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Electronic properties and magnetism of iron at the Earth’s inner core conditions
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We employ state-of-the-art ab initio simulations within the dynamical mean-field theory to study three likely
phases of iron (hcp, fcc, and bcc) at the Earth’s core conditions. We demonstrate that the correction to the
electronic free energy due to correlations can be significant for the relative stability of the phases. The strongest
effect is observed in bcc Fe, which shows a non-Fermi-liquid behavior, and where a Curie-Weiss behavior of the
uniform susceptibility hints at a local magnetic moment still existing at 5800 K and 300 GPa. We predict that all
three structures have sufficiently high magnetic susceptibility to stabilize the geodynamo.
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I. INTRODUCTION

Being the main component of the Earth’s core, iron
attracts significant attention from a broad research commu-
nity. Understanding its properties at ultrahigh pressure and
temperature, ranging from studies of the core structure to
modeling the geodynamo, is a long-term goal for condensed-
matter physics and is essential for explaining geochemical
observations, seismic data, and the theory of geomagnetism,
to mention a few examples. In spite of all previous theoretical
and experimental efforts, the crystal structure and properties
of solid Fe at the Earth’s inner core conditions remain a
subject of intense debate. All three phases stable at low
pressure-temperature conditions, namely, hexagonal close-
packed (hcp), face-centered cubic (fcc), and body-centered
cubic (bcc), have been suggested as possible crystal structures
of iron or its alloys in the Earth’s inner core.1–5

Theoretical simulations of iron at high pressures and
temperatures generally rely on the picture of a wideband
metal with insignificant local correlations.3–6 Indeed, under
compression the overlap between localized states increases
and so does the bandwidth W , while the local Coulomb
repulsion U between those states is screened more efficiently.
The reduction of the U/W ratio is used to rationalize the
absence of electronic correlations beyond the standard local-
density approximation (LDA) at high-pressure conditions. The
increase of the 3d-band width also results in the corresponding
drop of the density of states at the Fermi energy, leading to the
disappearance of the driving force for magnetism according to
the Stoner criterion. In addition, even at the ambient pressure
but very high temperature T � Tc (Tc is the Curie temperature,
which is 1043 K in α-Fe), local magnetic moments are ex-
pected to be suppressed due to one-electron Stoner-type excita-
tions. Thus, when extremely high pressure and temperature are
simultaneously applied, disappearance of the local magnetic
moment seems to be inevitable. Due to these considerations
iron at the Earth’s inner core conditions has been modeled
as nonmagnetic within LDA-based approaches. The results
of recent works of Sola et al.,7,8 who applied fixed-node-
approximation quantum Monte Carlo techniques to compute

the equation of state and the melting temperature of hcp Fe at
extreme conditions, are in good agreement with previous LDA-
based simulations and thus strengthen the above argument, at
least in the case of the hcp phase. On the other hand, Glazyrin
et al.9 have just demonstrated the importance of correlation
effects in hcp iron revealed by an electronic topological tran-
sition induced at a pressure of 40 GPa and room temperature.

So are electronic correlations important at extreme
conditions, and can they lead to qualitatively new phenomena?
To address these questions we have investigated the impact of
correlations on the electronic structure, magnetic properties,
and thermodynamic stability of iron by performing ab initio
simulations of the bcc, fcc, and hcp phases for a volume
of 7.05 Å/atom, corresponding to the pressures expected in
the inner Earth’s inner core, and temperatures up to 5800 K
(The c/a ratio in hcp Fe was fixed at 1.60).10 We employ a
state-of-the-art fully self-consistent technique11,12 combining
the full-potential linearized augmented plain-wave (FLAPW)
band structure method13 with the dynamical mean-field
theory (DMFT)14 treatment of the on-site Coulomb repulsion
between Fe 3d states. A combination of LDA and DMFT
was applied earlier to study thermodynamic stability15 and to
describe the magnetic properties16 of paramagnetic bcc Fe at
ambient pressure.

II. METHOD

In our LDA + DMFT calculations Wannier-like functions
for the Fe 3d shell were constructed by projecting local orbitals
onto a set of FLAPW Bloch states located within the energy
window from −10.8 to 4 eV relative to the Fermi level EF

(details of the projection procedure can be found in Ref. 11).
We then introduced the calculated local Coulomb interac-

tion in the density-density form acting between those Wannier
orbitals. In order to evaluate the strength of the on-site electron
repulsion on the Fe 3d shell we employed the constrained
random-phase-approximation (cRPA) method.17,18 The cal-
culated Coulomb (U) and exchange (J) interaction matrices
are well approximated by a spherically symmetric form used
in the subsequent calculations, with the parameter U (the
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Slater parameter F0) equal to 3.15, 3.04, and 3.37 eV and
the Hund’s rule coupling J equal to 0.9, 0.9, and 0.93 eV
for the bcc, fcc, and hcp phases, respectively. These results
are in general agreement with previous calculations of U in
compressed Fe.19 We employed the around mean-field form20

of the double-counting correction term throughout.
The resulting many-body problem has been treated within

the DMFT framework with the quantum impurity problem
solved by the numerically exact continuous-time hybridization
expansion quantum Monte Carlo (CT-QMC) method21 using
5 × 108 CT-QMC moves with a measurement performed
after each 200 moves. After completing the DMFT cycle we
calculated the resulting density matrix in the Bloch states’
basis, which was then used to recalculate the charge density in
the next iteration, as described in Ref. 12. To obtain the spectral
function at the real axis we employed a stochastic version of
the maximum entropy method22 for analytical continuation. In
order to compute the magnetic susceptibility in uniform fields
we performed LDA + DMFT simulations with the Kohn-Sham
eigenstates split by the magnetic field H = 0.005 eV/μB

directed along the z axis and then computed χ = M/H from
the resulting small magnetic moment M ∼ 0.01μB .

III. RESULTS AND DISCUSSION

In Fig. 1 we display the LDA + DMFT k-resolved spectral
functions A(k,E) for the three phases obtained for a tem-
perature of 5800 K. First, one may notice that in hcp Fe
the electronic states in the vicinity of EF are sharp [their

FIG. 1. (Color online) The LDA + DMFT k-resolved spectral
function A(k,E) (Vat/eV) for (a) bcc, (b) fcc, and (c) hcp Fe at volume
Vat = 7.05 Å3/atom and temperature 5800 K. A nonquasiparticle eg

band is seen in the vicinity of the Fermi energy along the N − � − P

path in (a).
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FIG. 2. (Color online) The ratio of the inverse quasiparticle
lifetime � to temperature T vs. T . The solid red, dashed blue, and
dash-dotted green curves correspond to 3d states in fcc, bcc, and hcp
Fe, respectively. They are split by the crystal field into t2g (diamonds)
and eg (circles) representations in the cubic (bcc and fcc) phases
and two doubly degenerate representations (E′ and E′′, shown by
diamonds and squares, respectively) and one singlet representation
(A′

1, circles) in the hcp phase, respectively. A nonlinear behavior of
�/T for bcc Fe eg states is clearly seen.

red color indicates a high value of A(k,E)], hence ε-Fe
exhibits the typical behavior of a Fermi liquid (FL) with large
quasiparticle lifetimes in the vicinity of EF . In contrast, the
bcc phase features a low-energy eg band along the N -�-P
path that is strongly broadened, thus indicating destruction of
quasiparticle states. fcc Fe is in an intermediate state, with
some broadening noticeable in the eg bands at EF in the
vicinity of the � and W points.

To quantify the degree of non-Fermi-liquid (non-FL)
behavior we have evaluated the inverse quasiparticle lifetime
� = −ZIm[�(i0+)], where the quasiparticle residue Z−1 =
1 − ∂Im�(iω)

∂ω
|ω→0+ by extrapolating the imaginary-frequency

self-energy �(iω) to zero. In the FL regime � scales as T 2;
hence �/T vs T is linear. In Fig. 2 we display the temperature
evolution of �/T for the relevant irreducible representations of
the Fe 3d shell in all three phases. One may see that �/T in hcp
Fe exhibits a linear increase typical for a FL up to temperatures
expected in the Earth’s inner core. In contrast, �/T for the bcc
iron eg states features a linear and steep rise for T < 1000 K
and then behaves nonlinearly, indicating the noncoherent
nature of those states at high temperatures. The bcc Fe t2g

and fcc Fe eg electrons are in an intermediate situation, with
some noticeable deviations from the FL behavior.

The tendency of bcc eg states to a non-FL behavior has been
noted before for ambient conditions and has been explained
by a smaller effective bandwidth of the “localized” eg band
compared to the t2g one.23 We have evaluated the one-electron

kinetic energy of the eg and t2g bands as Eb = ∫ EF

−∞ D(E)(E −
C)dE, where D(E) is the corresponding LDA partial density
of states (PDOS) and C is the central weight of the band.
Resulting Eb for the eg and t2g bands in the bcc (fcc) phases are
equal to −1.05 (−1.01) and −1.08 (−1.20) eV, respectively.
One may see that the difference in kinetic energy between the
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FIG. 3. (Color online) Partial LDA densities of states (PDOS) for
the irreducible representations of Fe 3d states for the three phases
with a volume of 7.05 Å3/atom. The large peak in the vicinity of EF

in bcc Fe eg PDOS is due to a van Hove singularity.

eg and t2g bands in bcc Fe is rather small and in fact even
smaller than the corresponding difference in the fcc phase.
Hence it can hardly explain the observed qualitatively distinct
non-FL behavior of the eg states in bcc. It has been pointed
out24,25 that a van Hove singularity in one of the bcc Fe eg bands
leads to the formation of a narrow peak in the corresponding
PDOS in the vicinity of EF (Fig. 3). A large peak in PDOS
located at EF leads to suppression of the low-energy hopping
and to the corresponding enhancement of correlations, as has
been recently pointed out for the case of Sr2RuO4.26 A similar
suppression is observed in the eg hybridization function in bcc
Fe, as one may see in Fig. 4.

Having demonstrated the impact of correlation effects on
the Fe electronic structure, we now focus on its consequences
for the Fe phase stability and magnetism. To evaluate the
impact of correlation effects on the relative stability of the three
phases we have computed the corresponding correction to the
fixed-lattice free energy by employing a coupling-constant
integration approach (see, e.g., Ref. 27). We define the free
energy as Fλ = − 1

β
ln Tr{exp[−β(H0 + λH1)]}, correspond-

ing to a given value of the coupling λ ∈ [0 : 1], where H0 is
the one-electron (LDA) part of the Hamiltonian and H1 is the
interacting part equal to the difference between the Hubbard
term HU and the double-counting correction Edc. The coupling
constant integration leads to the following expression for the
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FIG. 4. (Color online) Imaginary part of the hybridization func-
tion � as a function of imaginary frequency for the eg and t2g states at
the first DMFT iteration. One may clearly see a decrease in |Im�(iω)|
at ω < 2 eV of the eg states in bcc Fe. However, at higher energies
(ω > 5 eV) the eg hybridization function decays slowly and becomes
larger than the t2g one. The overall one-electron kinetic energies of
the eg and t2g states in bcc Fe have similar values, as explained in the
main text. In contrast, in the fcc phase |�| grows monotonously with
decreasing ω for both eg and t2g

many-body correction:

�F = F − F0 =
∫ 1

0

〈λH1〉λ
λ

dλ. (1)

In derivation of Eq. (1) we neglected the λ dependence of
the one-electron part and hence the charge-density renormal-
ization due to many-body effects. However, we verified that
the correction to the total energy due to the charge-density
self-consistency is rather small and within our error bars.

To obtain �F we have computed 〈λH1〉λ
λ

for a discrete set of
values of λ ranging from 0 to 1 by performing LDA + DMFT
simulations with the Coulomb interaction scaled accordingly
and evaluating 〈λHU 〉λ in accordance with the Migdal formula.
(We calculated 〈λH1〉λ

λ
|λ=0 analytically, as in this case it is equal

to the Hartree-Fock approximation to 〈HU 〉 computed with the
LDA density matrix minus the double-counting correction.
The resulting value of 〈λH1〉λ

λ
|λ=0 is small, of the order of

0.1 mRy.) Then we integrated 〈λH1〉λ
λ

over λ numerically in
order to obtain �F and its error bars.

The resulting many-body correction to the electronic free
energy is displayed in Fig. 5 for temperatures of 2900 and
5800 K. There we also show the corresponding correction
to the total energy �E = EDMFT − ELDA, where EDMFT was
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FIG. 5. (Color online) Many-body correction to the total (black
dashed line) and free (red solid line) energy for the three phases of
Fe with a volume of 7.05 Å/atom at (top) T = 5800 K and (bottom)
2900 K. The error bars are due to the CT-QMC stochastic error.

computed in accordance with Eq. (3) of Ref. 12. Within our
error bars the magnitude of �F is the same for bcc and
hcp Fe, which are suggested as stable phases of iron4 and
iron-based alloys1,2 at the Earth’s inner core conditions. The
magnitude of �F is at least several millirydbergs smaller in
the case of fcc Fe, showing that the many-body correction
may significantly affect relative energy differences among iron
phases at the Earth’s core conditions. One may also notice that
the entropic contribution T �S = �E − �F becomes much
more significant at the higher temperature, and its contribution
is almost twice as large in the case of the bcc phase compared
with the other two.

The application of the LDA + DMFT theory has the most
important consequences for the understanding of magnetic
properties of Fe at the Earth’s core conditions. In Fig. 6 we
display the temperature evolution of the uniform magnetic
susceptibility χ in the range of temperatures from 1100 to
5800 K. One may notice that in the fcc and hcp phases
the susceptibility exhibits a temperature-independent Pauli
behavior expected for a FL (a small decrease in χ at lower
temperatures observed in hcp Fe is due to a dip in its
one-electron DOS in the vicinity of the Fermi level; see Fig. 3).
In contrast, χ of bcc Fe features a clear inverse-temperature
dependence and can be very well described by the Curie-Weiss

(CW) law χ = 1
3

μ2
eff

T +�
, with μeff =2.6μB and � =1396 K (see

inset in Fig. 6).
One may relate the apparent CW behavior of the magnetic

susceptibility in bcc Fe to the high peak at EF present in its
LDA DOS (Fig. 3), which can lead to a strongly temperature-
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FIG. 6. (Color online) The uniform magnetic susceptibility in a
paramagnetic state vs temperature. The error bars are due to the
CT-QMC stochastic error. The dashed lines with corresponding solid
symbols are fits to the enhanced Pauli law; see the text. In the inset
the inverse uniform magnetic susceptibility of bcc Fe is shown in red
(open circles), and the blue dashed and green solid (solid circles) lines
are fits to the Curie-Weiss and enhanced Pauli laws, respectively.

dependent Pauli (band) susceptibility. We have computed the
Stoner-enhanced Pauli susceptibilities χst = χ0/(1 − Iχ0) for
all three phases, where I is the Stoner parameter and χ0

is the bare uniform Pauli susceptibility computed by LDA
FLAPW calculations for finite temperatures with a small
external magnetic field switched on. We fitted I to reproduce
the corresponding values of LDA + DMFT χ at T = 3800 K;
the resulting values of I are 0.44, 0.53, and 0.54 eV in the bcc,
fcc, and hcp phases, respectively. Obtained χst reproduce very
well the LDA + DMFT magnetic susceptibilities of fcc and
hcp Fe, thus confirming the FL nature of these phases. In bcc
Fe χst describes well the CW-like behavior of LDA + DMFT
susceptibility in the range from 3000 to 5800 K. However, χst

deviates from the LDA + DMFT susceptibility significantly
at lower temperatures T , which are small compared to the
characteristic width of the peak at EF in the LDA DOS; see
Fig. 6.

An alternative and more interesting source for the apparent
CW behavior of the uniform susceptibility in bcc Fe can be a
local magnetic moment surviving in this phase up to Earth’s
core temperatures. The existence of a local magnetic moment
of the constant magnitude also provides a natural explanation
for the inverse bcc Fe susceptibility exhibiting the same linear
temperature dependence in the whole range from 1100 to
5800 K, with no significant deviations or noticeable pecu-
liarities (see inset in Fig 6).

The value of calculated uniform susceptibility in SI units at
temperature T = 5800 K is equal to 1.7 × 10−4, 2.0 × 10−4,
and 3.5 × 10−4 for hcp, fcc, and bcc Fe, respectively. We
would like to underline that our calculated uniform magnetic
susceptibilities in all three phases of Fe are sufficiently high
to be important for models of the Earth’s core dynamics
and geodynamo (see, e.g., Ref. 28). An inner core with a
paramagnetic susceptibility in the range 10−3–10−4 SI units
and with a paramagnetic relaxation time acting slower than
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field changes coming from the outer core could also attenuate
short-frequency fluctuations and become an important factor
stabilizing the geodynamo,29 just as an electrically conducting
inner core could stabilize the geodynamo because the inner
core would have a magnetic diffusion constant independent of
the outer core.30,31

In conclusion, we have carried out a theoretical investiga-
tion of the role of electronic correlations in the bcc, fcc, and
hcp phases of Fe at the Earth’s inner core conditions using a
fully self-consistent LDA + DMFT approach. We have found
that the fcc and hcp phases remain in a Fermi-liquid state,
while bcc Fe features a non-Fermi-liquid behavior. We have
evaluated a correction to the electronic free energy due to
many-body effects and found that it affects significantly the
relative free-energy differences, penalizing the fcc phase. Most
interestingly, our results suggest that a local magnetic moment
may exist in the bcc phase at the inner core conditions and
that magnetic susceptibilities in all three phases of Fe are
sufficiently high to stabilize the geodynamo. Thus, new models
of the geodynamo as well as the core structure and elasticity

should include the magnetism of the Earth’s core, the effect of
which has not yet been considered.
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