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Kerr effect as evidence of gyrotropic order in the cuprates
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The Kerr effect can arise in a time-reversal invariant dissipative medium that is “gyrotropic,” i.e., one that
breaks inversion (I) and all mirror symmetries. Examples of such systems include electron analogs of cholesteric
liquid crystals and their descendants, such as systems with chiral charge ordering. We present arguments that the
striking Kerr onset seen in the pseudogap phase of a large number of cuprate high-temperature superconductors
is an evidence of chiral charge ordering. We discuss additional experimental consequences of a phase transition
to a gyrotropic state, including the appearance of a zero-field Nernst effect.
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I. INTRODUCTION

Key aspects of the physics of the cuprate high-temperature
superconductors (HTS) remain controversial. A prominent
feature of the normal state of the hole-doped cuprates is the
depletion of spectral density at the Fermi energy, which onsets
below a somewhat imprecisely defined temperature T �—the
enigmatic pseudogap crossover. There has been increasingly
strong evidence that various forms of nonsuperconducting
electronic and incipient orders occur as general features of
at least the hole-doped cuprates in the pseudogap regime.1

In this paper, we will focus on one particular experimental
probe of symmetry breaking—the (polar) Kerr effect2—which
has been measured with great sensitivity at optical frequencies.
In at least four families of cuprates: underdoped YBCO-123,3

Hg-1201,4 optimally doped Bi-2201,5 and 1/8 doped LBCO,6

there is a well defined Kerr onset temperature TK somewhere in
the pseudogap regime. Above TK , the Kerr rotation angle θK

is zero to within experimental accuracy, while it is nonzero
for T < TK . This is indicative of a symmetry breaking
phase transition at TK , despite the lack of clear and direct
thermodynamic evidence of such a transition.

Since the Kerr effect is usually observed in association
with magnetism, the most natural interpretation is that TK

is associated with time-reversal symmetry (T ) breaking, in
the same fashion as an anomalous Hall effect would be.
However, there are peculiar aspects of the Kerr measurements
that cast doubt on this standard interpretation. Firstly, the
Kerr angle in all the cuprates measured to date cannot be
“trained” by cooling through the transition in an externally
applied magnetic field. Secondly, recent measurements have
shown that the sign of θK is the same for reflection on opposite
surfaces.4

An alternative approach invokes the fact that reflection from
a “gyrotropic”7 material, i.e., one with broken inversion (I)
and mirror symmetries, also results in a nonzero θK , even if
T is preserved.8–12 Examples of such “gyrotropic” systems7

include electron analogs of cholesteric liquid crystals and
related systems with chiral density-wave ordering.

Consistent with the notion that a phase transition occurs
at TK , other changes in physical properties have been docu-

mented at roughly the same temperature. In the case of 1/8
doped LBCO, TK coincides with Tco,6 the temperature below
which charge (stripe) order develops.13–15 Tco also marks the
onset of an anomalous zero-field Nernst effect,16 which we
will discuss below. In optimally doped Bi-2201, TK coincides
with the temperature Tpg at which the pseudogap first opens, as
detected directly in angle-resolved photoemission (ARPES)5

and NMR17 experiments and at which the relaxation dynamics
abruptly changes.5 Finally, in underdoped YBCO-123 for
a range of doping, TK appears to track a characteristic
temperature TH ,18,19 where an inflection point occurs in the
Hall resistance. Moreover, recently, it has been found that
short-range charge density wave (CDW) order (detected in
x-ray diffraction studies) first shows above the background at
about the same temperature.20–22

In this paper, we suggest that TK represents a critical
temperature in the pseudogap regime below which I and
mirror symmetries are broken, resulting in gyrotropic order.
The observation of various forms of charge order in the
pseudogap regime, in conjunction with a nonzero θK , implies
that the charge order breaks I and can be thought of as
signifying an electron cholesteric phase. It is important to
stress that long-range chiral order can persist even if the density
wave from which it is derived is only short-range correlated.
This proposal can naturally rationalize the relation between
TK and TH , Tco and Tpg, and the existence of a zero-field
Nernst effect. Specifically, our proposal offers a plausible
candidate broken symmetry phase with a nonzero Kerr effect
that cannot be trained by a magnetic field, and that has the
same sign on opposite surfaces, although we do not at present
have any compelling explanation of the peculiar “memory
effects” (discussed below) seen in the Kerr measurements. For
an alternative semiclassical perspective of Kerr rotation based
in a gyrotropic medium, see Ref. 23.

We familiarize the reader with the patterns of broken spatial
symmetries, which can give rise to the Kerr effect in the
absence of T breaking in Sec. II and with notions of gyrotropic
order, familiar in the context of cholesteric liquid crystals, in
Sec. III. In Sec. IV, we compute the gyrotropic response of
various simple microscopic models of layered systems with
stripe (smectic) or electron nematic order within a plane, and

115116-11098-0121/2013/87(11)/115116(8) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.87.115116


HOSUR, KAPITULNIK, KIVELSON, ORENSTEIN, AND RAGHU PHYSICAL REVIEW B 87, 115116 (2013)

with a chiral ordering between layers. In the remainder of
the paper, we discuss the analysis of the Kerr experiments
(see Sec. V), the relation with other probes of charge order
in various cuprates (see Sec. VI), and finally, we speculate on
the implications of these ideas for the understanding of the
physics of the cuprates (see Sec. VII).

II. KERR AND NERNST EFFECTS IN
A GYROTROPIC MEDIUM

The Kerr effect measures the rotation of the plane of
polarization of linearly polarized light when it is reflected
off a surface (with z defined to be the normal direction). In
the special case of a tetragonal system, a Kerr effect implies
a nonzero relative phase acquired upon reflection by right-
and left-circularly polarized light. In general, this requires an
antisymmetric “Hall-like” component of the dielectric tensor.
This can arise from an anomalous Hall effect in a system that
breaks T . A time-reversal symmetric system can achieve the
same if it is gyrotropic, i.e., if it breaks all mirror symmetries.
In either case, it is also necessary that the system be dissipative
to produce a Kerr response.

In a time-reversal invariant homogeneous medium, the
dielectric tensor satisfies the reciprocity relations, εab(ω,k) =
εba(ω, − k); thus, in the long wavelength limit, k → 0, it
is a symmetric tensor, and hence cannot give rise to a Kerr
response. However, any odd in k contribution to ε must be
antisymmetric:

εab(ω,k) = εab(ω) + iγabc(ω)kc + · · · , (1)

where εab(ω) = εba(ω) ≡ εab(ω,0), the gryotropic tensor7

γabc(ω) = −γbac(ω) is the first derivative of εab(ω,k) with
respect to kc, evaluated at k = 0, kc is the wave vector in the
medium and “ . . .” refers to higher order terms in powers of k.
It is easy to see that γabc = 0 in a system with I or, for a �= c,
if there is a reflection plane perpendicular to êa . Thus all these
symmetries must be broken in order to obtain a gyrotropic
Kerr response. If all these symmetries are broken, the medium
is handed and is said to be gyrotropic.

To be explicit, we consider the simple case of a tetragonal
crystal in which the light is propagating along an axis, z,
with C4 symmetry. Thus, for a,b = x,y, εab(ω) = δabε(ω),
the gyrotropic tensor is defined by a pseudoscalar amplitude,
γ (ω) ≡ γxyz(ω) = −γyxz(ω), and γazz = γzaz = 0. In this
case, the refractive indices for the two circular polarizations
satisfy nR(L)(ω) = √

ε(ω) ± nR(L)ωγ (ω)/c, which are distinct
for γ �= 0. Note that ω/c is the wave vector in vacuum, which
differs from the wave vector in Eq. (1) by a factor of the
refractive index. The Kerr angle is then given by11

tan θK = Im

(
nR − nL

nRnL − 1

)
= −ω

c
Im

[
γ (ω)

ε(ω) − 1

]
(2)

to lowest order in γ . Clearly, a nonvanishing θK requires at
least one out of ε(ω) and γ (ω) to be complex and hence ε(ω,k)
to be non-Hermitian, which implies absorption. The factor ω/c

in this expression comes from the factor of k in Eq. (1); this
implies the effect is always small in proportion to the fine
structure constant, α = e2/h̄c.

A gyrotropic material also exhibits a Faraday rotation, i.e.,
a nonzero θF , the rotation of the plane of polarization of

transmitted light:

θF = ωd

2c
Re(nR − nL) = ω2d

2c2
Re[γ (ω)], (3)

where d is the thickness of the material. The Faraday rotation
can, in principle, be observed in thin films of a gyrotropic
medium.

The transverse Peltier coefficient αxy is a relative of the Hall
conductance σxy and can be viewed similarly, as a probe of the
same sort of spontaneously broken symmetries. For simplicity,
we focus on the dc response, i.e., the limit k → 0 and ω → 0
(in that order), where both σab and αab are real. Time-reversal
symmetry requires σxy = σyx , i.e., a nonzero value of σxy

is equivalent to a misalignment of the principle axes of the
conductivity tensor. The presence of an xz or yz mirror plane or
a fourfold rotational or screw axis is sufficient to imply σxy =
0. However, while either of these mirror symmetries would
also imply αxy = 0, a fourfold rotational or screw symmetry,
by itself, only implies that αxy is antisymmetric: αxy = −αyx .
The difference between αab and σab is that the former involves
the correlation function between the electric and heat currents,
while the latter involves only electric currents and so satisfies
reciprocity relations. Importantly, therefore, in a gyrotropic
medium, where all reflection symmetries are broken, a nonzero
αxy is not forbidden. This in turn can produce a zero-field
Nernst effect via eN = αxy/σxx .

III. ELECTRON CHOLESTERIC ORDER

Liquids and (cholesteric) liquid crystals with the requisite
I breaking needed for a gyrotropic response are generally
formed with some molecular constituents, which are intrin-
sically chiral. Thus I is explicitly rather than spontaneously
broken. For instance, when a small concentration of chiral
molecules is added to a nematic liquid crystal, a new term in
the Landau-Ginzburg (LG) free-energy density for the nematic
director field �n is induced of the form

δF = −χ (�n · �∇ × �n), (4)

where the sign of χ is determined by the handedness of
the chiral molecules, and its magnitude is at least roughly
proportional to their concentration.24 In turn, the presence of
this first-derivative term implies that for any nonzero χ , a
uniform nematic phase will be replaced by a cholesteric phase
in which the nematic director forms a helical texture of the
form

�n(�r) = n0[cos(πQz), sin(πQz),0] (5)

with a pitch, 1/Q, proportional to χ . (Recall, �n is a headless
vector, �n ≡ −�n, so 1/Q is the period of the helix.) Even in
the disordered phase, the presence of such a term implies that
< �n · �∇ × �n > ∝ χ �= 0, so the chirality of the constituents
manifests as the nonvanishing helicity of the nematic fluc-
tuations. χ is a psuedoscalar quantity that characterizes the
chirality of the fluid; one would generically expect a fluid with
a small nonzero χ to exhibit a nonvanishing value of γ ∝ χ .

Turning to the electron fluid in solids, if the crystal
structure itself is noncentrosymmetric and is appropriately
lacking in mirror symmetries, this will generically give rise
to an extrinsic nonzero value of both γ and χ . On the other
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hand, in a centrosymmetric crystal, a nonzero value of χ can
develop as a consequence of spontaneous symmetry breaking.
It is important to note that, even in the case in which no
other order parameter is needed, it may be useful to think
of the pseudoscalar order parameter χ as representing the
residual symmetry breaking remaining upon melting of a chiral
nematic.

IV. MODEL PROBLEMS

To get a feeling for the way in which various patterns
of symmetry breaking lead to gyrotropic behavior, we have
analyzed a number of simple model problems, ranging from the
phenomenological to the microscopic. All of our microscopic
models are of perfect conductors (no quasiparticle scattering)
so in each case γ is real; to produce a Kerr effect, some source
of dissipation must be present.

A. A phenomenological model

To begin with, we consider a phenomenological model of a
chiral nematic in a layered material, where the nematic order
parameter has the form shown in Eq. (5) with integer z labeling
the planes and with a commensurate pitch 1/Q > 2. In each
plane, we imagine a conductivity tensor of the form σab(z) =
σ0 + σ1na(z)nb(z). We further imagine a coupling between
currents in neighboring planes (related to the drag), so that

ja(z) = σab(z)Eb(z) + Dab(z)[jb(z + 1) + jb(z − 1)], (6)

where we have adopted summation convention, ja(z) and
Ea(z) are, respectively, the current and electric field in the a

direction in plane z, and the drag tensor is given by Dab(z) =
D0 + D1na(z)nb(z). Assuming the relation ε = 1 + 4πσ/iω

and the anisotropic part of the drag D1 � 1, we can compute
the dielectric and gyrotropic responses:

εxx = εyy = 1 + 4π

ω

(
2σ0 + n2

0σ1
)

cos(2πQ)

1 − 2D0 cos(2πQ)
,

(7)

γ = 4π

iω

n4
0D1σ1 sin(2πQ)

(1 − 2D0) [1 − 2D0 cos(2πQ)]2 .

Notice that γ changes sign upon Q → −Q (i.e., upon flipping
the chirality), as it should.

B. Period 3 electron cholesteric

The simplest microscopic model of a gyrotropic system
describes electrons in noncentro-symmetric crystals with k · σ

type spin-orbit coupling. The Kerr response in such a system
was computed and shown to be nonzero recently in Ref. 12.
However, with the cuprates in mind, we wish to consider model
problems of quasi-2D (layered) materials in which the nonzero
Kerr response is a consequence of spontaneous symmetry
breaking (charge ordering).

First, we study the simple electronic analog of a cholesteric
liquid crystal shown in Fig. 1(a). Each layer consists of
spinless electrons (the spin degree of freedom is a mere
spectator in the analyses to follow) forming an electron
nematic, and neighboring layers are coupled via a hopping

FIG. 1. (Color online) Schematic representation of (a) a period
3 cholesteric phase, where the ellipses represent a distorted Fermi
surface in each plane, and the orientation of the major axis represents
the nematic director. (b) A chiral pattern of stripe order in a tetragonal
background. The filled (empty) circles represent sites with excess
(reduced) charge density, while the heavy blue (thin red) lines
represent strong (weak) bonds. This state has period 2 unidirectional
(stripe) order in each plane, with a 4-plane unit cell. Importantly,
the stripes break a mirror symmetry as they are neither site centered
(which would correspond to vanishing bond-charge modulation) nor
bond centered (which would correspond to vanishing site-charge
modulation). (c) Another 4-plane chiral stripe ordered state, but
now with period 3 mirror-plane breaking stripe order in each plane.
The broad blue, narrow black, and broad yellow lines represent,
respectively, lines of excess, average, and reduced charge density.

integral t⊥:

H =
∑

k

E(k; z)ψ†
k,zψk,z − t⊥

∑
k,z

(ψ†
k,zψk,z+1 + H.c.),

(8)

E(k; z) = 1

2m
{k2 + [k · n(z)]2} − EF ,

where k is the in-plane momentum, z is an integer which
indexes the layer, and n is given by Eq. (5) with Q =
χ̃/3 where χ̃ = ±1 determines the chirality. In the limit
where |t⊥| � EF ≡ k2

F /2m, a closed form expression for the
gyrotropic tensor can be obtained using the Kubo formula,
treating the interlayer tunneling as a perturbation:

γ (ω) 
 e2

h̄ω
χ

(
t⊥
EF

)2

F

(
h̄ω

EF

,|χ |
)

, (9)

where χ = χ̃n4
0 and

F (x,y) =
(

1

x

)2
√

3

x2 − 3|y|/4
. (10)

This expression is valid in the limit n2
0 � 1, |t⊥| � EF n2

0, and
|t⊥| � h̄ω. The gyrotropic response of the system vanishes
in the absence of interlayer tunneling, as the chirality is ill
defined for decoupled planes.

C. Chiral stacking of commensurate stripes

We now turn to models in which a chiral CDW produces a
gyrotropic effect.25 Specifically, in a layered tetragonal crystal,
we consider an ordered phase consisting of a unidirectional
CDW (stripes) in each plane with a direction of propagation
(which one can think of as the nematic component of the CDW)
that rotates by π/2 between neighboring planes. Moreover,
motivated by experiments in the cuprates, we consider a state
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with a period 4 in the z direction. In order to give rise to a
gyrotropic effect, the overall stripe order must break mirror
symmetry through the planes perpendicular to the direction of
propagation.

As a first example, we consider the period 2 stripe order
shown in Fig. 1(b). The corresponding mean-field Hamiltonian
is

H = H0 + HCDW,
(11)

HCDW =
∑

r

[
(r)ρ(r) + �x(r)Tx(r) + �y(r)Ty(r)],

where r = (x,y,z) and x, y, z are the integer valued coor-
dinates of the lattice sites, H0 is the band structure of the
undistorted tetragonal lattice, the “site charge density” and
“bond-charge density” are, respectively,

ρ(r) = c†rcr and Ta(r) = (
c†rcr+êa

+ H.c.
)
, (12)

and c
†
r creates an electron on site r . We parametrize the order

parameter as follows:


(r) = 


{
cos

[
π (z − z0)

2

]
cos

(
2πx

N
+ θx

)

+ χ̃ sin

[
π (z − z0)

2

]
cos

(
2πy

N
+ θy

)}
,

�x(r) = �
(1 + eiπz)

2
cos

(
2πx

N

)
,

�y(r) = �
(1 − eiπz)

2
cos

(
2πy

N

)
, (13)

where N = 2 is the commensurability, and χ̃ = ±1 is the
chirality of the gyrotropic phase. For later use, we have
introduced CDW phases θa and z0, which are redundant (and
can be set equal to zero) for the case of N = 2. In this
case, for purely site-centered (� = 0) or purely bond-centered
(
 = 0) stripes, the state is mirror symmetric and therefore
nongyrotropic. For stripes that are neither site- nor bond-
centered, we can associate a preferred direction with each plane
by drawing an arrow from any site with maximal charge density
along the direction of the strongest bond radiating from it, i.e.,
from the filled sites along the thick-blue bonds in Fig. 1(b).
For χ = 1, it is clear from the figure that this direction rotates
by π/2 in a counterclockwise direction in passing from any
plane to the plane above, z → z + 1, defining a right-handed
helix with period 4.

In the limit of weak interplane coupling and weak density
wave order, t⊥, 
, and � � μ, an estimate of the gyrotropic
tensor can be obtained from a symmetry analysis, resulting in
an expression of the same form as in Eq. (9) with

χ = χ̃
(

2�2/E4

F

)
, (14)

and the dimensionless function F can, in principle, be
computed from the Kubo formula given an explicit form of
H0.

Finally, we consider a model in which there are higher-order
commensurate stripes in each plane, corresponding to the
pattern of CDW ordering shown in Fig. 1(c) for the case
of commensurability 3. Now, even for a pure site-charge
density wave, as long as the antinodes of the CDW do not

fall on the lattice sites, the reflection symmetry about a plane
perpendicular to the CDW ordering vector in each plane is
broken, with no need for an explicit bond density wave.
Thus we consider a system described by H in Eq. (11) with
�a(r) = 0, where N � 3 is the commensurability and an
integer-valued z0 ensures that the stripes are either along x or
along y in every plane. The ordering vectors in this model are
(1/N,0,1/4) and (0,1/N,1/4). (For N = 3, these are close
commensurate approximants to the recently detected charge
ordering peaks seen in YBCO, which will be discussed below.)

For θy = nπ/N , xz mirror symmetry is preserved, while
for θx = nπ/N yz mirror symmetry is preserved; in either
case, there will be no gyrotropic response. For all other θx and
θy , mirror symmetries are broken, and a gyrotropic response
is expected. γ must be invariant under any transformation
that preserves the chirality: (1) translation in a = x or y takes
θa → θa + 2π/N , (2) translation in z takes z0 → z0 + 1, (3)
C2 rotation about the x axis takes z0 → −z0 and θy → π − θy ,
and (4) C2 rotation about the x = y, z = 0 line interchanges
θx and θy and takes z0 → 1 − z0. Reflection must invert the
chirality, taking γ → −γ . xy reflection takes z0 → −z0. All
other point group transformations can be obtained as products
of two or more of the above operations. Combining these
considerations with an expansion in powers of 
 and t⊥, we
again obtain an expression of the same form as in Eq. (9) with

χ = χ̃

{
φ2N sin(Nθx) sin(Nθy) for odd N,

φ4N sin2(Nθx) sin2(Nθy) for even N,
(15)

where φ ≡ 
/EF and, again, a dimensionless function F can
be computed for a given H0.

V. ANALYZING KERR EXPERIMENTS

There are various possible broken symmetries that can
lead to a Kerr signal. In general, various protocols, including
examining the consequences of different thermal histories, and
introducing symmetry breaking external fields, can be used to
distinguish among these possibilities to a considerable extent.
Spatial transformations, such as “flipping” the sample (i.e.,
rotating it by π about the x or y axis) can also be used
to discriminate among various broken symmetries. Broadly
speaking, it is possible to classify systems that produce a Kerr
signal as (1) those that break T and (2) those that preserve it. In
case 1, there is a subclassification based on (1a) the presence
or (1b) absence of an anomalous Hall response. We discuss
each of these cases separately.

In case (1a), the order parameter is an axial vector, such as
the magnetization Mz, which couples linearly to an external
magnetic field Hz applied in the z direction. When such a
system is cooled in zero field, the sign of the Kerr signal is
expected to vary randomly in sign (and in the case in which
there are multiple chiral domains, also randomly in magnitude)
between different thermal cycles. However, if the sample is
slowly cooled through TK in a positive applied field, Hz > 0,
this should align the magnetic domains. Consequently, the
Kerr signal measured upon subsequent heating in zero field
will exhibit a fixed positive Kerr angle, which vanishes only
as T → TK . Moreover, if an identical procedure is repeated
with Hz < 0, the reversed Kerr angle must be observed. For
instance, the same apparatus used to measure the cuprates
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was first used to study the transition metal oxide ferromagnet,
SrRuO3,26 where (1) zero-field-cooled samples exhibited
random magnitude and sign of the Kerr angle below the Curie
temperature and (2) training of the Kerr angle occurred in field-
cooled samples, with θK ∼ 2 × 10−2 at low temperatures. A
second example is the spin-triplet superconductor Sr2RuO4

27

in which θK ∼ 10−8. Here, TK = Tc, the superconducting
transition temperature, so the observed field-training of θK

unambiguously identifies the superconducting transition as
being T breaking.

In case (1b), the order parameter is a diagonal, rank-2
pseudotensor28 θab that couples to the product EaHb. Such
a system also breaks I but preserves the product T I. If
the system only has a nonzero z-component θzz, then the
Kerr response can be trained by Hz. On the other hand, if
only in-plane components θxx,θyy are present, the Kerr angle
in such a system cannot be trained by Hz. Furthermore,
the Kerr effect is even under flipping the sample in such
systems.29

In case (2), T is preserved, and extrinsic strains or effects
of the sample geometry can act as symmetry breaking fields
on the chiral domains, which can often lead to a fixed Kerr
signal for subsequent cool downs. More importantly, while it
is possible that the application of a field H at some points in
the thermal cycle may affect the outcome, the result should be
independent of the sign of the applied magnetic field.

In all the cuprates measured to date, the Kerr signal
appears to have a fixed sign upon multiple cool downs.
Moreover, even if the sample is cooled through TK in the
presence of a field −H , the sign of the Kerr signal typically
remains unchanged. This “memory effect” implies that the
Kerr onset in the cuprates is not directly associated with T
breaking. It is possible, however, to imagine a memory effect of
extrinsic origin; for instance, if there were small ferromagnetic
inclusions in the sample, they could induce a fixed sign of the
Kerr effect. Since a nonzero Kerr effect has, by now, been
seen in a wide variety of different cuprate crystals and films,
with different origins, such an extrinsic origin of the memory
effect is unlikely. Moreover, recently, the effect of flipping
the crystal has been tested on crystals of YBCO, Bi2201, and
LBCO, and found to have no effect on the sign of the Kerr
angle, consistent with a pseudoscalar order parameter. This
experiment rules out any interpretation associated with a bulk
anomalous Hall effect.

The magnitude of the dimensionless Kerr angle itself has
some significance and introduces “reality checks” on proposed
theories. If the Kerr rotation arises in such systems from
gyrotropic order, θK generically is small, since it is propor-
tional to the fine structure constant α. In a quasi-2D material,
a second small parameter, the anisotropy (t⊥/EF )2, further
reduces the expected magnitude, as is clear from Eqs. (2)
and (9). An estimate of the latter quantity can be obtained from
the ratio of temperature derivatives of ρab and ρc, evaluated
at or above room temperature.30 Together, these two factors
can roughly account for the magnitude of θK observed in
the cuprates.31 By contrast, any mechanism that produced an
anomalous Hall response in a single plane might be expected
to give values of θK several orders of magnitude larger than
those observed in the cuprates, unless that Hall response itself
is parametrically small (see, for example, Ref. 32).

VI. KERR RESULTS IN CONTEXT

A bewildering number of crossover phenomena—including
putative transitions—have been identified in various cuprates
in different regimes of temperature and doping. It is clearly
important to correlate the various phenomena, and to identify
the common features of the electronic structure that lead to
them.

A. LBCO near 1/8 doping

LBCO is an anomalous cuprate both in the sense that it
has a much suppressed superconducting Tc ≈ 4K , and that
it has a subtly distorted crystal structure (the so-called LTT
phase), which stabilizes long-range correlated, static stripe
order.13,14 However, by the same token, this makes possible
declarative statements about the relation of various other
observed phenomena to charge and spin density wave order to
a much greater extent than in other cuprates.

There is a transition at Tco = 52 K to a charge ordered
state with primary ordering vectors Qx = (q,0,1/2) and
Qy = (0,q,1/2) with q ≈ 0.23 close to, but not equal to the
commensurate value 1/4.15,33 The in-plane correlation length
(inferred from the width of the peaks in either x-ray or neutron
scattering) is around 100 lattice constants, while perpendicular
to the planes, the correlation length is on the order of one unit
cell. As the LTT structure has two planes per unit cell, the
1/2 in the c direction implies a periodicity in that direction
of four planes. Within the unit cell, the order is known to
correspond to x-directed charge stripes (ordering vector Qy)
in the first and third planes, shifted by half a period relative
to each other, and y-directed charge stripes (ordering vector
Qx) in the second and fourth planes, again shifted by half a
period. Spin ordering detected in neutron scattering onsets at a
distinctly lower temperature, Tso = 42 K, with related ordering
vectors (1/2)(1 ± q,1,L) and (1/2)(1,1 ± q,L). NMR34 and
μSR35 studies confirm the onset of magnetic order with around
the same onset temperature.

The Kerr signal is observed to onset at the charge ordering
temperature, TK ≈ Tco > Tso.6 Previous discussions of the
stripe order have primarily focused on its unidirectional
(electron-nematic) character within each plane, rather than
its (short-range correlated) interplane structure. While the
nematic order has the interplane period 2, inherited directly
from the LTT structure itself, the period 4 density wave order
described above is the same as in our simple models, and so
can exhibit gyrotropic behavior. Thus we suggest that the Kerr
signal arises from the pseudoscalar chiral component χ of 3D
charge stripe order.

It is to be expected that the charge ordering triggers
significant changes in the electronic structure, which in turn
can produce significant changes in transport properties. This
has been confirmed in multiple experiments. In particular, the
Hall resistance, which is positive and an increasing function
of decreasing temperature, begins to drop rapidly toward zero
(and can ultimately change sign at low T ) at Tco,36 and similar
behavior is seen in the thermopower.37

Recently, an apparent “anomalous,” zero-field Nernst
effect16 has been observed. At face value, this effect seemed to
imply that T is broken at Tco. However, it could alternatively
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reflect the same gyrotropic order we have proposed as the
origin of the Kerr effect. This interpretation of the anomalous
Nernst data can be tested by a variety of protocols. For
instance, eN should not change sign on flipping the sample
in a gyrotropic system.

B. Underdoped YBCO

The Kerr onset in YBCO has been tracked over the entire
range of doping up to and including optimal doping. TK is
found to decrease strongly with increasing doping, more or
less following the trend of the generally accepted pseudogap
crossover T � although TK is systematically smaller than T � by
up to 100 K. However, a number of recent experiments have
independently identified a characteristic temperature, which
appears to correlate quantitatively with TK .

In transport, a temperature TH (defined as an inflection point
in RH versus T ) has been identified with an inflection point
in the Hall coefficient RH as a function of temperature.18,19

It has been argued that this temperature marks the onset
of the Fermi-surface reconstruction that will lead, at lower
temperature, to the observed sign change of the Hall resistance
and, ultimately, to the existence of the electron pockets
inferred from quantum oscillation experiments.38–40 Similar
crossover behavior has been observed in the thermopower,41

with the same characteristic temperature. Both qualitatively
and quantitatively, TH appears to correlate well with TK .

A recent high-field NMR study has identified a magnetic
field induced transition to a statically ordered charge density
wave phase at low temperatures.42 The same experiments
find no evidence of magnetic order at any temperature in the
field range explored. Together, these results strongly support a
correlation between charge ordering phenomena and the most
significant features of the Fermi surface reconstruction.

More recently still, two x-ray scattering experiments have
revealed the existence of significant peaks in the structure fac-
tor at wave vectors Qx = (q,0,1/2) and Qy = (0,q,1/2) with
q ≈ 0.31 in underdoped YBCO with doped hole concentration
x near 1/8.20–22 As in the case of LBCO, there are two Cu-O
layers per crystalline unit cell, so the interplane ordering vector
1/2 implies four planes per unit cell. The width of the peaks
in-plane implies correlation lengths of up to ξab ∼ 20 lattice
constants, but the correlation length in the interplane direction
is of order one unit cell. That the associated CDW order is
fluctuating, not static, is inferred from the observed strong
T dependence of ξab and from the fact that no evidence of
associated static electric quadrupole ordering is seen in NMR
studies of the same materials.42

The observation that the peaks at Qx and Qy have
approximately equal intensity, width (correlation length),
and incommensurability q is somewhat surprising, given the
strongly orthorhombic character of the electronic structure of
YBCO. The similarity of the pattern of ordering vectors to
those seen in LBCO (with a somewhat different value of q) is
possibly suggestive that here, too, the charge order corresponds
to alternating planes with x and y directed charge stripes.
Evidence of a nematic character of the electronic state has
also been inferred from measurements of the anisotropy of the
Nernst effect (antisymmetrized with respect to the magnetic
field). Although YBCO is orthorhombic, and hence always

has a nonzero Nernst anisotropy, an anomalous increase of
the anisotropy occurs in the pseudogap regime, which has
been associated with spontaneous symmetry breaking in the
electronic system. While the onset temperature of this effect
is somewhat difficult to determine, it seems to have the same
trends with doping as TK . It will require further experiments to
disentangle any possible symmetric in magnetic field portion
of the Nernst response from an admixture of the thermopower
due to misalignment of the leads.

C. Optimally doped Bi2201

A coordinated study of the Kerr effect, pump and probe
optical reflectivity, and ARPES was carried out on an optimally
doped crystal of Bi2201.5 TK was found to coincide with the
temperature at which an antinodal pseudogap first begins to
develop in the ARPES spectrum and at which sharp changes
in the relaxational dynamics could be identified in pump
and probe experiments. This observation establishes a close
relation between the ordering tendencies, which give rise to
the Kerr effect and the fundamental physics of the pseudogap.
TK also corresponds well to the value of T � inferred from the
onset of T dependence of the Knight shift observed in NMR
studies17 of similar crystals, giving bulk confirmation of the
same relationship. It should further be noted that the same
NMR studies find no evidence of magnetic order to the lowest
temperatures, even when superconductivity is quenched by
the application of a high magnetic field. Conversely, some
preliminary evidence of CDW order, which possibly breaks T
and/or I, has been obtained from inelastic x-ray scattering in
this material.43

VII. DISCUSSION

Concerning electronic order in the pseudogap regime of the
underdoped cuprates, we propose the following. (1) There is
a phase transition at TK , at which I and mirror symmetries
are broken. (2) This transition reflects a local tendency toward
CDW formation within the planes but does not require long-
range CDW order. If confirmed, the existence of a nonzero
value of the pseudoscalar χ �= 0 is interesting in its own right.
However, by itself, this order is unlikely to play a central role
in the physics of the cuprates; at best, it is a useful indicator
of important changes in the electronic structure, which occur
in the pseudogap regime. In the first place, it reflects subtle
correlations between neighboring Cu-O planes, whereas the
essential physics of the cuprates is clearly associated with the
much larger intraplane electronic interactions.

While it seems likely that the gyrotropic order derives from
an underlying tendency toward CDW formation, the origin
of the CDW formation and its relation to the pseudogap
remain open questions. For instance, stripe order could reflect
a still more basic tendency toward incommensurate spin-
density-wave44–46 or d-density wave47 formation. Moreover,
all independent measures of CDW order in the cuprates
show that the strength of the ordering tendency is strongly
peaked in the neighborhood of x ∼ 1/8, while the pseudogap
phenomena apparently grow monotonically stronger with
decreasing x. All this is suggestive that the stripe order, and its
avatars, electron nematic and cholesteric order, are probably
all consequences of more fundamental electronic correlations.
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Finally, there are at least two noteworthy experimental
observations that are not immediately accessible in the present
framework. Firstly, the origin of the memory effect above
TK remains a mystery. Phenomenologically, one needs to
imagine that there is an effective weak symmetry breaking
field in each crystal that determines the chirality of the ordered
phase upon cooling below TK , but the origin of this field
is, presently, unclear. Secondly, evidence of a translation
symmetry preserving magnetic phase48 that onsets below the
pseudogap T � (which, at least in the case of YBCO, is distinctly
larger than TK ) has been obtained from magnetic neutron
scattering studies in YBCO49 and Hg-1201.50 Evidence has
also been adduced47 of a transition to a d-density wave state
at T �. Moreover, the existence of distinct thermodynamic
signatures of transitions at T � and TK has been reported in

recent resonant ultrasound measurements51–53 in YBCO. The
relation between T � and TK is presently an important open
question.
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