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Recent experiments show oscillations of dominant period //2e in conductance vs magnetic flux of charge
density wave (CDW) rings above 77 K, revealing macroscopically observable quantum behavior. The time-
correlated soliton tunneling model discussed here is based on coherent, Josephson-like tunneling of microscopic
quantum solitons of charge 2e. The model interprets the CDW threshold electric field as a Coulomb blockade
threshold for soliton pair creation, often much smaller than the classical depinning field but with the same
impurity dependence (e.g., ~n? for weak pinning). This picture draws upon the theory of time-correlated
single-electron tunneling to interpret CDW dynamics above threshold. Similar to Feynman’s derivation of the
Josephson current-phase relation for a superconducting tunnel junction, the picture treats the Schrodinger equation
as an emergent classical equation to describe the time-evolution of Josephson-coupled order parameters related
to soliton dislocation droplets. Vector or time-varying scalar potentials can affect the order parameter phases to
enable magnetic quantum interference in CDW rings or lead to interesting behavior in response to oscillatory
electric fields. The ability to vary both magnitudes and phases is an aspect important to future applications in

quantum computing.
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I. INTRODUCTION

Recent developments necessitate a transformation in our
understanding of charge density wave (CDW) transport to one
based on quantum principles.! The CDW is a correlated elec-
tron (or electron-phonon) system that, like a superconductor,
can transport electrons through a quasi-one-dimensional or
layered crystal en masse.>> It is the only known such system
capable, in the linear chain compound NbSs, of collectively
carrying electric current above 37 °C, the temperature of
the human body.* Moreover, a significant body of evidence
highlights the importance of CDW,>¢ stripe,” and other
charge- and/or spin-ordered phases in high-7,. and other
unconventional superconductors as carrier concentration is
varied, e.g., by doping. Some experiments'® suggest possible
interfacial superconductivity or a related phase transition near
the boundary between ion-implanted and unimplanted regions
of a CDW in NbSe;.

CDW electron wave functions are delocalized over long
distances, and the charge modulation results from quantum
interference between right- and left-moving electron states
separated by the nesting wave vector 2k . The CDW electron
condensate, coupled to the 2k phonon condensate, can thus
be viewed as a sticky quantum fluid (or deformable quantum
solid with dislocations'') within which microscopic entities
can tunnel coherently in a Josephson-like manner, flowing
through a barrier like water dripping from a faucet. The jerky
current flow in this collective version of time-correlated single-
electron tunneling'>'3 results from the Coulomb blockade
effect created by charged CDW phase kinks. If interchain
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interactions in a linear chain compound are not too strong, then
condensed electrons or quantum solitons'# in a CDW may be
no more impeded from quantum tunneling through a miniscule
barrier or pinning gap'>'6 than the photons from a laser pointer
would be impeded by their large numbers from evanescently
decaying through a thin metal film. Here we stress that
coherent Josephson-like tunneling of microscopic entities
within a condensate is quite different from macroscopic
quantum tunneling, despite the misleading titles of some early
papers.!718

The ability to interpret some CDW transport phenomena
classically>® does not imply a need to reject underlying
quantum mechanisms, given the fact that electrons behave
quantum mechanically. For example, a classical sliding elec-
tron theory could have been proposed in the 1890s for electrons
flowing through a wire, since Ohm’s law is consistent with
a linear velocity-force relation. Nevertheless if physicists
had clung to such a hypothesis, declaring electron transport
a “solved problem,” any further progress in understanding
the behavior of electrons in solids would have halted in its
tracks. Coherent Josephson tunneling of electron pairs is
another example,'” in which the quantum-mechanical phase
difference across the junction is treated as a classical variable.
Feynman (Vol. III, Ch. 21 of Ref. 20) provides an elegant
derivation of the Josephson current-phase relation by treating
the time-dependent Schrodinger equation itself as a “classical”
equation for the coupled superconducting order parameters.

Recent evidence supporting quantum behavior of CDWs
includes Aharonov-Bohm (A-B) quantum interference effects
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in TaS3 rings up to 79 K, showing oscillations with a dominant
period of h/2e in CDW conductance vs magnetic flux.?!
Similar oscillations have been reproduced, as reported in
2012,2? for at least five TaS3 rings with circumferences of
up to 85 um. This size is nearly two orders of magnitude
larger than that of typical normal metal rings exhibiting the
A-B effect, usually below 1 K.?> The magnetoconductance
oscillations are only observed in the CDW, not normal
electron, magnetoconductance above the threshold electric
field for CDW transport, and the amplitude of the oscillations
scales with CDW current. The ring experiments show that,
at least for these materials, the CDW condensate exhibits
quantum phase coherence over several tens of microns. Such
extraordinary behavior, which manifests Planck’s constant at
the macroscopic scale, underscores the need for a fundamental
paradigm shift in which the laws of quantum physics play a
crucial role in describing CDW electron transport.

One ring was reported? to exhibit telegraph-like temporal
switching between high and low CDW current states, the
high current state showing substantially larger amplitude
A-B oscillations than the low current state. This telegraph-
like near destruction and reappearance of A-B quantum
interference in the CDW ring indicates quasiperiodic partial
loss of quantum coherence, suggesting two types of transport
involving either probabilities or probability amplitudes, the
former lacking vs the latter including quantum coherence.
Alternatively, the behavior may suggest a phase slip process>
or perhaps even some form of macroscopically observable
wave-function collapse. A reversal in phase of width-peak
product vs flux [Fig. 4(d) of Ref. 22] for the two current
states shows similarity to switching effects reported in A-B
interferometers with embedded Coulomb-blockade quantum
dots.”* Regardless of which interpretation ultimately emerges,
a deeper understanding of the observed behavior based on the
laws of quantum physics could ultimately prove important to
condensed matter physics and possibly to the foundations of
quantum physics.

Given that the CDW order parameter depicts an electron-
hole condensate rather than an electron pair condensate as in
a superconductor, an important question is whether and, if so,
why the predominant period ought to be % /2e, also reported in
previous A-B experiments on NbSe3 with columnar defects.?
An interpretation in Sec. IV suggests that nucleated quantum
solitons, of charge £2e per chain for a fully condensed system,
quantum-mechanically interfere with themselves around the
two branches of the ring. It is stressed, however, that a more
realistic model should incorporate disorder to be consistent
with the observed ~10% modulation amplitude and somewhat
disordered behavior in the magnetoconductance oscillations.
Moreover, the original Aharonov-Bohm paper?® proposed
quantum interference due to both a magnetic vector potential
and a time-varying scalar potential as the charged particle tra-
verses the two branches of a ring. The latter effect, sometimes
called the scalar A-B effect, can combine with the magnetic
A-B effect to exhibit quantum interference that depends on
both voltage and magnetic flux.””?® CDWs are important in
this regard since, unlike superconducting or normal metal
rings with ballistic transport, A-B interference occurs with
significant voltage drop (up to 300 mV reported®”) between
contacts, showing significant variation in peak amplitudes
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vs voltage. Some experiments, discussed in Sec. IV, involve
the application of time-varying voltages that can couple to
quantum-mechanical phase in a fashion similar to the scalar
A-B effect.

Any viable quantum picture must also explain the threshold
electric field for CDW transport, as well as narrow-band
noise, coherent voltage oscillations, etc.2? NbSes and related
materials have threshold fields that scale with impurity concen-
tration n; either as n? (weak pinning) or n; (strong pinning),>
depending on sample, consistent with the classical Fukuyama-
Lee-Rice (FLR) model**-° of CDW pinning. Early proposals
for tunneling of CDW electrons'> or solitons®"*? lacked
compelling interpretations for the threshold field and other
phenomena, although Bardeen proposed phenomenological, '®
sometimes semiclassical®® interpretations for the threshold
field and narrow-band noise. However, a key paper on the quan-
tum picture emerged in 1985,> pointing out that nucleated
solitons and antisolitons of charge ¢ generate an internal field
E* « g /€, whose electrostatic energy %e E*? prevents soliton
tunneling for applied fields less than a threshold Er = E*/2
without violating energy conservation. Critically, although
this Coulomb blockade threshold can be much smaller than
the classical depinning field, it exhibits the same scaling
with impurity concentration. This is because the CDW’s
polarizability and dielectric response € vary inversely with
pinning strength, as further discussed in Sec. II, which also
discusses the possible existence of both Coulomb blockade
and classical depinning fields in some materials.

Several experiments indicate that in NbSes; and orthorhom-
bic TaS;, the CDW displaces very little below threshold,
suggesting that in these materials, the measured threshold
is the Coulomb blockade threshold rather than the classical
depinning field. This is evident in NMR experiments®> show-
ing a 2° CDW phase displacement in NbSes, as compared
to the classically predicted 90° displacement just below
threshold. Further evidence is provided by dielectric and other
ac response (mixing, etc.; Refs. 36—38) measurements, which
exhibit a flat bias dependence as compared to the classically
predicted divergent dielectric response shown in Fig. 1(a).
These experiments reveal that even just below threshold, each
portion of the CDW sits near the bottom of a pinning potential
well. This suggests that at least for these samples, the measured
threshold is substantially smaller than the classical depinning
field and likely a Coulomb blockade threshold for charge
soliton nucleation.!-3+3%:40

Bardeen’s model of coherent Zener tunneling of CDW
electrons through a tiny pinning gap'>'® fixed at +kp,
unlike the Peierls gaps which can displace in momentum
space, was motivated by the shape of the I-V characteristic.
This has been found, starting with the early experiments
on NbSe;,*’ to progress from a rounded Zener tunneling-
like characteristic*® [Fig. 1(b)] to a nearly piecewise linear
form in crystals with fewer impurities. This behavior is
consistent with soliton pair creation with a Coulomb blockade
threshold.'3*4% Soliton pair creation is analogous to Landau-
Zener tunneling, recently applied to Fermi superfluid gases,*®
Schwinger pair production,* or creation of superconducting
vortex-antivortex pairs.’! The existing classical models fail
to explain the shape of the CDW [-V curves of NbSe; and
orthorhombic TaS; in a straightforward fashion.5 Moreover,
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FIG. 1. (Color online) (a) Bias-dependent dielectric response,
showing classical predictions vs experiment. Classical models include
classical sine-Gordon (s-G); random pinning (RP; Ref. 41); renormal-
ization group (NM; 42); | f|~2; and incommensurate harmonic chain
(CF; Ref. 43), | £17%34, models, where f = 1 — E/E7. Some NbSes
measurements were carried out in our laboratory using a bridge circuit
(NbSe;: N1, 45 K, 1 kHz; N2, 120 K, 3 kHz; N3, 45 K, 100 kHz),
while additional measurements were carried out by ZG (Ref. 44; N4,
NbSes, 42 K, 3.2 MHz) and WMG (Ref. 45; TaS;: T1, 130K, 5 MHz;
T2, 100 K, 1 kHz; T3, 110 K, 1 kHz; T4, 100 K, 1 kHz; TS5, 100 K,
10 kHz). (b) Experimental CDW conductance vs electric field for
NbSe; as compared to the Zener tunneling curve exp[—E/ E] (solid
line) pointed out by Bardeen (Ref. 46). Adapted with permission from
Ref. 46.

there is no compelling classical sliding interpretation for
the quantum interference effects seen in CDW rings.?!??
Any viable CDW transport theory of this extraordinary
phenomenon must contain Planck’s constant, even at the
macroscopic level. However, this does not rule out the
possibility of using the Schrodinger equation itself as an
emergent “classical” equation, as discussed by Feynman in the
context of superconductivity (Ref. 20, Vol. III, Ch. 21). This
approach, for CDWs,! of employing the Schrédinger equation
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to describe classically robust complex order parameters related
to soliton dislocation droplets will be discussed in Sec. III. The
following section discusses a modified sine-Gordon model, the
simplest possible model of a pinned CDW.

II. PINNED CHARGE DENSITY WAVE AS MASSIVE
SCHWINGER MODEL

A CDW has a modulated charge p(x,f) = po(x,t) +
p1 cos[2krx — ¢(x,t)] along the axis of a linear chain com-
pound. Here pg(x,t) contains background charge and any
excess or deficiency of charge «d¢/dx. The entire CDW
condensate and Peierls gaps, initially at +k g, can be displaced
in momentum space, resulting in a current I 4, o d¢/dt.>>>*
Although a real CDW is pinned by impurities, in some
materials it will still transport a current provided the applied
field E exceeds a threshold E7. Displacing the CDW by one
wavelength (advancing ¢ by 2m) returns the system to its
original state (except for charge displaced between contacts) so
the pinning energy is periodic in ¢: u,[1 — cos ¢]. (A quantum
version® of the FLR model,?>* including disorder, would
be more accurate but observed voltage oscillations suggest
the simple sine-Gordon picture captures much of the physics
for high quality crystals.) This simplified picture, resulting
from impurities, is similar to that which would result from a
commensurability index M = 1.

Unlike a superconductor, the CDW charge modulation,
whose order parameter corresponds to electron-hole pairing
and carries no net charge, does not couple directly to a uniform
electric field or vector potential. However, gradients or kinks
in CDW phase carry charges that (1) couple to an externally
applied field and (2) generate their own electric fields that lead
to electrostatic interactions. These electrostatic interactions
between kinks, often neglected in previous theories, are
important whether treating the system classically or quantum
mechanically. If the CDW phase is initially fixed at zero
at the contacts or at Foo, advancing the phase by ¢ in
the middle creates charged kinks that produce an internal
field: E4 = (E*/2m)¢, where E* =2e/(€Aq) is the field
created by a 27 phase soliton-antisoliton pair and Ay, is the
cross-sectional area per chain.

Figure 2 shows the combined effects of the applied field
E and the field E* created by a pair of soliton domain
walls. The difference in -electrostatic energy densities,
1€(E £ E*)* — JeE?, with and without the pair is positive
when E is less than the Coulomb blockade threshold field,
Er = %E* = ench/€. Here ngy, = 1/Aq, is the number of
parallel chains per unit cross-sectional area. The empirically
observed relation € E; ~ eng, pointed out by Griiner’®>’ thus
emerges naturally from this picture. The simplest classical
model predicts’®’ the classical depinning field E to scale
as €Ey =4meny,, where E & ”12 for weak pinning (n;
being the impurity concentration). This yields E; = E /4w,
which has the same impurity dependence as E for a fixed
temperature. Screening by normal carriers further enhances €
and reduces the ratio: E7/E.. For fixed n;, the temperature
dependence of carrier concentration and € leads (inversely)
to the strong temperature dependence of E7 seen in some
materials. In addition, en¢, is multiplied by the condensate
fraction p, in a more precise description.
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FIG. 2. (Color online) (a) CDW phase vs position, showing
internal field E* produced by a soliton-antisoliton domain wall pair.
(b) Model of density wave capacitance showing nucleated domain
walls, more realistically depicted as soliton dislocation droplets in
Sec. III. The applied field E partially or completely cancels the
internal field E*.

Normal carrier screening may also allow the modified sine-
Gordon (massive Schwinger) model to work in some materials
despite the fact that, per FLR,>** a real CDW pinned by
impurities is expected to be deformed even in its ground state.
A static phase kink in the ground state, like a nucleated soliton,
carries charge, but the normal carriers have plenty of time
to completely screen it out. However, any “bubble” of lower
energy nucleated by an applied field, where the phase locally
advances by 27 to a lower pinning potential well, will be
bounded by regions that depart from the ground state in such a
way that nucleated soliton-like charges will become exposed as
the normal electrons take a finite time to respond. Substantial
screening even for such transient events, however, will likely
still be enough to greatly reduce £* and the Coulomb blockade
threshold Er.

Following the quantum field theory literature, the applied
field E relates to the “vacuum angle” as 0 = 2w (E/E*). For
phase displacements ¢ between contacts, E partially cancels
E, yielding an electrostatic energy u z (6 — ¢)>.! The potential
energy per chain can then be written as !4

Ulgl = /dx{2up[1 — cos p(0)] + up(® — ¢x)’}. (1)

This is a variant of the bosonic massive Schwinger model,
studied as a model of quark confinement**-° and first adapted
to explain the CDW quantum threshold field by Krive and
Rozhavsky.?* The usual linear coupling ox — 8¢ is contained
in the quadratic term, as are electrostatic contributions ocp? and
62. When 6 < 7, the system is stable classically and quantum
mechanically (Fig. 3). When 6 > m,the ¢ ~ 27 state becomes
the lowest energy state.
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0‘ 27% ¢

FIG. 3. (Color online) Left: Potential energy vs ¢ for two values
of 0, with many degrees of freedom illustrated as blue dots. Tunneling
can only occur if 6§ > w(E > Er), when “bubbles” of the phases
¢ for the parallel CDW chains can nucleate by tunneling into the
adjacent well. Right: Potential energy parabolas u vs 6, in which the
phases ¢, & ¢ are sitting in various potential minima, ¢ ~ 2mwn. The
first crossover between parabolic branches occurs at 0 = 7.

Thus, § = & demarcates the boundary58 above which
the system can decay into the lower well. Several quasi-
1D systems appear to be in the sweet spot of interchain
interactions—strong enough to avoid being swamped by
thermally excited soliton dislocations but not strong enough
to remain forever trapped in the higher well. Some NbSes
crystals suddenly switch into a higher CDW current-carrying
state as the field is increased® and show a hysteretic I-V curve.
A natural interpretation is that, as 6 is increased above 7,
the system is temporarily trapped in the higher metastable
well (Fig. 3) before decaying rapidly into the lower well.
Other materials show more than one threshold field.®"%> The
picture here provides a simple interpretation: that the lower
threshold field is the Coulomb blockade threshold for soliton
nucleation'**#° while the upper threshold is the classical
depinning field.

Figure 4(a) shows blue bronze data® that, especially at
48 K, exhibit two distinct threshold fields above which the
conductance increases. The upper threshold field, presumed
to be the classical depinning field E, shows the most
dramatic increase in CDW current. The lower threshold field
is interpreted as the Coulomb blockade field E7, for soliton
nucleation. Figure 4(b) shows plots of u vs ¢, illustrating the
soliton nucleation (f > m) and classical depinning (6 > 6.)
instabilities that arise as € is increased. Figure 4(c) plots u
vs ¢ when 6 = for several values of ug/u,. Figure 4(d)
shows the resulting phase diagram,! which plots 6/7 =
€E/eEr vs ug/u, and allows for variations in € relative
to its threshold value €;. The diagram illustrates the pinned
state (0 < w,ug/u, < 1), a region in which soliton nucle-
ation occurs (r < 6 < 6,), and a classical depinning region
@ > 6,).

The flat dielectric and other ac responses®®3® (Fig. 1) and
small phase displacements® below threshold in NbSe; and
TaS; suggest ug/u, < 1 (solid red arrow in Fig. 4 phase
diagram) in these samples. The computed phase displacement
(¢) below threshold*® compares favorably to the reported 2°
value® for NbSe; provided u g /u, ~ 0.015.°° Usingug /u, =
2w Er/Eg, the 48-K blue bronze data®” in Fig. 4 suggest
a similar value of about 0.01. The increase in Ezg(cx1/€)
with decreasing temperature is readily interpreted as due to
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FIG. 4. (Color online) (a) Blue bronze I-V curves (Ref. 62) in
which two threshold fields are apparent. (b) Potential energy vs ¢,
for increasing values of 6 up to the classical depinning instability 6,.
(c) u vs ¢ for several ratios ug/u, when 6 = . (d) Phase diagram
(Ref. 1) showing pinned, soliton nucleation, and classically depinned
states. Red arrow (g /u, < 1) crosses from the pinned state into the
soliton nucleation region. The dotted green arrow depicts a system
exhibiting both thresholds. Since ug o< 1/¢ the path curves to the
left (right) if € increases (decreases) with field. Dashed black arrows:
Classical depinning dominates, as suggested by the 4.2-K blue bronze
data.

areduction in € as the normal carrier concentration decreases.
At 4 K, the normal carriers are largely frozen out, resulting
in a relatively low € and sufficiently high ug /u, for classical
depinning to dominate (dashed black arrows in Fig. 4). The
following sections discuss CDW dynamics above threshold
and the issue of quantum coherence, as revealed by CDW
ring?"?? and other experiments.

III. TIME-CORRELATED SOLITON TUNNELING MODEL

A basic premise of this paper is that much of the dynamical
behavior of CDWs seen in the highest quality crystals of
NbSes; and related materials can be understood by extend-
ing the simple picture discussed above. These phenomena
include narrow-band noise with a fundamental frequency that
scales with CDW current and a rich spectrum of harmonics,
and complete mode-locking with an external ac source at
high drift frequencies (even when much higher than the
dielectric relaxation frequency, in contradiction with classical
predictions®?). The key to successfully applying such a simple
model is to accept quantum principles, one of which is Gell-
Mann’s totalitarian principle:** “Everything not forbidden is
compulsory.” Applied to CDWs the implication is: If CDW
electrons can tunnel then they must tunnel. Experiments to
date suggest that CDW condensates behave as sticky quantum
fluids or deformable quantum solids with dislocations'' rather
than massive classical deformable objects.

Hypotheses addressed in this paper include the following:
(1) low-energy phase soliton dislocations of charge +2e (or,
in our view less likely, amplitude solitons of charge 4-¢)%~%
nucleate above a Coulomb blockade threshold and form
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FIG. 5. (Color online) (a) COMSOL simulation of electrostatic
potential (red = positive, blue = negative) and field lines for an
electric dipole consisting of dislocations represented as + and —
rectangular charge distributions. (b) COMSOL simulation for a similar
pair with anisotropic dielectric constants, which resembles a parallel
plate capacitor in rescaled coordinates. (c) Aggregation of many
dislocations into fluidic domain walls or droplets of soliton liquids,
between which the bubble of lower energy or “true vacuum” grows
as they are driven toward the contacts by the externally applied field.

droplets resembling fluidic domain walls (soliton liquids),
where interchain interactions or Josephson coupling between
chains’® prevent rampant thermal excitations;>? (2) in the high-
est quality crystals the nucleation process is best described as
coherent Josephson-like tunneling using a modified tunneling
matrix element' that reflects the Zener probability; (3) in these
same materials, the time evolution of complex order parame-
ters, resembling probability amplitudes, can be described using
the Schrédinger equation as an emergent classical equation; >
and (4) both static (e.g., in ring experiments with magnetic
flux) and dynamic (ac response) vector and scalar potentials
can couple to and/or modulate the phases of the complex order
parameters.

CDWs are often highly anisotropic, where the dielectric
response, €., along the chain direction is much greater than
those, €,,, and €. in the perpendicular directions. The degree
of anisotropy affects the internal field E* generated by a dislo-
cation pair [Figs. 5(a), 5(b)] and, thus, the Coulomb blockade
threshold field: Er = E*/2. One method of modeling this
behavior (using COMSOL’!) is to rescale the variables along
the x, y, and z directions by dividing by the relative dielectric
constants: x’' = x/€,y, y' = y/€yy, and 7’ = z/€,,. This is
seen starting with the Maxwell equation: V - D = p, where
(using the summation convention) D; = €g¢;; E;. Here ¢;; is
the relative dielectric tensor, which is diagonal with elements
€xx, €yy, and €., if the axes i,j = x,y, and z are along the
principal crystallographic directions. Figure 5(b) illustrates the
rescaled COMSOL simulations in 2D, where the dislocation pair
in rescaled coordinates looks like a parallel plate capacitor that
produces an internal field E* = 2e¢/2€ A¢y, = ench/€, where
€ = €,,€p. This is within a factor of 1/2 of the ideal value,
2eneh /€, for a fully condensed CDW. Figure 5(c) shows the
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FIG. 6. (Color online) (a) Potential energy vs 6 for ¢ ~ 2mn.
(b)uvspwhent =27 E/E* > w(E > Er)asthe phases ¢ (x) tun-
nel coherently into the next well via the tunneling matrix element 7'.
(c) Time-correlated soliton tunneling model, consisting of a normal
shunt resistance R in parallel with the CDW, represented as a
capacitive Coulomb blockade tunnel junction.

aggregation of many 2 dislocations of charge 2e into fluidic
soliton droplets that move toward the contacts and allow the
bubble of lower energy between them (or “true vacuum,” using
the quantum field theory terminology) to grow. Other factors
that can affect E* and E7 include gate electrodes in CDW
field- and current-effect transistors,’>’” as well as screening
by normal carriers.

The time-correlated soliton tunneling model,! which inter-
prets CDW dynamics above threshold, borrows concepts from
the theory of time-correlated single-electron tunneling.'>!?
The electrostatic energy parabolas of Fig. 3 [also Fig. 6(a)]
are similar to the charging energies of a small-capacitance
tunnel junction. According to this model, coherent voltage
oscillations, narrow-band noise, and ac-dc interference effects
come from these piecewise parabolic charging energy curves,
and not from the shape of the periodic pinning potential. The
large normal carrier concentration in NbSes due to incomplete
Peierls gap formation leads to significant screening by normal
carriers, which enhances the spatial uniformity of the CDW’s
dielectric response. This explains why highly coherent voltage
oscillations, narrow-band noise peaks, and mode locking are
often observed®’8%2 in NbSe; crystals, even though the
pinning comes from randomly distributed impurities.?®-30-
Moreover, the piecewise parabolic curves also explain why the
narrow-band noise spectra show such arich array of harmonics.

The simplest model' treats the CDW as a capacitive
Coulomb blockade tunnel junction in parallel with a shunt
resistor R [Fig. 6(c)] due to normal uncondensed electrons.
To model dynamics, the “vacuum angle” 6 is related to
displacement charge Q between contacts as 6 = 2w Q/Qy,
where Qg =2eN and N is the number of parallel CDW
chains. Advancing the phases of all chains by 27 n creates
multiple pairs of fluidic soliton domain walls that quickly
reach the contacts. Similar to a capacitive tunnel junction
the voltage is V =(Q — Q0)/2C = (Qy/2n C)[6 — 27n],
where C = € A/l. More generally, V = (Qo/27C)[0 — (¢)],
if (¢) # 2an. The total current is I = I, + I.4,, Where
I, = (Qy/2m RC)[0 — (¢)] is the normal current and I.4,, =
dQ/dt = (Qo/2m)d6/dt is the CDW current. [The latter
includes capacitive displacement current but is identical
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to (Qo/2m)d(¢)/dt when time-averaged.] Defining w =
2r1/Qp and T = RC yields the following equation for the
time evolution of 6:
do
dt

Since (¢) advances in a jerky fashion, Eq. (2) contains the
elements needed to explain the observed voltage oscillations,
narrow-band noise, etc. Within a unified framework it allows
for at least three mechanisms by which (¢) can evolve: (a)
coherent Josephson-like tunneling via a matrix element 7', (b)
incoherent tunneling or thermal activation of solitons, modeled
using probabilities instead of probability amplitudes, and (c)
classical depinning over the barrier, as in Fig. 4(b). Detailed
studies of mechanisms (b) and (c) within this framework
are potential topics of future investigation. Equation (2) is
important even in a classical picture, because it incorporates
electrostatic effects and dissipative effects from the normal
shunt resistance. Extensions beyond the single-domain model
(e.g., using a coarse-grained network of CDW domains)
would enable incorporation of random pinning and CDW
deformability into this framework.

Feynman®® (Vol. III, Ch. 21) provides a derivation of
coherent Josephson tunneling, where the Schrodinger equation
is viewed as a “classical” equation to treat wave-function-like
order parameters coupled by a tunneling matrix element. We
have developed' a similar method for the CDW to compute
(¢(r)) via the coherent tunneling mechanism (a). It employs
the Schrodinger equation,

90,1
ot

to compute the original and emerging probability amplitudes
Yo(t) and ¢ (¢) for the system to be on branches 0 and 1 in
Fig. 6(a) (more generally v; and v; 1) when coupled by the
matrix element 7. The model treats the amplitudes as complex
order parameters:

1
w— ;[49 — ()] )

ih = Uy, 10,1 + T, 3)

Yo,1 = 4/Po,1€xplido1], “4)
where po.1 = No,1/N is the fraction of parallel chains on the

respective branch. Advancing the CDW phases ¢ (x) of many
chains by 27 (from one branch to the next in Fig. 6) creates
lower energy bubbles bounded by droplets of microscopic 2
solitons and antisolitons (somewhat delocalized as quantum
solitons'#) which form the new fluidic macrostate ;.

The microscopic quantum soliton energy per electron pair,
A,, can be estimated from the measured Zener field, £y ~
(Ai /hvpe), typically ~10 V/m. Using a phason velocity, vy ~
3 x 10° m/s, yields A, ~ 5 peV, an extremely small value.
However, the coupled macrostates have substantial condensa-
tion energies due to the many (> 10°) interacting parallel CDW
chains.**>? The condensed solitons in the emerging macrostate
are thus effectively trapped in soliton liquids, preventing
thermal excitations except across the much larger Peierls
gap. An analogy is provided by Josephson coupling between
superimposed macrostates in 2-band superconductors,®* where
thermal excitations only occur across either BCS energy gap
regardless of the energy difference between macrostates. One
can also view bubbles of the CDW chains escaping out
of the metastable well [Fig. 6(b)] as being analogous to
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superfluid helium atoms quantum mechanically creeping out
of a container. If the container rim is, for example, d ~1 cm
above the liquid surface, then the gravitational barrier per
atom is mgd ~ 4 neV, which is small compared to k7 even
at 1 mK. Nevertheless, the helium atoms remain trapped in
the superfluid, prevented by the condensation energy from
thermally hopping out of the container even though they
quantum mechanically creep over the rim in a collective
fashion.

The driving force F is the energy difference per unit length
after one branch crosses another in Fig. 6(a).! Using the
analogy to pair production*’ and following Bardeen,?*%> the
tunneling matrix element 7 is estimated to be

T(F)= —4Fxexp[—Fy/F], 5)

where Fy ~ Aé /vy and A, defined in Ref. 1, is comparable to

the soliton width. As discussed above, vy = (m/MF)l/va is
the phason velocity, smaller than the Fermi velocity vy due to
the large Frohlich mass ratio My /m.*

Figure 7(a) compares the simulations' with measured
voltage oscillations’® of NbSe; for rectangular current pulses.
Except for the increasing pulse amplitudes, the same param-
eters are used for the entire family of theoretical plots (solid
lines), which show unprecedented quantitative agreement with
experiment. The model correctly captures the progression
of nonsinusoidal shapes, ranging from rounded backward
sawtooth behavior for the 9.90-uA current pulse to more
symmetrical oscillations for higher pulse amplitudes. The inset
to Fig. 7(a) shows the CDW current (1.4, = I — I,) vs time

a

( )20 .....

S 1)

E

Q 1.0}

S o5

0_0»....‘; L mmegis
0o 1 2 (3 )
Time (us
(d)

FIG. 7. (Color online) (a) Theoretical (Ref. 1; solid lines) vs
experimental (Ref. 78; dotted lines) voltage oscillations (bottom to
top, offset by 0, 0.25, 0.5, and 0.75 mV) of an NbSe; crystal at
52 K for current pulse amplitudes: 9.90 nA (black), 10.89 ©A (red),
11.49 uA (green), and 11.88 wA (blue). Inset: CDW current, I — I,
vs time for the 10.89 nA pulse. (b) Simulated CDW current vs field
for several gy = Fy/2eE*. Dotted lines: Bardeen’s modified Zener
function (Ref. 16). (c) Simulated R = dV/dI vs current for several
qo, where R, is the normal resistance below threshold. (d) Theoretical
(solid lines) vs experimental (dotted lines) dV/dI vs current for NbSe;
(see Ref. 1 for parameters).

PHYSICAL REVIEW B 87, 115127 (2013)

corresponding to the 10.89-u A pulse. This plot (1) shows that
a large fraction of the CDW current is oscillatory, and (2)
captures the “flowing,” rather than abrupt tunneling, aspect of
quantum transport. The /-V and differential resistance curves
are computed' by averaging over several cycles, with results
shown in Figs. 7(b)-7(d). A range of behaviors are captured,
ranging from rounded Zener-like behavior to more linear I-V
curves and dV/dI curves with negative dips or wings, as seen in
NbSes crystals with fewer impurities.®> The theoretical plots
show outstanding quantitative agreement with experiment in
Fig. 7(d).

IV. COUPLING OF ORDER PARAMETER PHASES
TO VECTOR AND SCALAR POTENTIALS

The order parameter phases §; of the branches in Eq. (4)
are not identical to the CDW phase ¢. The latter is the phase
difference between CDW electron states separated by the
nesting wave vector Q = 2k (or electron and hole states if the
CDW ground state is written in terms of a filled Fermi sea). By
contrast, § = 8,41 — §; is likely related to the relative phases
of nucleated soliton and antisoliton droplet order parameters.
Since these carry charge, they couple directly to either a
vector or scalar potential. The discussion here treats both the
magnitudes and phases of the complex order parameters of
Eq. (4), ¥; = \/pj explié;], as being classically robust for a
system with enough parallel CDW chains. The simulations
in Sec. III, of dc transport and rectangular current pulses, fix
8 at w/2 in Eq. (3),' which yields the maximum current in
the Josephson current-phase relation. This section discusses
coupling of static (magnetic field) and dynamic (ac electric
field) vector and scalar potentials to the phases §; in order to
(a) interpret the 7 /2e quantum interference effects in CDW
rings;*"?? (b) better understand mixing and other ac response
experiments,*¢—38 previously interpreted using photon-assisted
tunneling (PAT) theory;%® and (c) interpret large-amplitude
ac experiments presented here. The ability to vary both
magnitudes and phases of the macrostate amplitudes could
eventually set the stage for development of future quantum
computing devices, while better understanding of the ring
experiments could enable new types of magnetic sensors.

In the CDW ring experiments”!*? a static magnetic vector
potential couples to the phases §; and leads to quantum inter-
ference between the amplitudes traversing the two branches
of the ring (nucleated quantum solitons interfering with
themselves). This can be visualized in terms of an extra
phase shift x affecting the tunneling matrix elements of a
two-domain model:

T, — T explEix/2], (6)

one domain for each path, a or b, along the ring. Here,

X = %fA.drzzn[cb/cbo], @)

where ®yp=h/q and g is either e or 2e. Summing
the amplitudes then yields a modulation proportional to
|2T cos[wr ®/Dy]|. This simple two-domain picture gives the
period /i /2e for the A-B oscillations provided we take g = 2e.
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However, it is an oversimplification compared to the reported
~10% modulation and rather disordered behavior in the A-B
oscillations in the actual CDW rings,?!">? suggesting the need
to include many CDW domains with some degree of disorder.
Moreover, ac response experiments, discussed below, suggest a
rather short tunneling distance. This further indicates the need
to incorporate multiple domains,®” which can be modeled as a
network of many tunnel junctions in series.

The phases §;(¢) of the macrostate order parameters in Eq.
(4) can be modulated by an oscillatory field that temporally
evolves the scalar and/or vector potentials. The theory of
photon-assisted tunneling (PAT)% enables predictions of
tunnel junction response to combined dc and ac signals
based on its dc current-voltage (I-V) characteristic. Oscillatory
voltages modulate the relative energies and phases of wave
functions on opposite sides of the tunnel junction. This
generates various combinations of Bessel functions in the
predicted responses, which reduce to finite differences of
the I-V curves in the small-signal limit. A modification of
PAT theory was previously adapted to interpret mixing and
other CDW ac response experiments*®=* on TaS; and NbSe;.
These experiments show good agreement with PAT theory for
small-amplitude signals.’*-*® The “wave functions” y/; in the
picture discussed here are viewed as classically robust complex
order parameters so, in this regard, the term “photon-assisted
tunneling” (originally developed for single-particle tunneling)
may be a misnomer. However, some aspects of PAT theory

may still apply, as suggested by previous experiments>®3® and
those discussed below.
Mixing experiments apply a signal of the form
V() = Vi. + Vicoswit + V, cos wot (8)

and measure an induced response (e.g., with a lock-in am-
plifier): 81(t) = 81y cos[wot + ¢]. The difference frequency is
wy = |wy — wy] for direct mixing and wy = |w; — 2w;| for
harmonic mixing. At low frequencies and amplitudes, the
harmonic mixing response vs bias voltage V. is proportional
to the third derivative of the dc I-V curve:

1, Tl
8lp(Vae) = gvl 12) V3 . 9
V=V

At finite frequencies, the third derivative gets replaced by
a third finite difference®® with a step size proportional to
frequency but has a similar, albeit broadened, bias dependence.
The harmonic mixing response at zero dc bias voltage becomes
significant for frequencies wg /27 of about 1 MHz and greater,
and is found to be bias-independent below threshold.®
Rather different behavior emerges when the dc bias voltage
Ve in Eq. (8) is replaced by a large amplitude ac “bias” voltage,

Vie = Ve cOs wt, (10)

and the harmonic mixing response 6/ is plotted vs V,.. When
w is small, since harmonic mixing is an even function of dc
bias, 6 Io(V,.) is just the time-averaged response vs bias voltage
(8 Ip(Vpias(1))), which resembles a washed-out third derivative.
When w/2m reaches about 50 kHz or higher, however, § In( V)
resembles §1y(Vy. — Vr) with an apparent threshold voltage
collapsed to the origin.*® The collapse of the I-V curve is likely
caused by capacitive coupling due to the high CDW dielectric
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response, which suppresses the Coulomb blockade threshold
at sufficiently high frequencies.

The most interesting behavior is expected to occur when
w is at megahertz frequencies and higher. In the absence of
coupling 7', a macrostate of modulated effective energy Ej |
corresponding to branch 0 or 1 in Fig. 6 would evolve as

Yo.1(t) = ¥0,1(0) exp [ - (i/fl)/0 dt’Eo,1(t/)] an

This modulation of energy levels by a time-varying voltage
(scalar potential) is related to the scalar A-B effect,’®?
where a time-varying scalar potential couples to the quantum-
mechanical phase. (Future experiments could potentially study
the combined effects of vector and dc and/or oscillatory scalar
potentials on CDW rings.) Taking the charge to be 2e, the
voltage V,(¢) = V,coswt across a small domain of length
£ modulates the energy E(f) of state 1 relative to Ey as
AE(t) = 2eV, cos wt. Macrostate r; then evolves relative to

Yo as
Y1(t) = Y1 (0) exp[—iz sin wt]

=v1(0) Y Ju(2)expl—inot], (12)

n=—0oQ

where J,(z) are Bessel functions and z = 2eV,/hw. This
effectively splits up the ¥; amplitude into many,

v, = Ja(@1, 13)

of virtual energy E, = nhw. Although these effective energies
are extremely small per electron (or per electron pair),
remember that the term inside the exponential on the right-
hand side of Eq. (11) is really a measure of the rate at
which 8y | (¢) evolves with time in a classically robust fashion.
By analogy, the ac Josephson effect is sometimes regarded
as either due to the emission or absorption of photons of
(extremely small) energy Ziw = 2eV or to the classical time
evolution of the phase difference &, 95/0t = 2eV /h, across
the junction.'®?* “Turning on” the tunneling matrix element
T enables it to couple states vy and i, of equal energy in
Eqg. (13), any negative energy difference being balanced by the
soliton pair energy.

Equation (13) thus captures essential features of “photon-
assisted tunneling,” where an initially occupied state can tunnel
into an unoccupied virtual state of equal effective energy.
Recalling the relation between harmonic mixing and dc bias
voltage [Eq. (9) and finite difference forms®®], following
PAT theory,?%® and noting that J_,(x) = (=1)"J,(x), the
harmonic mixing response vs total voltage amplitude V.
between contacts would then be expected to be given by

2 Vac
810(‘/&0) = -,0 % 810(‘/(10 = 0)

oo
V.
#2302 (22) ol = nao, - 19
n=1

where Vy = V4. — Vr duetothe collapsed effective I-Vcurve®®

at finite frequencies. The amplitudes and frequencies, Vi, V3,
w1, and w,, of the signals inducing the harmonic mixing
response are fixed in these experiments.
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The scaling parameter « in Eq. (14) depends on the distance
L between contacts and an effective scaling length £, which
relates the energy acquired by a particle of charge ¢* in an
electric field E to a quantum of energy hw: e*V, = e*El <
ho. Previously,'® the effective charge was assumed to be a
reduced by the Frohlich mass ratio, e* ~ [m/Mrle ~ 1073,
which yielded values of £ in the range 1.6-22 um.'® Motivated
by the recent CDW A-B ring experiments,?'*> here we take
the effective charge to be e* = 2e¢, which reduces the estimated
values of ¢ into the nanometer range. Further experiments are
needed to determine the extent to which this effective charge
is robust, since some of the Fourier-transformed A-B spectra
in Fig. 2 of Ref. 22 suggest multiple peaks at /e, h/2e, and
perhaps even £ /4e, although the /1 /2e peak appears dominant.
Charge e could result, even for commensurability M = 1, from
adecoupling of spin-up and spin-down CDW subbands in a 27
soliton dislocation or from a 7 amplitude soliton,®>% while
charge 4e, for example, could result either from coupling of
two parallel chains or, at sufficiently high bias voltages, from
nucleation of 47 rather than 27 solitons.

In general, the nature of Zener-like tunneling through a
tilted soliton gap may yield some degree of frequency- and/or
field-dependence of ¢. Using V,. = (L/£)V,, one obtains the
following scaling parameter (in this case taking e* = 2e):

Lnh
o =——:
£ 2e

Due to the properties of Bessel functions, the JOZ(VZlc /aw) term
in Eq. (14) should initially dominate for small amplitudes,
Vac, while the remaining terms may become significant for
larger V.. Defining 6 I,, = §1p(Vy = 0) (usually a maximum),
restricting A, (w) = 2§ lh(naw)/81,, to be real, and keeping
a finite number, N, of terms, the normalized theoretical
harmonic mixing response can be approximated as

N
8y o ( Vae > (( Vae
51 = <E> + § 1 An()J <%> (16)

s)

Figures 8 and 9 show plots of normalized harmonic
mixing responses |861y|/|81,| vs ac bias amplitude V,. for
single crystals of TaS; and NbSes, as compared to Eq. (16).
Figure 8(a) shows measured harmonic mixing responses of a
TaS; crystal (L = 0.1 mm) with a 5 mV threshold voltage at

(@) (b)

1.0 Experiment 1.0+
IsL | TaS, P loi | K, Theory
0 oK ° doMHe o XY — 40MHz
B |0 © 80MHz| |5 |0-8- Y ---- 80MHz
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0.6 064 | % \
0.4 0.4
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FIG. 8. (Color online) (a) Normalized magnitude of harmonic
mixing response (w;/2w = 5 MHz, w,/27 = 14 MHz, wy/27 =
4 MHz) of a 0.1-mm-long TaS; crystal, with a dc threshold Vy =
5 mV, vs ac bias amplitude V,. at three different frequencies w/2m at
180 K. (b) Theoretical plots using Eq. (16) and the parameters shown
in Table 1.
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FIG. 9. (Color online) (a) Normalized magnitude of harmonic
mixing response (w;/2m =1 MHz, w,/2n = 2.8 MHz, wy/2n =
800 kHz) of an NbSej; crystal (L = 5 mm), vs ac bias amplitude V.
at several frequencies w/2m at 120 K. (b) Theoretical plots using
Eq. (16) and the parameters shown in Table II. (¢) and (d) Direct
comparisons between theory and experiment for frequencies w /2w
of 4 MHz and 8§ MHz.

180 K, for three different ac bias frequencies w. Figure 8(b)
shows theoretical plots using Eq. (16) and the parameters in
Table I. For this sample the effective scaling distance ¢,
estimated using Eq. (15) from the parameter «, is found
to be in the range 8—15 nm, or several CDW wavelengths.
The extremely small soliton energy gap per electron pair
enables this distance to be longer than one would normally
encounter in an ordinary tunnel junction. We stress that the
dc threshold effectively disappears at these frequencies,?®-®
making it unlikely that the behavior simply results from
classically modulating the threshold field.

Figure 9 shows measured harmonic mixing responses of
an NbSes crystal (L =5 mm) at 120 K, for several ac bias
frequencies w. Figure 9(a) shows experimental plots, while
Fig. 9(b) shows theoretical plots using Eq. (16) and the
parameters in Table II. Figures 9(c) and 9(d) directly compare
experiment with theory for ac bias frequencies of 4 MHz and
8 MHz. For this sample the effective scaling length ¢, estimated
using Eq. (15) from the scaling parameter «, is found to be
1.5 nm, or slightly greater than one CDW wavelength. Here, the
shorter length ¢ may reflect a reduced effective mean-free path
length for the quantum solitons due the incomplete Peierls gap
and large number of uncondensed normal carriers in NbSes.
It will be interesting, in future studies, to determine whether

TABLE 1. Eq. (16) parameters used for the Fig. 8(b) theoretical
plots.

w/2r (MHz) o (V-s) Ay A, As Ay

40 5.5 x 10712 1.75 0.25 0.42 —1.00
80 42 x 10712 1.80 1.40 0.50 —0.60
160 3.2 x 10712 2.00 0.70 1.57 1.44
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TABLE II. Eq. (16) parameters used for the Fig. 9 theoretical plots.

a=11x10"° (V-s) Ay A; As Ay

4 MHz 0.40 0.65 0.15 0.55
5 MHz 0.45 0.70 —0.30 0.10
6 MHz 0.30 1.00 —1.40 1.90
7 MHz 0.20 1.10 —2.00 3.50
8 MHz 0.20 1.40 —1.65 0.70
10 MHz 0.15 1.90 —1.90 —1.95
15 MHz 0.01 3.00 3.00 1.00

the CDW wavelength represents an approximate lower bound
on£.

The experiments reported here, as well as earlier mixing
experiments at temperatures sometimes exceeding 200 K,36-38
are consistent with the idea that oscillatory electric poten-
tials modulate the phases of classically robust order pa-
rameters resembling macroscopic wave functions. Moreover,
the experimental results are consistent with those of the
CDW ring experiments,?'?> which demonstrate a signifi-
cant degree of CDW quantum coherence. Collectively, the
experiments support the hypothesis that either a vector or
scalar potential couples to order parameter phases of CDW
soliton condensates, and in some cases can lead to quantum
interference.

Further experimental and theoretical studies are warranted
to enable the eventual development of a microscopic descrip-
tion of CDW transport. In particular, studies are needed to
relate the variation of parameters A,, in Tables I and II to the
measured harmonic mixing response vs frequency and bias
voltage. A; will usually be positive when mixing down to low
or moderate frequencies since the harmonic mixing response
is positive at low bias voltages. However, the remaining terms
A, could either be positive or negative (higher frequencies
sampling higher voltages via the voltage-frequency scaling)
since the I-V third derivative and harmonic mixing response
become negative at certain bias voltages. A microscopic theory
of CDW transport is ultimately needed to determine the
extent to which previous'®3®3% and current adaptations of
PAT theorygf’ are adequate or need modification, even for the
quantum picture, and to which one can map the time evolution
of the proposed complex order parameters onto a classical
description.

V. DISCUSSION AND CONCLUSION

CDW transport is one of the few known cases of correlated
transport of macroscopic numbers of electrons—the only
known example of large-scale collective electron transport
at human body temperatures.* This paper is highly trans-
formative in that it challenges the classical sliding CDW
paradigm that has dominated the field for over thirty years.
Nevertheless, the quantum ideas discussed here can hardly
be regarded as speculative. The evidence supporting quantum
theory is so overwhelming, it can be considered a proven fact
that electrons and all other known particles behave quantum
mechanically. In 2000, the 100-year anniversary of Planck’s
blackbody radiation paper,® Kleppner and Jackiw®® pointed
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out that “Quantum theory is the most precisely tested and most
successful theory in the history of science.” Since then, aspects
of quantum theory (the Pauli principle’') have been confirmed
to within an accuracy of 6 x 1072,

The classical behavior one observes on the macroscopic
scale depends on the system and emerges from the behavior
of large numbers of entangled quantum particles exhibit-
ing wave-particle duality. The Schrodinger equation can be
regarded as the “classical” equation for superconducting
condensates coupled through a thin insulator by Josephson
tunneling (Vol. III, Ch. 21 of Ref. 20). Similarly, the
time-correlated soliton tunneling model discussed here treats
the Schrodinger equation as an emergent classical equation
describing Josephson-coupled fluidic CDW macrostates. The
simulations yield unprecedented quantitative agreement with
coherent voltage oscillations and -V characteristics of NbSes
and also provide a natural interpretation for the quantum
interference seen in the CDW ring experiments>->> and more
complex interesting behavior seen in CDW harmonic mixing
response.

Any further progress in understanding of CDW transport
will require the scientific community to accept the fact that
the CDW electron-phonon condensate behaves according to
laws of quantum physics—the same quantum principles that
govern every other system of particles in the universe. It
is not necessarily true, a priori, that quantum principles
are consistent with the current dogma—that CDW electrons
classically “slide” according to Aristotle’s linear velocity-
force relation. Addressing the quantum behavior of CDWs,
perhaps culminating in a microscopic theory of CDW transport
and dynamics, would have enormous impact on this important
branch of condensed matter physics. Additional areas of
broad impact potentially include the boundary between CDWs
and superconductivity, correlated electron-ion transport in
biological systems, tunneling and “false vacuum decay” in
quantum cosmology, a formally similar & = 7 instability for
spontaneous CP violation,”” and a deeper understanding of
quantum theory.

Observation of quantum effects in NbS3, which undergoes
a Peierls transition well above room temperature,* would
potentially lead to new devices such as magnetic sensors
operating at room temperature. Understanding of the quantum
behavior of solitons could lead to topologically robust (against
decoherence) forms of quantum information processing, which
would have major technological significance.

Finally, the CDW may be one of the best systems yet
to explore the boundary between the quantum world at
the microscopic level and the emergent classical reality at
the macroscopic scale. The “quantum-classical” paradigm
proposed here and in our previous paper' provides further
impetus for exploring this boundary, as do the recent CDW
ring?"?? and related experiments that still await a complete
microscopic description.

ACKNOWLEDGMENTS

This work was supported by the State of Texas through
the Texas Center for Superconductivity at the University of
Houston.

115127-10



COHERENT QUANTUM TRANSPORT OF CHARGE DENSITY ...

“jhmiller @uh.edu
faiwijesinghe @yahoo.com
1J. H. Miller, Jr., A. I. Wijesinghe, Z. Tang, and A. M. Guloy, Phys.

Rev. Lett. 108, 036404 (2012).

2G. Griiner, Density Waves in Solids (Addison-Wesley, Reading,
MA, 1994).

3P. Monceau, Adv. Phys. 61, 325 (2012).

4S. G. Zybtsev, V. Y. Pokrovskii, V. F. Nasretdinova, and S. V.
Zaitsev-Zotov, Appl. Phys. Lett. 94, 152112 (2009).

5G. Ghiringhelli, M. Le Tacon, M. Minola, S. Blanco-Canosa,
C. Mazzoli, N. B. Brookes, G. M. De Luca, A. Frano, D. G.
Hawthorn, F. He, T. Loew, M. M. Sala, D. C. Peets, M. Salluzzo,
E. Schierle, R. Sutarto, G. A. Sawatzky, E. Weschke, B. Keimer,
and L. Braicovichet, Science 337, 821 (2012).

6J. Chang, E. Blackburn, A. T. Holmes, N. B. Christensen, J. Larsen,
J. Mesot, R. Liang, D. A. Bonn, W. N. Hardy, A. Watenphul, M. v.
Zimmermann, E. M. Forgan, and S. M. Hayden, Nat. Phys. 8, 871
(2012).

7J. M. Tranquada, B. J. Sternlieb, J. D. Axe, Y. Nakamura, and
S. Uchida, Nature (London) 375, 561 (1995).

8V. 7. Emery, S. A. Kivelson, and J. M. Tranquada, Proc. Natl. Acad.
Sci. USA 96, 8814 (1999).

°E. Berg, E. Fradkin, S. A. Kivelson, and J. M. Tranquada, New J.
Phys. 11, 115004 (2009).

103 P McCarten, T. C. Jones, X. Wu, J. H. Miller, Jr., L. Pirtle, X. Xu,
J. R. Claycomb, J.-R. Liu, and W.-K. Chu, J. Phys. IV (France) 9,
129 (1999).

"P. W. Anderson, Basic Notions of Condensed Matter Physics
(Benjamin/Cummings Publishing Co., Menlo Park, CA, 1984).

2D. V. Averin and K. K. Likharev, J. Low Temp. Phys. 62, 345
(1986).

BD. V. Averin and K. K. Likharev, in Mesoscopic Phenomena in
Solids, edited by B. L. Altshuler, P. A. Lee, and R. A. Webb
(Elsevier, Amsterdam, 1991), p. 173.

4A. Maiti and J. H. Miller, Phys. Rev. B 43, 12205 (1991).

15]. Bardeen, Phys. Rev. Lett. 42, 1498 (1979).

16]. Bardeen, Phys. Rev. Lett. 45, 1978 (1980).

17]. Bardeen, Phys. Rev. Lett. 55, 1010 (1985).

I8R. E. Thorne, J. H. Miller, W. G. Lyons, J. W. Lyding, and J. R.
Tucker, Phys. Rev. Lett. 55, 1006 (1985).

19B. D. Josephson, Phys. Lett. 1, 251 (1962).

20R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman
Lectures on Physics (Addison-Wesley, Reading, MA, 1965).

2IM. Tsubota, K. Inagaki, and S. Tanda, Physica B: Condensed Matter
404, 416 (2009).

22M. Tsubota, K. Inagaki, T. Matsuura, and S. Tanda, Europhys. Lett.
97, 57011 (2012).

2R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibowitz,
Phys. Rev. Lett. 54, 2696 (1985).

2M. Sigrist, T. Ihn, K. Ensslin, M. Reinwald, and W. Wegscheider,
Phys. Rev. Lett. 98, 036805 (2007).

Y. I. Latyshev, O. Laborde, P. Monceau, and S. Klaumunzer, Phys.
Rev. Lett. 78, 919 (1997).

26Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).

?7A. van Oudenaarden, M. H. Devoret, Y. V. Nazarov, and J. E. Mooij,
Nature (London) 391, 768 (1998).

2W. G. van der Wiel, Y. V. Nazarov, S. De Franceschi, T. Fujisawa,
J. M. Elzerman, E. W. G. M. Huizeling, S. Tarucha, and L. P.
Kouwenhoven, Phys. Rev. B 67, 033307 (2003).

PHYSICAL REVIEW B 87, 115127 (2013)

2H. Fukuyama and P. A. Lee, Phys. Rev. B 17, 535 (1978).

9P, A. Lee and T. M. Rice, Phys. Rev. B 19, 3970 (1979).

3IK. Maki, Phys. Rev. Lett. 39, 46 (1977).

32K. Maki, Phys. Rev. B 18, 1641 (1978).

33]. Bardeen, E. Ben-Jacob, A. Zettl, and G. Griiner, Phys. Rev. Lett.
49, 493 (1982).

1. V. Krive and A. S. Rozhavsky, Solid State Commun. 55, 691
(1985).

35]. H. Ross, Z. Wang, and C. P. Slichter, Phys. Rev. Lett. 56, 663
(1986).

3J. H. Miller, Jr., Ph.D. thesis, University of Illinois at Urbana-
Champaign, 1985.

37, H. Miller, J. Richard, J. R. Tucker, and J. Bardeen, Phys. Rev.
Lett. 51, 1592 (1983).

3] H. Miller, R. E. Thorne, W. G. Lyons, J. R. Tucker, and J. Bardeen,
Phys. Rev. B 31, 5229 (1985).

8. Coleman, Ann. Phys. 101, 239 (1976).

40J. H. Miller, C. Ordéfiez, and E. Prodan, Phys. Rev. Lett. 84, 1555
(2000).

4Ip. B. Littlewood, Phys. Rev. B 33, 6694 (1986).

#20. Narayan and A. A. Middleton, Phys. Rev. B 49, 244 (1994).

43S. N. Coppersmith and D. S. Fisher, Phys. Rev. A 38, 6338 (1988).

#A. Zettl and G. Griiner, Phys. Rev. B 29, 755 (1984).

45W.-y. Wu, L. Mihaly, and G. Griiuner, Solid State Commun. 55,
663 (1985).

46]. Bardeen, Phys. Today 43(12), 25 (1990).

47P. Monceau, N. P. Ong, A. M. Portis, A. Meerschaut, and J. Rouxel,
Phys. Rev. Lett. 37, 602 (1976).

“BW.-Y. Wang, W.-S. Duan, J.-A. Sun, and Y. Yang, Physica B:
Condensed Matter 407, 3876 (2012).

“T. D. Cohen and D. A. McGady, Phys. Rev. D 78, 036008 (2008).

30Y. Kluger, J. M. Eisenberg, B. Svetitsky, F. Cooper, and E. Mottola,
Phys. Rev. Lett. 67, 2427 (1991).

513, H. Miller, Jr., and A. L. Wijesinghe, arXiv:1110.2537.

2], Bardeen, Phys. Rev. B 39, 3528 (1989).

3D. Allender, J. W. Bray, and J. Bardeen, Phys. Rev. B9, 119 (1974).

34H. Frohlich, Proc. R. Soc. London, Ser. A 223, 296 (1954).

31 V. Krive and A. S. Rozhavsky, Phys. Lett. A 132, 363 (1988).

%@G. Griiner, Rev. Mod. Phys. 60, 1129 (1988).

STW.-y. Wu, A. Jénossy, and G. Griiner, Solid State Commun. 49,
1013 (1984).

38J. H. Miller, Jr., J. Phys.: Conf. Ser. 273, 012007 (2011).

8. Coleman, R. Jackiw, and L. Susskind, Ann. Phys. 93,267 (1975).

%0A. Zettl and G. Griiner, Phys. Rev. B 26, 2298 (1982).

8'M. E. Itkis, F. Y. Nad, and P. Monceau, J. Phys.: Condensed Matter
2, 8327 (1990).

©2G. Mihaly and P. Beauchéne, Solid State Commun. 63, 911 (1987).

8R. E. Thorne, J. R. Tucker, and J. Bardeen, Phys. Rev. Lett. 58, 828
(1987).

%G. Johnson, Strange Beauty: Murray Gell-Mann and the Revolution
in Twwentieth Century Physics (Vintage Books, Random House, NY,
1999).

65S. Brazovskii, J. Supercond. Novel Magn. 20, 489 (2007).

65 Brazovskii, Solid State Sci. 10, 1786 (2008).

67S. Brazovskii, Physica B: Condensed Matter 404, 482 (2009).

8S. Brazovskii, C. Brun, Z.-Z. Wang, and P. Monceau, Phys. Rev.
Lett. 108, 096801 (2012).

N. Kirova, A. Rojo Bravo, and S. Brazovskii, Physica B: Condensed
Matter 404, 565 (2009).

115127-11


http://dx.doi.org/10.1103/PhysRevLett.108.036404
http://dx.doi.org/10.1103/PhysRevLett.108.036404
http://dx.doi.org/10.1080/00018732.2012.719674
http://dx.doi.org/10.1063/1.3111439
http://dx.doi.org/10.1126/science.1223532
http://dx.doi.org/10.1038/nphys2456
http://dx.doi.org/10.1038/nphys2456
http://dx.doi.org/10.1038/375561a0
http://dx.doi.org/10.1073/pnas.96.16.8814
http://dx.doi.org/10.1073/pnas.96.16.8814
http://dx.doi.org/10.1088/1367-2630/11/11/115004
http://dx.doi.org/10.1088/1367-2630/11/11/115004
http://dx.doi.org/10.1051/jp4:19991033
http://dx.doi.org/10.1051/jp4:19991033
http://dx.doi.org/10.1007/BF00683469
http://dx.doi.org/10.1007/BF00683469
http://dx.doi.org/10.1103/PhysRevB.43.12205
http://dx.doi.org/10.1103/PhysRevLett.42.1498
http://dx.doi.org/10.1103/PhysRevLett.45.1978
http://dx.doi.org/10.1103/PhysRevLett.55.1010
http://dx.doi.org/10.1103/PhysRevLett.55.1006
http://dx.doi.org/10.1016/0031-9163(62)91369-0
http://dx.doi.org/10.1016/j.physb.2008.11.066
http://dx.doi.org/10.1016/j.physb.2008.11.066
http://dx.doi.org/10.1209/0295-5075/97/57011
http://dx.doi.org/10.1209/0295-5075/97/57011
http://dx.doi.org/10.1103/PhysRevLett.54.2696
http://dx.doi.org/10.1103/PhysRevLett.98.036805
http://dx.doi.org/10.1103/PhysRevLett.78.919
http://dx.doi.org/10.1103/PhysRevLett.78.919
http://dx.doi.org/10.1103/PhysRev.115.485
http://dx.doi.org/10.1038/35808
http://dx.doi.org/10.1103/PhysRevB.67.033307
http://dx.doi.org/10.1103/PhysRevB.17.535
http://dx.doi.org/10.1103/PhysRevB.19.3970
http://dx.doi.org/10.1103/PhysRevLett.39.46
http://dx.doi.org/10.1103/PhysRevB.18.1641
http://dx.doi.org/10.1103/PhysRevLett.49.493
http://dx.doi.org/10.1103/PhysRevLett.49.493
http://dx.doi.org/10.1016/0038-1098(85)90235-2
http://dx.doi.org/10.1016/0038-1098(85)90235-2
http://dx.doi.org/10.1103/PhysRevLett.56.663
http://dx.doi.org/10.1103/PhysRevLett.56.663
http://dx.doi.org/10.1103/PhysRevLett.51.1592
http://dx.doi.org/10.1103/PhysRevLett.51.1592
http://dx.doi.org/10.1103/PhysRevB.31.5229
http://dx.doi.org/10.1016/0003-4916(76)90280-3
http://dx.doi.org/10.1103/PhysRevLett.84.1555
http://dx.doi.org/10.1103/PhysRevLett.84.1555
http://dx.doi.org/10.1103/PhysRevB.33.6694
http://dx.doi.org/10.1103/PhysRevB.49.244
http://dx.doi.org/10.1103/PhysRevA.38.6338
http://dx.doi.org/10.1103/PhysRevB.29.755
http://dx.doi.org/10.1016/0038-1098(85)90228-5
http://dx.doi.org/10.1016/0038-1098(85)90228-5
http://dx.doi.org/10.1063/1.881218
http://dx.doi.org/10.1103/PhysRevLett.37.602
http://dx.doi.org/10.1016/j.physb.2012.06.013
http://dx.doi.org/10.1016/j.physb.2012.06.013
http://dx.doi.org/10.1103/PhysRevD.78.036008
http://dx.doi.org/10.1103/PhysRevLett.67.2427
http://arXiv.org/abs/1110.2537
http://dx.doi.org/10.1103/PhysRevB.39.3528
http://dx.doi.org/10.1103/PhysRevB.9.119
http://dx.doi.org/10.1098/rspa.1954.0116
http://dx.doi.org/10.1016/0375-9601(88)90870-5
http://dx.doi.org/10.1103/RevModPhys.60.1129
http://dx.doi.org/10.1016/0038-1098(84)90412-5
http://dx.doi.org/10.1016/0038-1098(84)90412-5
http://dx.doi.org/10.1088/1742-6596/273/1/012007
http://dx.doi.org/10.1016/0003-4916(75)90212-2
http://dx.doi.org/10.1103/PhysRevB.26.2298
http://dx.doi.org/10.1088/0953-8984/2/42/010
http://dx.doi.org/10.1088/0953-8984/2/42/010
http://dx.doi.org/10.1016/0038-1098(87)90338-3
http://dx.doi.org/10.1103/PhysRevLett.58.828
http://dx.doi.org/10.1103/PhysRevLett.58.828
http://dx.doi.org/10.1007/s10948-007-0256-1
http://dx.doi.org/10.1016/j.solidstatesciences.2008.01.022
http://dx.doi.org/10.1016/j.physb.2008.11.236
http://dx.doi.org/10.1103/PhysRevLett.108.096801
http://dx.doi.org/10.1103/PhysRevLett.108.096801
http://dx.doi.org/10.1016/j.physb.2008.11.128
http://dx.doi.org/10.1016/j.physb.2008.11.128

MILLER, WIJESINGHE, TANG, AND GULOY

0Y.1. Latyshev, in ECRYS-2011, International School and Workshop
on Electronic Crystals, Cargese, Corsica, France, 2011.

71cOMSOL MULTIPHYSICS, Palo Alto, CA.

72T. L. Adelman, S. V. Zaitsev-Zotov, and R. E. Thorne, Phys. Rev.
Lett. 74, 5264 (1995).

73]. H. Miller, Jr., G. Cardenas, A. Garcia-Perez, W. More, and A. W.
Beckwith, J. Phys. A: Math. Gen. 36, 9209 (2003).

74 A. Ayari and P. Monceau, Phys. Rev. B 66, 235119 (2002).

3C. Li, D. Yin, D. Li, Z. Tang, J. Wang, R. Xiong, J. Shi, and
D. Tian, Solid State Commun. 140, 369 (2006).

7N. Markovié¢, M. A. H. Dohmen, and H. S. J. van der Zant, Phys.
Rev. Lett. 84, 534 (2000).

77S. Yue, M. Tian, and Y. Zhang, Phys. Rev. B 64, 113102
(2001).

T. C. Jones, X. Wu, C. R. Simpson, J. A. Clayhold, and J. P.
McCarten, Phys. Rev. B 61, 10066 (2000).

"R. E. Thorne, J. S. Hubacek, W. G. Lyons, J. W. Lyding, and J. R.
Tucker, Phys. Rev. B 37, 10055 (1988).

80S. Bhattacharya, M. J. Higgins, J. P. Stokes, and R. A. Klemm,
Phys. Rev. B 38, 10093 (1988).

PHYSICAL REVIEW B 87, 115127 (2013)

81g, Bhattacharya, J. P. Stokes, M. J. Higgins, and R. A. Klemm,
Phys. Rev. Lett. 59, 1849 (1987).

82S. Bhattacharya, J. P. Stokes, M. O. Robbins, and R. A. Klemm,
Phys. Rev. Lett. 54, 2453 (1985).

8 A. J. Leggett, Prog. Theor. Phys. 36, 901 (1966).

84]. Bardeen, Phys. Rev. Lett. 6, 57 (1961).

85C. B. Duke, Tunneling in Solids (Academic Press, New York, 1969).

86J. R. Tucker and M. J. Feldman, Rev. Mod. Phys. 57, 1055 (1985).

87R. A. Klemm and J. R. Schrieffer, Synth. Met. 11, 307 (1985).

88p. K. Tien and J. P. Gordon, Phys. Rev. 129, 647 (1963).

%M. Planck, Verhandlungen der Deutschen Physikalischen
Gesellschaft 2, 237 (1900).

OD. Kleppner and R. Jackiw, Science 289, 893 (2000).

1J. Marton, S. Bartalucci, S. Bertolucci, M. Bragadireanu,
M. Cargnelli, C. Curceanu, S. Di Matteo, J. P. Egger, C. Guaraldo,
M. Iliescu, T. Ishiwatari, E. Laubenstein, E. Milotti, D. Pietreanu,
T. Ponta, A. R. Vidal, D. L. Sirghi, F. Sirghi, L. Sperandio, O. V.
Doce, E. Widmann, and J. Zmeskal, AIP Conf. Proc. 1327, 423
(2011).

2D. Boer and J. K. Boomsma, Phys. Rev. D 78, 054027 (2008).

115127-12


http://dx.doi.org/10.1103/PhysRevLett.74.5264
http://dx.doi.org/10.1103/PhysRevLett.74.5264
http://dx.doi.org/10.1088/0305-4470/36/35/308
http://dx.doi.org/10.1103/PhysRevB.66.235119
http://dx.doi.org/10.1016/j.ssc.2006.08.043
http://dx.doi.org/10.1103/PhysRevLett.84.534
http://dx.doi.org/10.1103/PhysRevLett.84.534
http://dx.doi.org/10.1103/PhysRevB.64.113102
http://dx.doi.org/10.1103/PhysRevB.64.113102
http://dx.doi.org/10.1103/PhysRevB.61.10066
http://dx.doi.org/10.1103/PhysRevB.37.10055
http://dx.doi.org/10.1103/PhysRevB.38.10093
http://dx.doi.org/10.1103/PhysRevLett.59.1849
http://dx.doi.org/10.1103/PhysRevLett.54.2453
http://dx.doi.org/10.1143/PTP.36.901
http://dx.doi.org/10.1103/PhysRevLett.6.57
http://dx.doi.org/10.1103/RevModPhys.57.1055
http://dx.doi.org/10.1016/0379-6779(85)90064-5
http://dx.doi.org/10.1103/PhysRev.129.647
http://dx.doi.org/10.1126/science.289.5481.893
http://dx.doi.org/10.1063/1.3567469
http://dx.doi.org/10.1063/1.3567469
http://dx.doi.org/10.1103/PhysRevD.78.054027



