1, phases III and IV can be
realized.

B. Collective modes

Using the same hydrodynamic-like approach as in the 2D
case, we can study the fate of the collective modes in different
phases.

1. The FM phase

In phase II, where m0 > 0,m1 = 0, for small momentum,
the two modes lead to the dispersions

ω1 → 2D0 + A0A1

6D0
q2, (23)

ω2 → A0A1

6D0
q2, (24)

TABLE I. Four phases with different values of order parameters.

m0 m1

Phase I (PM) =0 =0
Phase II (FM) >0 =0
Phase III (SOM) =0 >0
Phase IV(mixed order) >0 >0
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FIG. 3. (Color online) Dispersions of the collective modes with
the p-h continuum in phase II. The dashed line indicates that the
collective modes merge inside the continuum. Here, we take F a

0 =
−1.1, F a

1 = 1, m1 = 0.15n, and n is the particle density.

where

A0 = (
1 + Fa

0

)
vf , A1 =

(
1 + Fa

1

3

)
vf ,

D0 = m0

(
f a

0 − f a
1

3

)
, D1 = m1

(
f a

0 − f a
1

3

)
,

with the particle-hole continuum

ωph = q · vp ± 2m0|f0|. (25)

In Fig. 3, we show these two modes (one gapless, the other
gapped) together with the particle-hole continuum, which
was already studied before,5 and we reproduce them here in
phase II.

2. The SOM phase

In phase III, with m0 = 0,m1 > 0, for small momentum,
the modes become

ω1,2 =
√

1
3A0A1q

2 ± 2
3 |A1D1|q⊥, (26)

and the particle-hole continuum becomes

ωph = q · vp ± 2
3

∣∣m1f
a
1 sin θp

∣∣. (27)

In Fig. 4, we show the two modes together with the particle-
hole continuum, and we find that these two modes are
always sitting inside the particle-hole continuum for small
momentum and become Landau damped, as we expected when
we generalized the original model to the 3D system.

3. The mixed phase

We find two modes in phase IV:

ω1 → 2D0 +
(

A0A1

6D0
+ A2

1D
2
1

36D3
0

)
q2

⊥, (28)

ω2 →
2|A1|

√
q − ∣∣ 2D1

A0

∣∣√
9A0D

2
0+6A1D

2
1

D3
1

, (29)

p-h continuum
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FIG. 4. (Color online) Dispersions of the collective modes with
the p-h continuum in phase III. The dashed line indicates that
the collective modes merge inside the continuum. Here, the p-h
continuum is so large that it completely encloses the two modes,
and its boundary is shown in the inset with the same axes. We
take F a

0 = −1.1, F a
1 = −3.1, m1 = 0.15n, and n is the particle

density.

and the p-h continuum is

ωph = q · vp ± 2
3

√
9
(
m0f

a
0

)2 + (
m1f

a
1

)2
sin2(θp).

Here, since m0 > 0, the p-h continuum is gapped, which opens
up a window for the modes to propagate. We evaluate the
collective modes and p-h continuum with reasonable values
of Landau parameters and order parameters, and the result is
presented in Fig. 5.

In Fig. 5, we show the gapless and gapped modes outside
the p-h continuum. Clearly, we can see that ω2

2 < 0 for small
q, which is a very exotic feature. This indicates a Lifshitz-like
instability20 of the ground state towards some inhomogeneous
magnetic state such as a spiral phase.21

V. SUMMARY

In summary, using Landau Fermi-liquid theory, we studied
the collective modes in the spin orbit order magnetic state in
the f a

1 channel, in both 2D and 3D systems. In both cases, the√
q dispersion is found in leading order. In the 2D system, we

also calculate the spin density response function, which gives
a consistent result(

√
q dispersion) for the collective mode,

suggesting that the hydrodynamic description captures the
essential physics of the state. This exotic mode can play a role
in the formation of Cooper pairs of two quasiparticles since it
has similar structure to the phonon propagator, so we expect
an instability toward superconductivity close to the magnetic
phase transition. A further argument based on forward scat-
tering sum rules confirms the instability again and strongly
indicates a p-wave pairing symmetry. In a 2D system, the
model describes one general structure of spin-orbital coupling,
and it is actually closely related the Rashba Hamiltonian22 in
the 2D semiconductor heterostructures. Therefore, we expect
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FIG. 5. (Color online) (a) Dispersions of the collective modes
with the p-h continuum in phase IV. The dashed line indicates that
the collective modes merge inside the continuum. (b) Close-up of
mode ω2. Here, we take F a

0 = −1.1, F a
1 = −3.1, m0 = 0.15n, m1 =

0.075n, and n is the particle density.

that this model can describe 2D or quasi-2D systems with
spin-orbital coupling. In three dimensions, a Ferromagnetic
order is added to the ground state to avoid the Landau damping,
and the collective mode leads to a Lifshitz-like instability
towards an inhomogeneous magnetic state in one of the
phases.
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APPENDIX: CALCULATION OF DYNAMICAL RESPONSE
FUNCTION

We can calculate the spin response function (i.e., spin-spin
correlation function) based on the Landau kinetic equation
[Eq. (7)]. After the Fourier transformation, keeping δB in the
equation, instead of getting equations of �νl [Eq. (8)], we get

equations of �νp:

[(ω − q · vp) − im1f
a
1 (ẑ × p̂)×]�νp

= [N (0)q · vp − 2im1(ẑ × p̂)×][δhp − δB]. (A1)

Here, we let δhp = 2
∑

p′(− 1
N(0) )

∂n0
p′

∂ε0
p′
f a

pp′ �νp′ . Equation (A1)

can be written in matrix form as

M1 · �νp = M2 · (δhp − δB), (A2)

where

M1 =

⎛
⎜⎝

ω − q · vp 0 −im1f
a
1 p̂x

0 ω − q · vp −im1f
a
1 p̂y

im1f
a
1 p̂x im1f

a
1 p̂y ω − q · vp

⎞
⎟⎠ ,

M2 =

⎛
⎜⎝

N (0)q · vp 0 −2im1p̂x

0 N (0)q · vp −2im1p̂y

2im1p̂x 2im1p̂y N (0)q · vp

⎞
⎟⎠ .

Keeping the Landau parameters up to l = 1, we have δhp =
f a

0 �ν0 + 1
2f a

1 eiφp �ν1 + 1
2f a

1 e−iφp �ν−1; then the equation becomes

�νp = K · (f a
0 �ν0 + 1

2f a
1 eiφp �ν1 + 1

2f a
1 e−iφp �ν−1 − δB

)
,

(A3)

where K = M−1
1 · M2. Considering the continuity equation

[Eq. (9)], the equation becomes

�νp = K
{[

qvf

2ω

(
1 + Fa

1

2

)
f a

0 eiφp + 1

2
f a

1 eiφp

]
�ν1

+
[
qvf

2ω

(
1 + Fa

1

2

)
f a

0 e−iφp + 1

2
f a

1 e−iφp

]
�ν−1 − δB

}
.

(A4)

We set the external field in the z direction and perform

operation 2
δB

∑
p(− 1

N(0) )
∂n0

p

∂ε0
p
e±iφp on Eq. (A4), and we get two

equations:

�χj+ =
[
qvf

2ω

(
1 + Fa

1

2

)
f a

0 eiφq K1 + 1

2
f a

1 K2

]
· �χj−

+
[
qvf

2ω

(
1 + Fa

1

2

)
f a

0 e−iφq K1 + 1

2
f a

1 K0

]
· �χj+

− K1 · ẑ, (A5)

�χj− =
[
qvf

2ω

(
1 + Fa

1

2

)
f a

0 e−iφq K−1 + 1

2
f a

1 K−2

]
· �χj+

+
[
qvf

2ω

(
1 + Fa

1

2

)
f a

0 eiφq K−1 + 1

2
f a

1 K0

]
· �χj−

− K−1 · ẑ, (A6)

where �χj± are spin-spin current correlation functions defined
as �χj± = �ν∓1

δB and they are related to the spin-spin correlation
function �χ = �ν0

δB through the continuity equation as

ω �χ − qvf

2

(
1 + Fa

1

2

)
eiφq �χj−

− qvf

2

(
1 + Fa

1

2

)
e−iφq �χj+ = 0, (A7)
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and these Kl matrices are defined as Kl =
2
∑

p(− 1
N(0) )

∂n0
p

∂ε0
p
eilφp K.

By solving Eqs. (A5)–(A7) for the response functions and
determining their poles, we get the dispersion of the collective

mode:

ωc = ±1

2
4

√
1 − f a

0

2f a
0 − f a

1

√∣∣2 + Fa
1

∣∣(2f a
0 − f a

1

)
m1vf q.

(A8)
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