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A hybrid approach to nonequilibrium dynamics of quantum impurity systems is presented. The numerical
renormalization group serves as a means to generate a suitable low-energy Hamiltonian, allowing for an
accurate evaluation of the real-time dynamics of the problem up to exponentially long times using primarily
the time-adaptive density-matrix renormalization group. In particular, by constructing a suitable hybrid chain,
discretization errors are essentially eliminated on all time scales of interest. We extract the decay time of the
interaction-enhanced oscillations in the interacting resonant-level model and show their quadratic divergence
with the interaction strength U . Our numerical analysis is in excellent agreement with analytic predictions based
on an expansion in 1/U .
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I. INTRODUCTION

The description of strong electronic correlations far from
thermal equilibrium poses an enormous theoretical challenge.
At the root of the problem lies the nonequilibrium density
operator, which is not explicitly known in the presence of
interactions. Of particular relevance are quench and driven
dynamics realized in pump-probe experiments,1,2 atomic
traps,3,4 and nanodevices,5,6 where the full-time evolution of
the density operator should, in principle, be tracked.

Quantum impurity systems (QIS’s) have regained consid-
erable attention over the past 15 years due to the advent
of carefully designed nanodevices. These generically consist
of a few locally interacting degrees of freedom, typically
a quantum dot, in contact with macroscopic leads. Since
driven dynamics in nanodevices is of practical relevance to
quantum computing and quantum control, considerable efforts
were mounted in recent years toward devising approaches
capable of treating the nonequilibrium state in QIS’s. Indeed,
significant analytical progress was achieved in the calculation
of real-time dynamics using different adaptations of pertur-
bative renormalization-group ideas.7–10 However, with the
exception of Ref. 11, these approaches are confined to the
weak-coupling regime. Numerical methods, such as applica-
tions of the time-dependent density-matrix renormalization
group (TD-DMRG)12,13 to QIS’s,14,15 the time-dependent
numerical renormalization group (TD-NRG),16,17 an iterated
path-integral approach,18 and different continuous-time Monte
Carlo simulations,19–21 are more flexible in the parameter
regimes they can treat, but are either restricted to short time
scales14,15,18–21 or susceptible to finite-size and discretization
errors.14–17 Indeed, finite-size representations are faced with
an inherent difficulty of accurately representing the continuum
limit even on intermediate time scales.

In this paper, we report the extension of a recent hybrid
approach22 that overcomes some of the major obstacles ham-
pering the description of quench dynamics in QIS’s. The basic
idea is to exploit the outstanding capabilities of the TD-NRG
to bridge vastly different time scales in order to systematically

construct an effective low-energy Hamiltonian, whose real-
time dynamics can be calculated using complementary ap-
proaches that do not rely on the special structure of the Wilson
chain. In this manner, one can largely eliminate discretization
errors inherent to the Wilson chain while boosting the
complementary approach to time scales orders of magnitude
beyond its natural capabilities. As a proof of principle, we
have hybridized in Ref. 22 the TD-NRG with the Chebyshev
expansion technique (CET),23 yet the limited Hilbert space ac-
cessible to the CET restricted us to the standard Wilson chain.

Here, we demonstrate the full power of the approach by
hybridizing the TD-NRG with the TD-DMRG,13 which allows
us to lift the restriction to an ordinary Wilson chain. Using
the exactly solvable noninteracting resonant-level model as a
benchmark, we discuss the role of different chain types in faith-
fully reproducing the real-time dynamics of the original contin-
uum model, proposing a new chain structure that circumvents
the main drawback of the Wilson chain used in the TD-NRG
and also in Ref. 22. From the standpoint of the TD-DMRG,
our approach enables access for the first time to exponentially
long time scales in units of the inverse bandwidth.

Focusing on the interacting resonant-level model
(IRLM),24,25 we show that one can essentially eliminate dis-
cretization errors on all time scales of interest by constructing
a suitable hybrid chain. This, in turn, allows for a thorough
examination of the interaction-enhanced oscillations first re-
ported in Ref. 22, yielding excellent agreement with analytical
predictions for their frequency and damping time. The latter is
shown to diverge quadratically with the interaction strength,
demonstrating that relaxation to equilibrium can involve new
time scales far longer than the thermodynamic ones.

The remainder of the paper is organized as follows. In
Sec. II we present the hybrid NRG-DMRG approach, starting
with a concise derivation of the hybrid-NRG platform in
Sec. II A, followed by details of the NRG-DMRG interface
in Sec. II B. Our results are presented in turn in Sec. III.
To this end, we begin with a brief exposition of the IRLM
in Sec. III A, followed by the introduction of the double
Wilson chain in Sec. III B and a comprehensive analysis of
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the interaction-enhanced oscillations in Sec. III C. Details of
the strong-coupling expansion are relegated to an Appendix.
We conclude in Sec. IV with a brief summary and outlook.

II. HYBRID NRG-DMRG

A. Concise derivation of the hybrid-NRG

The hybrid-NRG platform was thoroughly discussed in
Ref. 22 from a wave-function perspective. Below we present
an alternative derivation of the platform based on the TD-NRG.
The Hamiltonian H = Hbath + Himp + Hmix of a quantum
impurity problem consists of three parts: Hbath models the
continuous bath, Himp represents the decoupled impurity, and
Hmix describes the coupling between the two subsystems. For
t < 0, the entire system is assumed to be characterized by a
density operator ρ̂0 associated with an initial Hamiltonian Hi .
Specifically, ρ̂0 can either be the equilibrium density operator
corresponding to Hi , or may project onto one of its low-lying
eigenstates, typically the ground state. At time t = 0, a static
perturbation is abruptly switched on such that Hi → Hf . Our
goal is to track the time evolution of local expectation values:
O(t) = Tr{ρ̂(t)Ô} with ρ̂(t) = e−itHf

ρ̂0e
itHf

.
In Wilson’s numerical renormalization group (NRG),26

Hbath is discretized logarithmically using a dimensionless
parameter � > 1, and mapped onto a semi-infinite chain
whose open end is coupled to the impurity via Hmix. Wilson’s
chain is characterized by exponentially decreasing hopping
matrix elements tm ∝ D�−m/2 (D being the conduction-
electron bandwidth), defining a natural separation of scales.
This enables an iterative diagonalization of H, where at the
conclusion of each step only the lowest Ns eigenstates of that
iteration are retained. Terminating the procedure after N steps,
the collection of states discarded after each iteration combine
to form a complete basis set of approximate NRG eigenstates
of H on the N -site chain.16,17 The expectation value of any
local operator Ô can be formally expressed as16,17

O(t � 0) =
N∑

m=0

trun∑
r,s

Om
r,sρ

m
s,r (t), (1)

where r and s run over the NRG eigenstates of Hf at
iteration m � N , Om

r,s is the matrix representation of Ô at
that iteration, and ρm

s,r (t) is the corresponding time-dependent
reduced density matrix. The restricted sum over r and s

requires that at least one of these states is discarded at
iteration m.

Partitioning the sum over m into m � M and M < m at
some arbitrary but fixed M < N , Eq. (1) is recast as

O(t � 0) =
M∑

m=0

trun∑
r,s

Om
r,sρ

m
s,r (t) + Tr{1̂+

MÔ1̂+
Mρ̂(t)1̂+

M}, (2)

where 1̂+
M projects onto the subspace retained at the conclusion

of iteration M . Equation (2) is formally exact, relying solely
on the completeness of our basis set.16,17 It has the following
interpretation. At each energy scale D�−m/2 with m � M ,
only those terms involving at least one discarded high-energy
state contribute to O(t), leaving the contribution of the low-
energy subspace retained at the conclusion of iteration M . In
the process, the NRG has produced an effective quantum-

impurity Hamiltonian HM+1 with the reduced bandwidth
Deff ∝ D�−M/2:

HM+1 =
∑

k

EM
k |k; M〉〈k; M|

+
N−1∑
m=M

∑
ν

tm1̂+
M{f †

m+1,νfm,ν + H.c.}1̂+
M. (3)

Here, f
†
m,ν creates an electron of flavor (spin) ν on the chain

site m, |k; M〉 labels the kept NRG eigenstates at iteration M ,
and EM

k are the corresponding NRG eigenenergies. Usually,
one would proceed with the NRG to iteratively diagonalize
HM+1. Here, we follow a different route: (i) we abandon
the traditional Wilson chain and seek an optimal choice
for the hopping amplitudes tm with m � M; (ii) HM+1 is
used as input for our complementary method of choice in
order to compute Tr{1̂+

MÔ1̂+
Mρ̂(t)1̂+

M}; (iii) employing the
standard NRG approximation16,17 ρm

s,r (t) ≈ ei(Em
r −Em

s )t ρred
s,r (m),

the reduced density matrix ρred
s,r (M) as produced by our method

of choice is fed back into the TD-NRG to account for the
remaining high-energy dynamics in Eq. (2).

In this paper, we supplement the TD-NRG with the adaptive
TD-DMRG.13 The system is assumed to initially occupy the
ground state |ψ0〉 of Hi

M+1, which we construct using the
DMRG.27 Accordingly, the time-dependent density operator
ρ̂(t) is given by

ρ̂(t) = |ψ(t)〉〈ψ(t)| (4)

with

|ψ(t)〉 = e−itHf |ψ0〉, (5)

resulting in

Tr{1̂+
MÔ1̂+

Mρ̂(t)1̂+
M} = 〈χM (t)|Ô|χM (t)〉. (6)

Here, |χM (t)〉 = 1̂+
M |ψ(t)〉 is the projection of |ψ(t)〉 onto the

low-energy subspace retained at the conclusion of iteration M

of the final Hamiltonian Hf .
Although Eq. (2) is formally exact for arbitrary M , the larger

Nχ = 〈χM (t)|χM (t)〉 � 1, the smaller the contribution of the
sum on the right-hand side of Eq. (2). If (1 − Nχ ) < ε for
some small number ε, then |χM (t)〉 = |ψ(t)〉 + O(

√
ε), and

the major contribution to the real-time dynamics originates
from 〈χM (t)|Ô|χM (t)〉.

A proper choice of M is therefore important. Initially,
the NRG level flows26 of Hi and Hf are nearly identical.
We choose M to be a characteristic iteration after which
the two level flows begin to significantly deviate from one
another.16,17,26 The corresponding energy scale, D�−M/2, is
typically of order the energy difference between 〈ψ0|Hi |ψ0〉
and 〈ψ0|Hf |ψ0〉. With that choice of M , the major contribution
to O(t) stems from 〈χM (t)|Ô|χM (t)〉. We approximate |χM (t)〉
by exp(−itHf

M+1)1̂+
M |ψ0〉, adopting the NRG philosophy

that excitations on different energy scales are only weakly
coupled.22 Thus, the NRG generates a suitable low-energy
Hamiltonian, allowing for the real-time dynamics of the
problem to be explored on the exponentially long time scale
1/Deff ∝ �M/2 using mainly the TD-DMRG.
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B. Interfacing the NRG and DMRG

A key component of the hybrid-NRG is the interface
between the TD-NRG and the complementary method of
choice. This important aspect of the hybrid platform has been
discussed in some detail in Ref. 22 from a general perspective.
Below we provide essential details of the how the NRG and
DMRG are interfaced.

Overall, there are five major steps in the hybrid NRG-
DMRG algorithm. First, two NRG runs are performed up to
(including) iteration M , one for the initial Hamiltonian Hi and
another for the final Hamiltonian Hf . During this step, which
parallels the standard TD-NRG algorithm,16,17 one records
the NRG eigenenergies and transfer matrices at each iteration
m � M , as well as the overlap matrices

〈qi ; m|r; m〉 = Sqi ,r (m). (7)

These encode the overlap between the NRG eigenstates of the
final Hamiltonian at iteration m (denoted by |r; m〉) and the
NRG eigenstates of the initial Hamiltonian at the same iteration
(denoted by |si ; m〉). At the conclusion of this step one has
produced, in particular, the effective low-energy Hamiltonian
of Eq. (3) both for Hi and Hf .

In the second step, one uses the DMRG27 to compute the
ground state of the low-energy HamiltonianHi

M+1 correspond-
ing to Hi , which serves as our initial state |ψ0〉. The state |ψ0〉
so obtained has the form of a matrix product state,13 where each
chain site M + n (n = 1, . . . ,N − M) in Eq. (3) is assigned
a suitable matrix An. Viewing the Ns NRG eigenstates and
eigenenergies kept at the conclusion of iteration M as forming
the levels of a hyperimpurity, the latter is likewise assigned a
matrix A0, resulting in the matrix-product representation

|ψ0〉 ⇐⇒ A0A1A2 . . . AN−M. (8)

Given this form, the DMRG optimizes over the A matrices so
as to minimize the energy of the targeted state with respect to
Hi

M+1.
Once at hand, the third step of the hybrid NRG-DMRG

is to project the initial state |ψ0〉 onto the low-energy
subspace of the final Hamiltonian Hf , in order to compute
|χM〉 = 1̂+

M |ψ0〉. Generally speaking, if |ψ0〉 has the formal
expansion

|ψ0〉 =
∑
qi ,e

cqi ,e|qi ; M〉 ⊗ |e〉chain (9)

[here |e〉chain labels a basis state for the chain degrees of
freedom in Eq. (3)], then a straightforward application of 1+

M

yields22

|χM〉 =
∑
r,e

br,e|r; M〉 ⊗ |e〉chain (10)

with

br,e =
∑
qi

S∗
qi ,r

(M)cqi ,e. (11)

This conversion rule is conveniently implemented in the
DMRG, as it solely applies to the matrix A0 that appears
in the matrix-product representation of Eq. (8). Specifically,

A0[si] → Ā0[r] with

Ā0[r] =
∑
qi

S∗
qi ,r

(M)A0[qi], (12)

with all other matrices remaining unchanged.
The construction of |χM〉 enables the fourth and fifth steps

of the hybrid NRG-DMRG, which are (iv) propagation in
time of

|χM (t)〉 = 1̂+
Me−itHf |ψ0〉 ≈ e−itHf

M+1 |χM〉 (13)

using the adaptive TD-DMRG13 and the computation of
〈χM (t)|Ô|χM (t)〉, and (v) the calculation of ρred

s,r (M), which is
then fed back into the TD-NRG to account for the contribution
of the early NRG iterations with m � M . The latter com-
putation implements the same backtracking algorithm of the
TD-NRG.16,17 Equation (13), we reiterate, is just the standard
NRG approximation whereby the mixing of excitations at
different iterations is neglected. Combined, steps four and five
provide us with the two contributions to O(t) in Eq. (2), i.e.,
that of the early iterations and that of the retained low-energy
subspace.

III. RESULTS

A. Interacting resonant-level model

We shall demonstrate our hybrid NRG-DMRG approach
by investigating quench dynamics in the IRLM, defined by the
Hamiltonian

H =
∑

k

εkc
†
kck + Edd

†d + V√
Nk

∑
k

{c†kd + H.c.}

+ U

Nk

∑
k,k′

:c†kck′ :

(
d†d − 1

2

)
. (14)

Here, d† creates an electron on the impurity level, c
†
k

creates a band electron with momentum k, Nk denotes the
number of distinct k points, and :c†kck′ : = c

†
kck′ − δk,k′θ (−εk)

stands for normal ordering with respect to the filled Fermi
sea. The basic energy scales in the problem include the
level energy Ed and the hybridization width 
0 = π�V 2,
where � is the conduction-electron density of states at the
Fermi energy. The effect of the contact interaction is to
renormalize the hybridization width at resonance according
to 
0 → 
eff ≈ D(
0/D)1/(1+α), with α = 2δ − δ2 and δ =
(2/π ) arctan(π�U/2). Although the thermodynamics of the
IRLM was investigated over 30 years ago,24,25 there has been
a recent surge of interest in its nonequilibrium properties,
particularly for a biased two-lead setting.7,8,10,28,29 Focusing
on the single-band version of Eq. (14), we consider an abrupt
shift of the level energy at time t = 0 from Ei

d to E
f

d , with
the goal of tracking the time evolution of the level occupancy,
nd (t) = 〈d†(t)d(t)〉.

B. Hybrid chain

As discussed in Ref. 22, there are two sources of deviations
from the continuum limit when considering quench dynamics
on a pure Wilson chain: (i) internal reflections of currents
caused by the exponentially decreasing hopping matrix
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elements along the chain30 (leading, in turn, to an exponential
slowing down of the transport velocity); (ii) reflections at
the end of the finite-size chain that propagate back to the
impurity. While the former source of error is eliminated for
an ordinary tight-binding chain, the latter point is unavoidable
in nearly all practical calculations as the total chain length
is limited by computational demands. Thus, one would like
to simultaneously minimize the internal reflections and the
transport velocity down the chain to accurately access long
times.

Guided by these considerations, we propose to use a double
Wilson chain, constructed by patching two separate Wilson
chains (in contrast to the single Wilson chain employed
in Ref. 22). The first M hopping matrix elements tm with
0 � m � M − 1 are taken to be the customary Wilson hopping
amplitudes26 with the discretization parameter �1. Further
down the chain a second, smaller discretization parameter
�2 is used, with a magnitude close to but larger than
one.31,32 To reduce internal reflections, the transition from
�1 to �2 is smoothed according to tM+m = λ

−1/2
m tM+m−1

with

λm =
{

�1 − �1−�2
Ninter

(m + 1), 0 � m < Ninter,

�2, Ninter � m.
(15)

The merit of such a double Wilson chain is demonstrated
in Fig. 1, where nd (t) is plotted following a quench from
Ei

d to E
f

d . The interaction U is set to zero, to facilitate
comparison with an exact continuum-limit solution in the
wide-band limit,17 as well as with an exact numerical solution

5×105 10×105 15×1050

0.2

0.4

0.6

0.8

1

n d(t)

Λ = 1.2
Λ = 1.1
Λ = 1.05
Λ = 1.02

0 5×105 10×105 15×105

t .D
0

0.2

0.4

0.6

0.8

1

n d(t)

0 5 10 15
t .Γ0

Ed
f = -Ed

i  = Γ0

Ed
f = -Ed

i  = 10Γ0

FIG. 1. (Color online) Time evolution of nd (t) on a double Wilson
chain, following a sudden change of the level energy from Ei

d

to E
f

d . Here 
0/D = 10−5 and U = 0. The full red line depicts
the exact solution on the double Wilson chain (obtained by exact
diagonalization), the dashed green line displays the hybrid NRG-
DMRG, and the full black line is the exact analytical continuum-limit
solution (Ref. 17) in the wide-band limit. Chain parameters: M = 29,
�1 = 1.8, �2 = 1.02, Ninter = 4, and N = 180. Ns = 50 states are
retained both in the NRG and in the course of the TD-DMRG. Inset:
Exact nd (t) on a pure Wilson chain, for E

f

d = −Ei
d = 10
0 and

different �’s. Here N = 500 (1000) for � � 1.1 (� � 1.05).

on the hybrid chain, obtained by exact diagonalization of the
single-particle eigenmodes. We set 
0/D = 10−5, placing the
basic time scale 1/
0 orders of magnitude beyond the reach
of pure TD-DMRG. The parameter M was chosen such that
D�

−M/2
1 ≈ 20
0 is twice the maximal value of |Ed | used.

Evidently, deviations between the continuum limit, the
exact solution on the hybrid chain, and the hybrid NRG-
DMRG approach are hardly discernible up to long time scales,
well after the occupancy has relaxed to its new equilibrium
value. For E

f

d = −Ei
d = 
0, the excellent agreement persists

up to t � 30/
0, at which point all three curves begin
to separate. For E

f

d = −Ei
d = 10
0, the agreement extends

up to slightly above 15/
0. As analyzed in the inset, an
impractically small discretization parameter � ≈ �2 = 1.02
is needed to achieve a comparable representation of the
continuum limit using a pure Wilson chain. Hence, by using
a carefully designed double Wilson chain, one can work in
effect with a discretization parameter � ≈ �2 extremely close
to 1.

C. Interaction-enhanced oscillations

So far we have considered the case U = 0, for which
exact results17 are available. Next we address a finite contact
interaction U and analyze its effect on nd (t). We note in
passing that analytical corrections to the noninteracting limit
were recently derived for weak coupling, U/D  1, using
the real-time renormalization group.8 Here we focus primarily
on stronger couplings, where qualitative differences from the
noninteracting results are found.

As is well known, the IRLM is equivalent at low energies to
its noninteracting counterpart, both describing a phase-shifted
Fermi liquid. Near resonance, the effect of U in equilibrium
is to renormalize 
0 to 
eff , hence one may expect nd (t) to
follow the same curves as in Fig. 1 upon substituting 
0 →

eff . This, however, is not the case. In Fig. 2 we adjusted

0 separately for each value of U so as to maintain a fixed

0 1×106 2×106 3×106

t .D
0

0.2

0.4

0.6

0.8

n d(t)

U/D = 0
U/D = 1
U/D = 2
U/D = 5

0 10 20 30
t .Γeff

Ed
f = -Ed

i = Γeff

FIG. 2. (Color online) Same as Fig. 1, for E
f

d = −Ei
d = 
eff and

different values of U . 
0 was adjusted separately for each value
of U so as to maintain 
eff/D = 10−5. All other chain, NRG, and
TD-DMRG parameters are the same as in Fig. 1.
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eff/D = 10−5. To this end, we fixed Ed/D = −10−5 and
scanned 
0 using the hybrid NRG-DMRG until a ground-
state occupancy of nd = 0.75 was reached. As first reported in
Ref. 22, interaction-enhanced oscillations gradually develop
in nd (t) upon increasing U . For large U/D > 1, exemplified
by U/D = 5, these oscillations decay on a time scale much
longer than 1/
eff , revealing the emergence of a new time
scale unrelated to the thermodynamic ones. Note that, as for
U = 0, our curves appear to faithfully represent the continuum
limit up to t � 30/
eff for this moderate quench.

The extended time scales and supreme accuracy of the
hybrid NRG-DMRG allow for a detailed quantitative analysis
of the interaction-enhanced oscillations, which was previously
impossible using the hybrid NRG-Chebyshev approach.22 In
particular, we can now address large values of |Ed |/
eff that
so far were inaccessible. The understanding of the interaction-
enhanced oscillations employs a strong-coupling expansion in
1/U , whose details are provided in the Appendix. Below we
briefly discuss only the key points.

For U → ∞, the impurity level and zeroth Wilson shell
decouple from the rest of the chain, being confined to a com-
bined valence of one. Within this subspace, the two eigenstates
of the local Hamiltonian have the energies ε± = (Ed/2) −
U/4 ±

√
(Ed/2)2 + V 2, hence nd (t) displays quantum beats

with the frequency � = ε+ − ε− = 2
√

(Ed/2)2 + V 2.22 For
large but finite U , these coherent oscillations are damped by
the residual coupling to the rest of the chain, which introduces
a finite lifetime of the state ε+. We expand to order 1/U about
the U → ∞ limit, which yields the residual coupling to the
rest of the chain [see Eq. (A14)]. Using Fermi’s golden rule,

5 10 15 20 25 30
U/D

0

1

2

3

τ.
Γ ef

f(D
/U

)2

0 5 10
t .Γeff

0

0.4

0.8

n d(t)

5 10 15 20 25 30
U/D

0

6

9

Ω
/Γ

ef
f

0

0.4

0.8

(a)
(c)

(d)

(b)

3

FIG. 3. (Color online) (a) Interaction-enhanced oscillations (red
line) for E

f

d = −Ei
d = 3
eff and U/D = 10, along with a fit to

Eq. (17) (black crosses). (b) Same as (a), for E
f

d = −Ei
d = 
eff .

(c) The fitted frequency � vs U for E
f

d /
eff = −Ei
d/
eff = 1 (black

circles), 3 (red circles), and 10 (green circles). Full lines display the
analytical strong-coupling expression for �, employing the numerical
values of V . Arrows on the right-hand side mark the asymptotic
U → ∞ values of �. (d) Same as (c) for the decay time τ . All
remaining parameters are the same as in Fig. 2.

the decay time is found to be

τ−1 = π

(
8D

π2U

)2
V 2√

(Ed/2)2 + V 2
. (16)

Further neglecting rearrangements of the bath electrons (them-
selves being controlled by 1/U ), we deduce the functional
form

nd (t) = A[e−t/2τ cos(�t)
√

1 − e−t/τ cos2 θ − e−t/τ sin θ ]

+ neq(1 − e−t/τ ) + nd (0)e−t/τ , (17)

where neq is the equilibrated long-time occupancy, while A

and θ have no direct relation to any simple observable.
Panels (a) and (b) of Fig. 3 show typical fits of nd (t) to

Eq. (17), using τ , �, A, θ , and nd (0) = 1 − neq as fitting
parameters. The fitting range, t · 
eff � 10, was carefully
chosen to exclude any discretization error. Evidently, Eq. (17)
describes the numerical curves quite well, further validating
the expansion in 1/U . The extracted values of � and τ ,
plotted in panels (c) and (d) for different quenches, practically
coincide above U/D ≈ 10 with the analytical predictions,
confirming, in particular, that τ ∝ U 2. Hence, a new time scale
with no thermodynamic counterpart is seen to emerge as U is
increased.

IV. SUMMARY

A new hybrid NRG-DMRG approach was devised that
largely eliminates discretization errors hampering the TD-
NRG, while boosting the TD-DMRG to time scales orders of
magnitude beyond its natural reach. Two key ingredients lie at
the heart of the approach. The first is the introduction of a new
double Wilson chain that minimizes internal reflections along
the chain while maximizing the round-trip time for a given
chain length. This enabled access to continuum-limit results
using a finite discretized chain, as demonstrated by comparison
to the exact continuum-limit solution of the noninteracting
resonant-level model. The other key component is usage of
the NRG to construct an effective low-energy Hamiltonian that
serves as input for TD-DMRG calculations on the optimized
subchain. Since the effective bandwidth of the low-energy
Hamiltonian can be orders of magnitude smaller than that of
the original model, this allows access to time scales far beyond
the reach of pure TD-DMRG.

With these improvements, the hybrid NRG-DMRG can
address exceptionally long times with unparallel accuracy,
as demonstrated by a detailed analysis of the interaction-
enhanced oscillations in the IRLM. With increasing interaction
strength, coherent oscillations gradually develop in nd (t), with
a frequency that hardly depends on the interaction strength U

and a decay time that grows asymptotically as U 2. Excellent
agreement was obtained with analytical expressions derived
using a strong-coupling expansion in 1/U .

These outstanding capabilities of the hybrid NRG-DMRG
open the door, so we hope, to accurate investigations of
systems and coupling regimes that so far remained beyond
reach. For example, the build-up of current in interacting
quantum dots and single-molecule transistors in regimes where
exponentially small energy scales are found. One particularly
interesting direction are single-molecule devices showing
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hysteretic I-V curves and negative differential conductances,33

which may originate from conformational changes that take
place in these complex molecules. Since the NRG is designed
to take local interactions into account to all orders, our hybrid
approach is neither limited to weak couplings nor to the
high-temperature regime.
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APPENDIX: DETAILS OF THE STRONG-COUPLING
EXPANSION

1. Derivation of effective Hamiltonian

In this Appendix, we provide details of the strong-coupling
expansion about the U → ∞ limit. Specifically, we carry out
an expansion in 1/U to obtain the decay time τ of Eq. (16)
and the functional form of the level occupancy specified in
Eq. (17). Our starting point is the derivation of an effective
Hamiltonian, valid to order 1/U . To this end, we write the
IRLM of Eq. (14) in the form

H =
∞∑

n=0

ξn{f †
n+1fn + f †

n fn+1} + Hloc, (A1)

with the local Hamiltonian

Hloc = Edd
†d + V {d†f0 + f

†
0 d} + U

(
f

†
0 f0 − 1

2

)(
d†d − 1

2

)
.

(A2)

Any particle-hole-symmetric band Hamiltonian can be cast in
the form of Eq. (A1) using a Wilson-type tridigonalization
procedure. Different band structures are distinguished by the
hopping matrix elements ξn along the chain, the largest of
which determines the bandwidth D. The conventional Wilson
chain26 is one example of such a tight-binding representation,
where logarithmic discretization of the band is used as an
approximation to obtain exponentially decreasing hopping
matrix elements. We distinguish our general discussion from
the more specific NRG-DMRG context by using a different
notation (ξn as opposed to tn) for the hopping matrix elements.

For large U � D, we begin by diagonalizing the local
Hamiltonian Hloc, which is readily done by noting that
Hloc commutes with the combined number operator N̂ =
n̂d + n̂0 with n̂d = d†d and n̂0 = f

†
0 f0. Introducing the state

convention |nd,n0〉 where nd,n0 ∈ {0,1} label the eigenvalues
of n̂d and n̂0, two obvious eigenstates of Hloc are |0,0〉 and
|1,1〉 with the eigenenergies ε0 = U/4 and ε2 = U/4 + Ed ,
respectively. The remaining two eigenstates in the N̂ = 1
sector are given by

|−〉 = α|1,0〉 + β|0,1〉 and |+〉 = β|1,0〉 − α|0,1〉,
(A3)

with the corresponding energies

ε∓ = (Ed/2) − U/4 ∓
√

(Ed/2)2 + V 2. (A4)

Here, α and β are suitable real coefficients obeying α2 + β2 =
1 and

αβ = − V

2
√

(Ed/2)2 + V 2
(A5)

(only their product enters our calculation below).
At temperatures well below U , the two local states with

N̂ = 0,2 become thermally inaccessible, leaving only the
states |±〉 of the N̂ = 1 sector thermally active. Coupling to
the rest of the chain, specifically the term ξ0(f †

1 f0 + f
†
0 f1),

introduces, however, virtual transitions to the excited states,
which we account for by resorting to a Schrieffer-Wolff–type
transformation.34 Specifically, we seek a canonical transfor-
mation

HS = eSHe−S (A6)

with a suitable anti-Hermitian operator S such that the
low-energy subspace with N̂ = 1 is decoupled to order ξ 2

0

from the high-energy subspace with N̂ = 0,2.35 To this end,
we introduce two complementary projection operators, P

and Q = 1 − P , where P = (2 − N̂ )N̂ projects onto the
N̂ = 1 sector. The Hamiltonian H is then divided into an
“unperturbed” part H0 and a “perturbation” H1, where

H0 = PHP + QHQ = Hloc +
∞∑

n=1

ξn{f †
n+1fn + f †

n fn+1}

(A7)

and

H1 = PHQ + QHP = ξ0(f †
1 f0 + f

†
0 f1). (A8)

Using the formal expansion

HS = H0 + H1 + [S,H0] + [S,H1] + 1
2 [S,[S,H0]] + · · ·

(A9)

and exploiting the fact that S is proportional to ξ0 at leading
order, one can group the different terms in Eq. (A9) according
to powers in ξ0. The requirement that no coupling is left to order
ξ 2

0 between the high- and low-energy subspaces is satisfied by
requiring that

H1 + [S,H0] = O
(
ξ 3

0

)
, (A10)

resulting in

HS = H0 + 1
2 [S,H1] + O

(
ξ 3

0

)
. (A11)

Equation (A10) has the formal solution

S = − 1

L0
H1 + O

(
ξ 3

0

)
, (A12)

where L0 is the Liouville operator defined by L0Ô = [Ô,H0].
To leading order in 1/U one can substitute L0 → Lloc with
LlocÔ = [Ô,Hloc] in Eq. (A12), corresponding to setting
H0 → Hloc. This approximation for S yields the explicit
expression S = S̃ − S̃† with

S̃ =
[

βξ0

ε2 − ε−
|1,1〉〈−| − αξ0

ε2 − ε+
|1,1〉〈+|

− αξ0

ε0 − ε−
|−〉〈0,0| + βξ0

ε0 − ε+
|+〉〈0,0|

]
f1, (A13)
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which follows from a suitable decomposition of f
†
0 into

Hubbard eigenoperators of Lloc. Since U � |Ed |,V , one can
further replace each of the energy denominators in Eq. (A13)
with U/2. Substituting the resulting expression for S into
Eq. (A11) and projecting HS onto the low-energy subspace,
one finally arrives at the following effective low-energy
Hamiltonian, valid to order 1/U :

Heff =
∞∑

n=1

ξn{f †
n+1fn + f †

n fn+1} +
∑
p=±

εp|p〉〈p|

+ 2ξ 2
0

U
(β2 − α2) [|−〉〈−| − |+〉〈+|] :f †

1 f1:

− 4ξ 2
0

U
αβ [|−〉〈+| + |+〉〈−|] :f †

1 f1:. (A14)

Here, :f †
1 f1: = f

†
1 f1 − 1/2 represents normal ordering with

respect to the filled Fermi sea of the truncated chain.

2. Decay time τ

The effective Hamiltonian of Eq. (A14) contains two inter-
action terms, one representing static potential scattering with
an overall sign that depends on the “impurity” configuration
|±〉, and another involving transitions between the states |−〉
and |+〉. It is this latter term that is responsible for the decay
time τ . For U → ∞, when no transitions are allowed between
the two “impurity” states, local observables display quantum
beats with the frequency � = ε+ − ε− = 2

√
(Ed/2)2 + V 2.22

Once U is made finite, the system can relax from the locally
excited state |+〉 to |−〉, which damps the quantum beats. The
associated decay time τ can be estimated for large U using
Fermi’s golden rule. The basic relaxation mechanism involves
the transition from |+〉 to |−〉 while creating a particle-hole
excitation in the Fermi sea of the truncated chain. Denoting
the local density of states corresponding to f

†
1 in the truncated

chain by �̃, a straightforward calculations yields

τ−1 = 2π

(
4αβ

U
ξ 2

0

)2

�̃2�, (A15)

where �̃2 represents the combined density of states for particle-
hole excitations and � is the available window of energy for
such excitations.

Equation (A15) involves the combination ξ 2
0 �̃, which may

appear at first sight as an unknown quantity that depends on
details of the band structure. Remarkably, for a particle-hole
symmetric band of the type considered here one has the identity

ξ 2
0 �̃ = 1

π2�
, (A16)

which follows from the locator expansion g(z) = [z −
ξ 2

0 g̃(z)]−1, relating the Green function g of site j = 0 with
respect to the free chain Hamiltonian of Eq. (A1) and the Green
function g̃ of site j = 1 with respect to the truncated chain
Hamiltonian of Eq. (A14). Particle-hole symmetry implies
that g(0 + iη) and g̃(0 + iη) are purely imaginary and equal
to −iπ� and −iπ�̃, respectively, hence −iπ� = −i/(ξ 2

0 π�̃).
Inserting Eqs. (A5) and (A16) into Eq. (A15) and setting
� = 1/(2D), one finally obtains the decay time of Eq. (16).

3. Functional form of nd(t)

To compute nd (t), we begin by writing the time-dependent
state of the system in the form

|ψ(t)〉 = c−(t)e−iε−t |−〉 ⊗ |ψ (−)
bath(t)〉

+ c+(t)e−iε+t |+〉 ⊗ |ψ (+)
bath(t)〉, (A17)

where |ψ (±)
bath(t)〉 pertain to the chain degrees of freedom [i.e.,

f
†
1 ,f

†
2 , . . . in Eq. (A14)]. Our convention for the coefficients

c±(t) is that they are real and positive, with all residual time
dependence contained in |ψ (±)

bath(t)〉. The latter states are taken
to be normalized to unity, i.e., 〈ψ (±)

bath(t)|ψ (±)
bath(t)〉 = 1, such that

n±(t) = c2
±(t) [n±(t) being the time-dependent occupancy of

the “impurity” state |±〉]. In terms of the coefficients c±(t),
occupancy of the d level takes the form

nd (t) = α2c2
−(t) + β2c2

+(t) + 2αβc−(t)c+(t)

× Re{e−i�t 〈ψ (−)
bath(t)|ψ (+)

bath(t)〉}, (A18)

where we have made use of the explicit forms of the states |±〉
detailed in Eq. (A3).

As shown in the previous subsection, n+(t) decays to zero
at the golden rule level with the decay time τ , implying that

c+(t) =
√

n+(t) = c+(0)e−t/(2τ ), (A19)

c−(t) =
√

1 − n+(t) =
√

1 − n+(0)e−t/τ . (A20)

Thus, nd (t) relaxes at long times to neq = α2. The opposite
limit of short time is obtained by setting t → 0 in Eq. (A18),
which yields

nd (0) = α2c2
−(0) + β2c2

+(0)

+ 2αβc−(0)c+(0)Re{〈ψ (−)
bath(0)|ψ (+)

bath(0)〉}. (A21)

These observations allow us to rewrite Eq. (A18) in the form

nd (t) = neq(1 − e−t/τ ) + nd (0)e−t/τ

+ 2αβc−(t)c+(t)Re{e−i�t 〈ψ (−)
bath(t)|ψ (+)

bath(t)〉}
− 2αβc−(0)c+(0)Re{〈ψ (−)

bath(0)|ψ (+)
bath(0)〉}e−t/τ .

(A22)

To make further progress, we neglect the time dependence
of the overlap 〈ψ (−)

bath(t)|ψ (+)
bath(t)〉, omitting thereby rearrange-

ments of the bath electrons. Indeed, since the latter processes
are controlled by weak impurity scattering of magnitude 1/U ,
one may expect the overlap to display a weak power-law decay
in time with an exponent that vanishes as 1/U for U → ∞.
Further noting that 〈ψ (−)

bath(0)|ψ (+)
bath(0)〉 is purely real [a result

that follows from the fact that |ψ(0)〉 is the ground state of
a Hamiltonian with purely real matrix elements], one can
approximate the last two lines in Eq. (A22) by

2αβ〈ψ (−)
bath(0)|ψ (+)

bath(0)〉
× [c−(t)c+(t) cos(�t) − c−(0)c+(0)e−t/τ ]. (A23)

Finally, inserting Eqs. (A19) and (A20) into Eq. (A23),
one recovers Eq. (17) with c−(0) = sin θ and A =
2αβc+(0)〈ψ (−)

bath(0)|ψ (+)
bath(0)〉.

Let us reiterate the three approximations which entered
the derivation of nd (t): (i) restriction of the full Hilbert
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space to the low-energy subspace with N̂ = 1; (ii) Fermi’s
golden rule approximation for n+(t); (iii) neglect of the
time dependence of 〈ψ (−)

bath(t)|ψ (+)
bath(t)〉. Being controlled by

1/U , all three approximations are expected to improve in
accuracy upon increasing U , as supported by our NRG
calculations.
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U. Schollwöck, Ann. Phys. 326, 96 (2011).

14P. Schmitteckert, Phys. Rev. B 70, 121302 (2004); A. Branschädel,
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