
PHYSICAL REVIEW B 87, 104519 (2013)

Zero sound and first sound in thin arbitrarily polarized Fermi-liquid films
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We study the propagation and attenuation of zero sound and first sound in thin, arbitrarily polarized Fermi-liquid
films. Following Khalatnikov and Abrikosov, we solve Landau’s linearized kinetic equation in the relaxation-time
approximation for a complex speed of sound. Analytic solutions are obtained in the hydrodynamic and ballistic
limits for arbitrary polarization. By solving the collision integral in two dimensions, we find the well-known result
that quasiparticle-quasiparticle collisions contribute to the collision frequencies 1/τσ , with a low-temperature
term proportional to T 2 ln (TFσ /T ), where σ = ↑, ↓ is the spin state. If the films are adsorbed to a dynamic
substrate, we find additional possible contributions to the collision frequency that come from quasiparticle-phonon
interactions. We show, however, that for 3He thin films, the mismatch between possible maximum values of the
Fermi velocity and the substrate speed of sound freezes this contribution out at usual experimental temperatures.
Thus, we can conclude that zero sound propagates at absolute zero in this type of adsorbed Fermi-liquid film. By
utilizing previous results for the Landau parameters of an arbitrarily polarized 3He film, we compute numerical
solutions for the sound speeds and attenuation in the hydrodynamic and ballistic regimes, thereby studying the
transition from first sound to zero sound as a function of temperature.
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I. INTRODUCTION

Fermi-liquid theory, developed by Landau1 in the mid
1950s, showed that the low-temperature collective excita-
tions and thermodynamic properties of normal many-fermion
systems could be encoded in a few parameters, the Landau
parameters, and that these parameters were related to a certain
limiting value of the microscopic scattering function.2 Thin
films of normal 3He have been studied experimentally for many
years as prototypical two-dimensional Fermi liquids.3–8 In a
recent series of papers9–11 [Li, Anderson, and Miller (LAM)],
we have utilized a perturbation-theory-based approach to study
the properties of thin, arbitrarily polarized Fermi-liquid films.
Perturbation theory was applied to the low-density Fermi gas
in three dimensions by Khalatnikov and Abrikosov (KA).12

More recently, Engelbrecht, Randeria, and Zhang13 (ERZ)
obtained an analytic solution for the s-wave contribution to
the low-density, unpolarized Fermi gas in two dimensions.
As stressed by ERZ, the key to obtaining analytic results in
two dimensions is the constant density of states. In LAM,
the perturbation-theory approach of ERZ was generalized to
include p-wave T-matrix interactions. The Landau parameters
were calculated exactly and analytically to quadratic order
in the s- and p-wave interaction parameters. These Landau
parameters can thus be used at arbitrary values of the
polarization. A rigorous discussion of the generalization of
Fermi-liquid theory to polarized systems was given by Bedell
and Quader.14

In LAM, the Fermi-liquid expressions for thermodynamic
quantities and collective excitations were obtained for arbitrary
polarization. The Landau parameter values can be easily ob-
tained once the the s- and p-wave interaction components have
been determined. Density-dependent values for these T-matrix
components were obtained by fitting existing experimental
data for the effective mass and the spin susceptibility. This
was done for two systems: second-layer 3He films on a
graphite substrate5,6 and also for submonolayer 3He adsorbed
in thin 4He superfluid films.15 We were then able to calculate

predicted values as a function of density for the effective
mass and spin susceptibility at finite polarization, and for
the compressibility and zero sound at all polarizations. In
this paper, we extend the work on the collective excitations
to examine propagation and attenuation for zero sound and
first sound at low temperatures. To this end, in Sec. II we
shall closely follow the approach of KA to derive expressions
for the speed of sound and the attenuation in terms of the
Landau parameters and the collision frequency. In Sec. III, we
calculate the low-temperature behavior of the collision integral
in the relaxation-time approximation. One contribution to the
relaxation time comes from quasiparticle-quasiparticle colli-
sions, the same as in three dimensions.16 For adsorbed films,
there is also the possibility that significant contribution to the
total collision frequency can come from quasiparticle-phonon
collisions, where the phonon in this case is an excitation in
the adsorbing substrate. In Sec. IV, we study the transition
from first sound to zero sound in a second-layer film of 3He
adsorbed to a graphite substrate as we lower the temperature by
numerically solving the general polarization-dependent kinetic
equation combined with our results for the collision frequency.
Section V is the conclusion.

II. SOUND SPEED AND ATTENUATION

We examine a system of N = N↑ + N↓, spin- 1
2 fermions

in a box of area L2. The particles have bare mass m and
interact with a two-body potential V (r) that is assumed to
depend only on the scalar distance between the particles.
The particles fill two Fermi seas up to Fermi momenta k↑
and k↓, and we introduce the convention that the spin-down
Fermi sea will always be the minority Fermi sea in the
case of nonzero polarization. The term polarization denotes
the magnetization per particle which will be denoted by P ,
thus P ≡ M/N = (N↑ − N↓)/N . The terms coverage and
areal density (N/L2) are used interchangeably. The system
is assumed to be at some finite but low temperature T in the
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sense that T � TF↓. The derivation of the dispersion relations
and attenuation of the collective excitations proceeds as in
three dimensions, beginning with Landau’s linearized kinetic
equation16

δ

δt
δnp,σ (r,t) + vp,σ · ∇rδnp,σ (r,t)

−∇pn
0
p,σ (r,t)

∑
p′,σ ′

f σσ ′
pp′ ∇rδnp,σ (r,t) = I [np,σ ], (2.1)

where vp,σ ≡ ∇pεp,σ is the Fermi velocity for the σ -spin
state, f σσ ′

pp′ = δ2E/δnp,σ δnp′,σ ′ are the Landau parameters,
and I [nk′,σ ′ ] is the collision integral. For small oscillations,
we can assume traveling wave solutions for the excitations
δnp,σ (r,t) = δnp,σ (q,ω) exp [i(q · r − ωt)]. The kinetic equa-
tion (2.1) reduces to(

qvσ
F cos θ − ω

)
νσ (θ ) + (q cos θ )

×
∑
p′σ ′

f σσ ′
pp′ δ
(
εσ ′

F − εp′σ ′
)
vσ ′

F νσ ′(θ ′)

= − 1

iτσ

[νσ (θ ) − 〈νσ (θ )〉 − 2〈νσ (θ ) cos θ〉 cos θ ], (2.2)

where νσ (θ ) is the σ th Fermi-surface distortion introduced in
the usual way:

δnp,σ (q,ω) = −δ
(
εσ

F − εpσ

)
vσ

F νσ (θ ), (2.3)

and θ is the angle between p and q. In addition, we have written
the collision integral in the relaxation-time approximation:

I [np,σ ] = − 1

τσ

[δnp,σ − 〈δnp,σ 〉 − 2〈δnp,σ cos θ〉 cos θ ]. (2.4)

The second and third terms are added to ensure conservation
of particle number, energy, and momentum.12 The angular
brackets are angular averages for two dimensions: 〈. . .〉 ≡
(1/2π )

∫ 2π

0 . . . dθ . In Fig. 11 of LAM, we show explicitly
the angular distortions of the Fermi surfaces as a function of
polarization due to the presence of a zero-sound excitation.

The expression (2.2) can be simplified by introducing
Fourier decompositions for the angle-dependent quantities

νσ (θ ) =
∞∑


=0

α
ν
σ

 cos (
θpq) ≡

∞∑

=0

α
ν
σ

 T
(cos θpq), (2.5a)

f σσ ′
pp′ =

∞∑

=0

α
f
σσ ′

 cos (
θpp′) ≡

∞∑

=0

α
f
σσ ′

 T
[cos (θpp′)].

(2.5b)

The constants α
 are defined by

α
 =
{

1 if 
 = 0,

2 if 
 � 1.
(2.6)

The quantities T
(cos θ ) ≡ cos (
θ ) are Chebyshev polynomi-
als of the first kind17 and were introduced for convenience in
LAM. It was pointed out that integrals over θ from 0 to 2π can
be replaced with integrals over x ≡ cos θ from −1 to +1 by
simply introducing the weight function w(x) = 1/

√
1 − x2

and multiplying by a factor of 2. This is valid whenever
the function involved is real, even in θ , and periodic in θ

with a period of 2π , which is the case for all functions

needed in this work. There is no calculational advantage
of this second representation. However, when using these
variables, expressions in two dimensions become very similar
to the familiar expressions in three dimensions by substituting
Chebyshev polynomials for Legendre polynomials. After
performing the indicated integrations, we find(

qvσ
F cos θ − ω

)
νσ (θ )

+ q cos θ
∑
σ ′

vσ ′
F Nσ ′

0

∞∑

=0

α
f
σσ ′

 νσ ′


 T
(cos θ )

= − 1

iτσ

[
νσ (θ ) − νσ

0 − 2νσ
1 cos θ

]
, (2.7)

where the single spin-state density of states is defined as

Nσ
0 = m∗

σ

m
Ñ0 , (2.8a)

Ñ0 ≡ mL2

2πh̄2 . (2.8b)

The quantity Ñ0, the bare single spin-state density of states,
will be used extensively in the following section. In Eq. (2.7),
the wave vector q is a manifestly complex object with real and
imaginary parts defined by

q = q1 + iq2, (2.9)

where q1 and q2 are both real. In Secs. II A, II B, and II C,
we will obtain analytic expressions for the dimensionless
speed of sound s = ω/(q1vF) and the attenuation Im(q) ≡ q2

in the cases of zero polarization, arbitrary polarization, and
full polarization, respectively. The question of whether s is
zero sound or first sound will depend on whether ωτ � 1
or ωτ � 1. Expressions for the collision frequency will be
derived in Sec. III. The numerical solutions are obtained with
Eq. (2.7) truncated after the 
 = 1 contribution. In Ref. 10, it
was shown that this truncation yields accurate sound speeds.

A. Zero polarization

In this section, we shall derive the low-temperature results
for sound propagation speed and attenuation in the limit of
zero polarization. The general results for arbitrary polarization
are presented in Sec. II B. We are proceeding in this manner
for two reasons. First, zero polarization is the most important
limit for the 3He thin-film system. Second, the results at zero
polarization can be presented as simple analytic expressions.
For general polarization, we also have analytic expressions for
the speed of sound and attenuation; however, they are implicit
equations even in the ballistic and hydrodynamic limits and
need to be solved numerically. The basic approach is the same
for both zero and general polarization, thus this section can
introduce the methodology within the framework of a simple
but important limiting system. We wish to stress that the zero-
polarization limit of the kinetic equation does not require a
special derivation, and indeed we shall show that it can also
be obtained from the general results. We note, however, that
the situation is not so simple for the collision time as will be
discussed in Sec. III.
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For zero polarization, the kinetic equation (2.7) can be
written as (

qvF cos θ − ω + 1

iτ

)
ν(θ )

+ qvF cos θ
[(

F s
0 ν0 + 2F s

1 ν1 cos θ
)]

= 1

iτ
(ν0 + 2ν1 cos θ ). (2.10)

The symmetric and antisymmetric Landau parameters used in
the zero-polarization limit are defined as usual by

2Nσ
0 f σσ ′


 = F s

 + σσ ′Fa


 , (2.11)

where for this definition we associate σ (↑) = +1, and σ (↓) =
−1. The Landau parameters that appear in Eq. (2.10) are the
usual dimensionless Landau parameters scaled with the two
spin-state density of states. Two spin-state Landau parameters
are only used in the zero-polarization case.

We now rewrite Eq. (2.10) as an equation for ν(θ ) in
preparation for taking moments with respect to T0(x) = 1 and
T1(x) = cos x:

ν(θ ) = ν0

�(cos θ − ξ )
+
(

2ν1

�
− F s

0 ν0

)
cos θ

cos θ − ξ

− 2F s
1 ν1

cos2 θ

cos θ − ξ
. (2.12)

Following KA, we introduce some convenient notation in
Eq. (2.12):

� = iτqvF, (2.13a)

ξ = ω

qvF
− 1

iτqvF
= ω

qvF
− 1

�
, (2.13b)

and we especially note that �ξ = iωτ − 1 . (2.13c)

Taking 
 = 0 and 1 moments of Eq. (2.12) and rearranging in
matrix form(

1 + F s
0 I (1) − I (0)

�

)
ν0 + 2

(
F s

1 I (2) − I (1)

�

)
ν1 = 0 ,

(2.14a)(
F s

0 I (2) − I (1)

�

)
ν0 +

(
1 + 2F s

1 I (3) − 2

�
I (2)

)
ν1 = 0,

(2.14b)

where in general the integrals that appear in (2.14) are defined
by

I (n) ≡ 1

2π

∫ 2π

0
dθ

cosn θ

cos θ − ξ
, (2.15)

and where it is understood that ξ is a complex variable. The
integrations can be performed analytically, and we find

I (0) = −1 + g(ξ )

ξ
, (2.16a)

I (1) = −g(ξ ), (2.16b)

I (2) = −ξg(ξ ), (2.16c)

I (3) = 1

2
− ξ 2g(ξ ). (2.16d)

We note that in Ref. 9 it was shown that when ξ is real the
integral vanishes unless |ξ | > 1. The important function g(ξ )
is defined by

g(ξ ) ≡ ξ√
ξ 2 − 1

− 1. (2.17)

If we now set the determinant of the coefficients in Eq. (2.14)
equal to zero, we obtain the general result for the complex
speed of sound at zero polarization:(

1 + 1

�ξ

) (
1 + F s

1

)− [(1 + F s
1

) (
F s

0 − 1

�ξ

)

+ 2ξ 2

(
1 + 1

�ξ

)(
F s

1 − 1

�ξ

)]
g(ξ ) = 0. (2.18)

1. Zero sound

Zero sound propagates in the ballistic regime ωτ � 1.
Thus, from Eq. (2.13c), we look for solutions of (2.18)
in the limit |�ξ | ≈ |ωτ | � 1. We now need to expand the
complex sound speed ξ into its real and imaginary parts. From
Eq. (2.13b), we have

ξ = ω

qvF
+ i

τqvF
≡ s(1 + iξ ′), (2.19)

where s, the dimensionless zero-sound speed of propagation,
and ξ ′ are both real. The wave vector q = q1 + iq2 is also
complex, and so we find

ξ = s

[
1 + i

(
1

ωτ
− q2

q1

)]
. (2.20)

By inspection, we can identify the propagation speed s =
ω/(q1vF) and the attenuation q2/q1 = 1/(ωτ ) − ξ ′. We as-
sume that q2/q1 � 1 and thus in this regime we must have
ξ ′ � 1. Expanding Eq. (2.17) to lowest order in ξ ′ yields

g(ξ ) = g(s) −
(

g(s) + 1

s2 − 1

)
iξ ′. (2.21)

Then, from Eq. (2.18), we find for the propagation speed and
the attenuation, respectively,

g(s) = 1 + F s
1(

1 + F s
1

)
F s

0 + 2s2F s
1

, (2.22)

q2

q1
= 1

ωτ

⎡
⎢⎢⎣1 −

(
1 + F s

1

)
[1 + g(s)] + 2s2

(
1 − F s

1

)
g(s)

(1 + F s
1 )

g(s)

[1 + g(s)]

s2 − 1
− 4s2F s

1 g(s)

⎤
⎥⎥⎦ .

(2.23)

In the simplest approximation, F s
1 = 0 and g(s) = 1/F s

0 in
agreement with previous results.10

2. First sound

In the hydrodynamic regime, ωτ � 1. Thus, 1
�ξ

≈ −1 −
iωτ , and |ξ | � 1. Thus, in this regime, we can expand
quantities in powers of 1/ξ . From Eq. (2.17),

g(ξ ) ≈ 1

2ξ 2
+ 3

8

1

ξ 4
. (2.24)
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If we substitute this back into Eq. (2.18), we find(
1 + 1

�ξ

)2

= 1

2ξ 2

[(
1 + F s

1

) (
F s

0 − 1

�ξ

)

+ 3

2

(
1 + 1

�ξ

)(
F s

1 − 1

�ξ

)]
. (2.25)

In order to obtain quantities of O(1), we multiply both sides
of (2.25) by ξ 2:(

ω

qvF

)2

= 1

2

[(
1 + F s

1

) (
1 + F s

0 − i
ωτ

2

)]
. (2.26)

Then, separating into real and imaginary components by
using q = q1 + iq2, we obtain the propagation speed and the
attenuation:

s2 = 1

2

(
1 + F s

0

)(
1 + F s

1

)
, (2.27)

q2/q1 = ωτ

4
(
1 + F s

0

) . (2.28)

B. Arbitrary polarization

The calculation for arbitrary polarization proceeds in the
same manner as that for zero polarization with the considerable
additional complexity of having to solve a 4 × 4 determinant

instead of the 2 × 2. The state-dependent generalization of
Eq. (2.12) is given by

νσ (θ ) = − νσ
0

�σ (ξσ − cos θ )
+
(

m∗
σ

m
F̃ σσ

0 νσ
0

+ v−σ
F

vσ
F

m∗
−σ

m
F̃ σ−σ

0 ν−σ
0 − 2νσ

1

�σ

)
cos θ

ξσ − cos θ

+ 2

(
m∗

σ

m
F̃ σσ

1 νσ
1 + v−σ

F

vσ
F

m∗
−σ

m
F̃ σ−σ

1 ν−σ
1

)
cos2 θ

ξσ− cos θ
.

(2.29)

The tilde notation for the dimensionless Landau parameters
indicates that these parameters are scaled with the bare single
spin-state density of states as introduced in LAM: F̃ σσ ′


 =
Ñ0f

σσ ′

 . The state-dependent versions of the parameters

introduced in Eqs. (2.13) are given by

�σ ≡ iτσ qvσ
F , (2.30a)

ξσ ≡ ω

qvσ
F

− 1

iτσ qvσ
F

, (2.30b)

gσ ≡ g(ξσ ). (2.30c)

Using Eqs. (2.16), we take 
 = 0 and 1 moments of
Eq. (2.29) to find the generalizations of Eqs. (2.14):

(
−1 − 1 + gσ

ξσ�σ

+ m∗
σ

m
F̃ σσ

0 gσ

)
νσ

0 +
(

v−σ
F

vσ
F

m∗
−σ

m
F̃ σ−σ

0 gσ

)
ν−σ

0 + 2

(
m∗

σ

m
F̃ σσ

1 ξσ gσ − gσ

�σ

)
νσ

1

+ 2

(
v−σ

F

vσ
F

m∗
−σ

m
F̃ σ−σ

1 ξσ gσ

)
ν−σ

1 = 0, (2.31a)

(
− gσ

�σ

+ m∗
σ

m
F̃ σσ

0 ξσ gσ

)
νσ

0 +
(

v−σ
F

vσ
F

m∗
−σ

m
F̃ σ−σ

0 ξσ gσ

)
ν−σ

0 + 2

[
m∗

σ

m
F̃ σσ

1

(
ξ 2
σ gσ − 1

2

)
− ξσ gσ

�σ

− 1

2

]
νσ

1

+ 2

[
v−σ

F

vσ
F

m∗
−σ

m
F̃ σ−σ

1

(
ξ 2
σ gσ − 1

2

)]
ν−σ

1 = 0. (2.31b)

Setting the determinant of the coefficients equal to zero, we find after some algebra

{(
1 + 1

�↑ξ↑

)[(
1 + 2ξ↑g↑

�↑

)
+ (1 − 2ξ 2

↑g↑)F ↑↑
1

]
+
(

1

�↑ξ↑
− F

↑↑
0

)
(1 + F

↑↑
1 )g↑

}

×
{(

1 + 1

�↓ξ↓

)[(
1 + 2ξ↓g↓

�↓

)
+ (1 − 2ξ 2

↓g↓)F ↓↓
1

]
+
(

1

�↓ξ↓
− F

↓↓
0

)
(1 + F

↓↓
1 )g↓

}

− (F ↑↓
0 )2g↑g↓[(1 + F

↑↑
1 )(1 + F

↓↓
1 ) − (F ↑↓

1 )2] − 4F
↑↓
0 F

↑↓
1

(
1 + 1

�↑ξ↑

)(
1 + 1

�↓ξ↓

)
ξ↑g↑ξ↓g↓

− (F ↑↓
1 )2

[(
1 + 1

�↑ξ↑

)
(1 − 2ξ 2

↑g↑) +
(

1

�↑ξ↑
− F

↑↑
0

)
g↑

]

×
[(

1 + 1

�↓ξ↓

)
(1 − 2ξ 2

↓g↓) +
(

1

�↓ξ↓
− F

↓↓
0

)
g↓

]
= 0. (2.32)

For convenience, we introduced a hybrid notation in Eq. (2.32) to absorb some of the effective mass factors:

Fσσ

 ≡ m∗

σ

m
F̃ σσ


 ,
(
Fσ−σ




)2 ≡ m∗
↑m∗

↓
m2

(
F̃ σ−σ




)2
. (2.33)
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It is convenient at this point to examine Eq. (2.32) in the limit of zero polarization. We then find{(
1 + 1

�↑ξ↑

)[(
1 + 2ξ↑g↑

�↑

)
+ (1 − 2ξ 2

↑g↑)F s
1

]
+
(

1

�↑ξ↑
− F s

0

) (
1 + F s

1

)
g↑

}

×
{(

1 + 1

�↓ξ↓

)[(
1 + 2ξ↓g↓

�↓

)
+ (1 − 2ξ 2

↓g↓)Fa
1

]
+
(

1

�↓ξ↓
− Fa

0

) (
1 + Fa

1

)
g↓

}
= 0, (2.34)

where at zero polarization the arrow subscripts are not needed
but have been retained to make comparison with (2.32)
easier. In the ballistic limit, the first term in curly brackets
corresponds to zero sound, and the second term in curly
brackets corresponds to spin zero sound. The symmetric and
antisymmetric Landau parameters are the two spin-state scaled
parameters as defined in Eq. (2.11). Each of the terms in
curly brackets is in agreement with the previously derived
zero-polarization limit Eq. (2.18). In the same manner, the
full-polarization limit that will be discussed in the following
follows directly from Eq. (2.31a).

1. Zero sound

In the ballistic regime, ωτσ � 1, and so we expand (2.32) in
powers of 1

ωτσ
. We will need the following asymptotic results:

1

�↑ξ↑
∼ 1

iωτ↑
, (2.35a)

ξ↑ ∼ s↑(1 + iξ ′
↑), (2.35b)

g(ξ↑) ∼ g(s↑) + is↑g(1)(s↑)ξ ′
↑, (2.35c)(

1 + 1

�↑ξ↑

)(
1 + 2ξ↑g↑

�↑

)
∼ 1 − [1 + 2s2

↑g(s↑)
] i

ωτ↑
,

(2.35d)(
1 + 1

�↑ξ↑

)
(1 − 2ξ 2

↑g↑)

∼ [1 − 2s2
↑g(s↑)] − i

ωτ↑
[1 + 2s2

↑[g(s↑) + h↑]]

+ 2is2
↑[2g(s↑) + h↑]

q2

q1
, (2.35e)(

1

�↑ξ↑
− F

↑↑
0

)
g↑

∼ −F
↑↑
0 g(s↑) − i

[
[F ↑↑

0 h↑ + g(s↑)]
1

ωτ↑
− F

↑↑
0 h↑

q2

q1

]
.

(2.35f)

The following definitions were introduced in Eqs. (2.35):

s↑ ≡ ω

q1vF↑
, (2.36a)

h↑ ≡ s↑g(1)(s↑), (2.36b)

g
(1)
↑ ≡

(
∂g↑
∂s↑

)
ξ ′=0

, (2.36c)

ξ ′
↑ ≡ 1

ωτ↑
− q2

q1
. (2.36d)

Equivalent definitions hold for down-spin entities.

Expanding (2.32) yields the relation that determines sσ , the
zero-sound speeds:

[1 − F
↑↑
0 g(s↑) + F

↑↑
1 A↑][1 − F

↓↓
0 g(s↓) + F

↓↓
1 A↓]

− (F ↑↓
0 )2[(1 + F

↑↑
1 )(1 + F

↓↓
1 ) − (F ↑↓

1 )2]g(s↑)g(s↓)

− (F ↑↓
1 )2A↑A↓ − 4F

↑↓
0 F

↑↓
1 s↑s↓g(s↑)g(s↓) = 0, (2.37)

and we have defined

Aσ ≡ 1 − 2s2
σ g(sσ ) − Fσσ

0 g(sσ ).

Similarly, the attenuation can be written as

q2/q1 = N↑/(ωτ↑) + N↓/(ωτ↓)

D
, (2.38)

where

N↑ = [1 − F
↓↓
0 g(s↓) + A↓F

↓↓
1 ]
(
c0
τ,↑ + c1

τ,↑F
↑↑
1

)
+ (F ↑↓

0 )2[(1 + F
↑↑
1 )(1 + F

↓↓
1 ) − (F ↑↓

1 )2]h↑g(s↓)

− (F ↑↓
1 )2A↓c1

τ,↑ + 4F
↑↓
0 F

↑↓
1 s↑s↓g(s↓)h↑ , (2.39)

D = [1 − F
↑↑
0 g(s↑) + A↑F

↑↑
1 ]
(
F

↓↓
0 h↓ + c1

q,↓F
↓↓
1

)
+ [1 − F

↓↓
0 g(s↓) + A↓F

↓↓
1 ]
(
F

↑↑
0 h↑ + c1

q,↑F
↑↑
1

)
+ (F ↑↓

0 )2[(1 + F
↑↑
1 )(1 + F

↓↓
1 ) − (F ↑↓

1 )2]

× [h↑g(s↓) + h↓g(s↑)]

− (F ↑↓
1 )2
(
A↑c1

q,↓ + A↓c1
q,↑
)+ 4F

↑↓
0 F

↑↓
1 s↑s↓

× [g(s↓)h↑ + g(s↑)h↓ + 2g(s↑)g(s↓)], (2.40)

and for N↓ simply reverse all the spins in (2.39). For
convenience, we have defined the following quantities:

c0
τ,σ ≡ 1 + (2s2

σ + 1
)
g(sσ ) + Fσσ

0 hσ , (2.41a)

c1
τ,σ ≡ 1 + 2s2

σ [g(sσ ) + hσ ] + g(sσ ) + Fσσ
0 hσ , (2.41b)

c1
q,σ ≡ 2s2

σ [2g(sσ ) + hσ ] + Fσσ
0 hσ . (2.41c)

2. First sound

As at zero polarization in Sec. II A, for first sound we
need to find solutions of the linearized kinetic equation in the
hydrodynamic limit ωτσ � 1. The fundamental determinant
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Eq. (2.32) can be rewritten as{(
1 + 1

�↑ξ↑

)[(
1 + 1

�↑ξ↑

)
+ (2ξ 2

↑g↑ − 1)

(
1

�↑ξ↑
− F

↑↑
1

)]
+ (1 + F

↑↑
1 )

(
1

�↑ξ↑
− F

↑↑
0

)
g↑

}

×
{(

1 + 1

�↓ξ↓

)[(
1 + 1

�↓ξ↓

)
+ (2ξ 2

↓g↓ − 1)

(
1

�↓ξ↓
− F

↓↓
1

)]
+ (1 + F

↓↓
1 )

(
1

�↓ξ↓
− F

↓↓
0

)
g↓

}

− (F ↑↓
0 )2g↑g↓[(1 + F

↑↑
1 )(1 + F

↓↓
1 ) − (F ↑↓

1 )2] − 4F
↑↓
0 F

↑↓
1

[
ξ↑

(
1 + 1

�↑ξ↑

)
ξ↓

(
1 + 1

�↓ξ↓

)]
g↑g↓

− (F ↑↓
1 )2

[(
1 + 1

�↑ξ↑

)
(1 − 2ξ 2

↑g↑) +
(

1

�↑ξ↑
− F

↑↑
0

)
g↑

]

×
[(

1 + 1

�↓ξ↓

)
(1 − 2ξ 2

↓g↓) +
(

1

�↓ξ↓
− F

↓↓
0

)
g↓

]
= 0. (2.42)

We will need the following asymptotic results:

g↑ ∼ 1

2ξ 2
↑

(
1 + 3

4

1

ξ 2
↑

)
, (2.43a)

1

�↑ξ↑
∼ −(1 + iωτ↑). (2.43b)

The first sound speed sσ
1 ≡ cσ

1 /vσ
F ≡ ω/(q1v

σ
F ) is the solution

of

[2(s↑
1 )2 − (1 + F

↑↑
0 )(1 + F

↑↑
1 )]

× [2(s↓
1 )2 − (1 + F

↓↓
0 )(1 + F

↓↓
1 )]

− (F ↑↓
0 )2[(1 + F

↑↑
1 )(1 + F

↓↓
1 ) − (F ↑↓

1 )2]

− (F ↑↓
1 )2(1 + F

↑↑
0 )(1 + F

↓↓
0 )

− 4F
↑↓
0 F

↑↓
1 s

↑
1 s

↓
1 = 0. (2.44)

The attenuation q2/q1 is given by

q2/q1 = 1

8

N↑(ωτ↑) + N↓(ωτ↓)

D
, (2.45)

where the numerator and denominator in Eq. (2.45) are given
by

N↑ = 2(1 + F
↑↑
1 )(s↓

1 )2 − (1 + F
↓↓
0 )

× [(1 + F
↑↑
1 )(1 + F

↓↓
1 ) − (F ↑↓

1 )2], (2.46a)

N↓ = 2(1 + F
↓↓
1 )(s↑

1 )2 − (1 + F
↑↑
0 )

× [(1 + F
↓↓
1 )(1 + F

↑↑
1 ) − (F ↑↓

1 )2], (2.46b)

D = (s↑
1 )2[2(s↓

1 )2 − (1 + F
↓↓
0 )(1 + F

↓↓
1 )] + (s↓

1 )2[2(s↑
1 )2

−(1 + F
↑↑
0 )(1 + F

↑↑
1 )] − 2F

↑↓
0 F

↑↓
1 s

↑
1 s

↓
1 . (2.46c)

C. Full polarization

In this section, we examine sound speeds in the limit that all
of the particles are in the spin-up Fermi sea. We note that one
must be careful in trying to apply the results from Sec. II B
to the almost complete polarized limit. Our analysis using
Landau’s kinetic equation is valid when T < TFσ , a case that
may be problematic for the minority Fermi sea.

Using the one-spin form of Eqs. (2.14), we obtain[
−
(

1 + 1

�↑ξ↑

)
+ g↑

(
F

↑↑
0 − 1

�↑ξ↑

)]
ν

↑
0

+ 2ξ↑g↑

(
F

↑↑
1 − 1

�↑ξ↑

)
ν

↑
1 = 0, (2.47)

ξ↑g↑

(
F

↑↑
0 − 1

�↑ξ↑

)
ν

↑
0

+
[

2ξ 2
↑g↑

(
F

↑↑
1 − 1

�↑ξ↑

)
− (1 + F

↑↑
1 )

]
ν

↑
1 = 0.

(2.48)

We note that this also follows directly from Eq. (2.32) by
setting g↓ = F

↑↓
1 = 0. There are solutions when the secular

determinant vanishes:(
1 + 1

�↑ξ↑

)[(
1 + 1

�↑ξ↑

)
+ (2ξ 2

↑g↑ − 1)

(
1

�↑ξ↑
− F

↑↑
1

)]

− (1 + F
↑↑
1 )

(
F

↑↑
0 − 1

�↑ξ↑

)
g↑ = 0. (2.49)

1. Zero sound

In the ballistic regime ωτ↑ � 1, and as above the secular
determinant becomes

[(1 − F
↑↑
0 g(s↑)) + F

↑↑
1 (1 − 2s2

↑g(s↑) − F
↑↑
0 g(s↑))]

− i

ωτ↑

(
c0
τ↑ + F

↑↑
1 c1

τ↑
)+ i

q2

q1

(
F

↑↑
0 h↑ + F

↑↑
1 c1

q↑
) = 0.

(2.50)

The dimensionless zero-sound speed s↑ is the solution of

g(s↑) = 1 + F
↑↑
1

F
↑↑
0 (1 + F

↑↑
1 ) + 2s2

↑F
↑↑
1

. (2.51)

In the simplest approximation F
↑↑
1 = 0, and we find

s2
↑ = (1 + F

↑↑
0 )2

1 + 2F
↑↑
0

, (2.52)
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in agreement with previous results.10 The attenuation is

q2/q1 =
[

c0
τ↑ + F

↑↑
1 c1

τ↑
F

↑↑
0 h↑ + F

↑↑
1 c1

q↑

]
1

ωτ↑
. (2.53)

2. First sound

In the hydrodynamic regime, ωτ↑ � 1, and equivalently
ξ↑ � 1. Equation (2.49) can be written as(

1 + 1

�↑ξ↑

)2

+ (−iωτ↑)
3

4

1

ξ 2
↑

[−(1 + F
↑↑
1 )]

− (1 + F
↑↑
1 )

1

2ξ 2
↑

[(1 + F
↑↑
0 ) + iωτ↑] = 0. (2.54)

This immediately yields(
ω

qv
↑
F

)2

− 1

2
(1 + F

↑↑
0 )(1 + F

↑↑
1 ) + iωτ↑

1 + F
↑↑
1

4
= 0.

(2.55)

Thus, the dimensionless first sound speed is

s2
↑ = 1

2 (1 + F
↑↑
0 )(1 + F

↑↑
1 ), (2.56)

and the attenuation is

q2/q1 = ωτ↑
4(1 + F

↑↑
0 )

. (2.57)

III. COLLISION TIME

In Sec. II, we derived expressions for the propagation
speed and attenuation of zero sound and first sound. The
results depend only on the Landau parameters and so they
can be evaluated using results reported in LAM (Refs. 9–11).
In order to calculate the attenuation, however, we still need
to derive expressions for the collision frequency 1/τ . In the
following two sections, we shall consider two mechanisms for
quasiparticle scattering. The first, quasiparticle-quasiparticle
scattering, is the same as in three dimensions. The second is
quasiparticle-phonon scattering, which needs to be considered
in the case of adsorbed films. We shall show that the mismatch
between sound speeds and Fermi velocities even at the largest
densities and polarization renders this possibility moot.

A. Quasiparticle-quasiparticle collisions

The collision frequency for the σ th Fermi sea is given by16

1

τσ (p)
=
∑
k,q

[
1

2
Wσσ (q)nk,σ np−q,σ nk+q,σ

+Wσ−σ (q)nk,−σ np−q,σ nk+q,−σ

]
× δ(εp + εk − εk+q − εp−q), (3.1)

where npσ ≡ 1/{exp[β(εpσ − μσ )] + 1} is the Fermi distribu-
tion function, β ≡ 1/kBT , and μσ is the chemical potential
for the σ th Fermi sea. We have defined

npσ ≡ 1 − npσ = 1

1 + e−β(εpσ−μσ ) . (3.2)

The W terms are transition probabilities, and the factor of
one-half before Wσσ prevents double counting. The stan-
dard treatment in three dimensions follows Abrikosov and
Khalatnikov,12 and introduces new integration variables in
terms of energies and angles. These integrations are indepen-
dent of one another, and in lowest order in temperature one can
find a closed form expression for 1/τ in terms of an angular
average of the transition probability.

The change of variables introduces a factor of 1/ sin θ

into the integrand, and in two dimensions the subsequent
integration over θ yields logarithmic singularities at 0 and
π . In three dimensions, there is a canceling factor of sinθ

that appears in the Jacobian of the angular integration. This
situation is discussed in detail by Miyake and Mullin18 who
offer a clever geometric solution around the problem. In this
section, we shall take a different tack and proceed along the
lines pioneered in the two-dimensional electron community. In
particular, we shall use the approach of Giuliani and Quinn19

that takes advantage of the similarity between the structure of
Eq. (3.1) and the dynamic structure factor for an ideal Fermi
gas:

S0
σσ (q,ω) =

∑
k

nk,σ nk+q,σ δ(ω + εk,σ − εk+q,σ ), (3.3)

where by inspection we can identify

ω = εp − εp−q. (3.4)

The fluctuation-dissipation theorem allows us to rewrite the
dynamic structure factor in terms of the imaginary part of the
susceptibility χ ′′

σ (q,ω):

πSσσ (q,ω) = − χ ′′
σ (q,ω)

1 − e−βω
, (3.5)

where we omit 0 superscripts since all the distribution
functions here are for a free Fermi gas.

χ ′′
σ (q,ω) for an ideal two-dimensional Fermi gas was

evaluated by Stern.20 Using

χ ′′
σ (q,ω) = −π

∑
k

(nk,σ − nk+q,σ )δ(ω − ωkq), (3.6)

where

ωkq ≡ kq cos θkq

m∗
σ

+ q2

2m∗
σ

. (3.7)

The integrations in (3.6) are straightforward and we find

χ ′′
σ (q,ω)

= −
(

2m∗
σπ

h2q

)⎡⎣
√

k2
Fσ −

(
m∗

σω

q
− q

2

)2

× θ

(
kFσ −

∣∣∣∣m∗
σω

q
− q

2

∣∣∣∣
)

−
√

k2
Fσ −

(
m∗

σω

q
+ q

2

)2

θ

(
kFσ −

∣∣∣∣m∗
σω

q
+ q

2

∣∣∣∣
)⎤⎦ ,

(3.8)

where θ (. . .) are Heaviside step functions. Equation (3.8) is
the T = 0 K limit which should serve our purposes.
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For convenience, we divide the calculation into two parts:

1

τσ

= 1

τσσ

+ 1

τσ−σ

, (3.9)

where

1

τσσ

≡ −
(

1

π

)∑
q

1

2
Wσσ (q)np−q,σ

χ ′′
σ (q,ω)

(1 − e−βω)
, (3.10a)

1

τσ−σ

≡ −
(

1

π

)∑
q

Wσ−σ (q)np−q,σ

χ ′′
−σ (q,ω)

(1 − e−βω)
. (3.10b)

We begin by analyzing (1/τσ−σ ). Using the definition of ω [Eq. (3.4)], Eq. (3.10b) can be rewritten as

1

τσ−σ

= − 1

πh2

∫ ∞

0
dq qWσ−σ (q)

∫ ∞

−∞
dω

χ ′′
−σ (q,ω)

(1 − e−βω)(1 + e−β(εp,σ −μσ −ω))

∫ 2π

0
dθpqδ(ω − εp,σ + εp−q,σ ), (3.11)

where we have introduced an energy-conserving δ function.
In general, Wσσ ′(q) depends on the angle θ between the incident and scattered quasiparticles. That is, by definition of q,

we have q2 = k2
Fσ + k′2

Fσ ′ − 2kFσ k′
Fσ ′ cos θ . In the usual manner,9–11 we can introduce a Fourier representation: Wσσ ′(cos θ ) =∑∞


=0 α
T
(cos θ )Wσσ ′

 . In the following, we shall restrict ourselves to including only the 
 = 0 term. Thus, in this model, we set

Wσσ ′(θ ) = Wσσ ′
0 . Then, performing the angular integration and using Eq. (3.6), we find

1

τσ−σ

= Wσ−σ
0

(
2m∗

−σ

h2

)2 ∫ ∞

−∞
dω

1

(1 − e−βω)(1 + e−β(εp,σ −μσ −ω))

∫ ∞

0

dq

q

×

⎧⎪⎨
⎪⎩
√√√√√
(

qp−σ

m∗−σ

)2 − (ω − q2

2m∗−σ

)2
(

qpσ

m∗
σ

)2 − (ω + q2

2m∗
σ

)2 θ

(
qpσ

m∗
σ

−
∣∣∣∣ω + q2

2m∗
σ

∣∣∣∣
)

θ

(
qp−σ

m∗−σ

−
∣∣∣∣ω − q2

2m∗−σ

∣∣∣∣
)

−

√√√√√
(

qp−σ

m∗−σ

)2 − (ω + q2

2m∗−σ

)2
(

qpσ

m∗
σ

)2 − (ω + q2

2m∗
σ

)2 θ

(
qpσ

m∗
σ

−
∣∣∣∣ω + q2

2m∗
σ

∣∣∣∣
)

θ

(
qp−σ

m∗−σ

−
∣∣∣∣ω + q2

2m∗−σ

∣∣∣∣
)⎫⎪⎬
⎪⎭ . (3.12)

The step functions determine the allowed ranges of the ω and q integrations. By inspection of (3.12), it is clear that the
integrand is dominated by the βω → 0 limit. For a given temperature, the important range of values is given by ω � kBT . In
the region of degeneracy, we also have kBT < {εFσ ,εF−σ }. Thus, we are led to the restrictions

ω � {εFσ ,εF−σ }, (3.13)

which determine the dominant contributions from the integrand in (3.12). Further, we also need to ensure that the q constraints
are always real. This is accomplished by confining the ω integration to the range |ω| � ωmax where

ωmax = min

{
p2

σ

2m∗
σ

,
p2

−σ

2m∗−σ

}
. (3.14)

Thus, (3.12) becomes

1

τ↑↓
= W

↑↓
0

(
2m∗

↓
h2

)2 ∫ ωmax

−ωmax

dω
1

(1 − e−βω)(1 + e−β(εp,σ −μσ −ω))

×

⎡
⎢⎣
{

θ (ω)
∫ p↓+

√
p2

↓+2m∗
↓ω

−p↓+
√

p2
↓+2m∗

↓ω

dq

q
+ θ (−ω)

∫ p↓+
√

p2
↓+2m∗

↓ω

p↓−
√

p2
↓+2m∗

↓ω

dq

q

}√√√√√
( qp↓

m∗
↓

)2 − (ω − q2

2m∗
↓

)2
( qp↑

m∗
↑

)2 − (ω + q2

2m∗
↑

)2

−
{

θ (ω)
∫ p↓+

√
p2

↓−2m∗
↓ω

p↓−
√

p2
↓−2m∗

↓ω

dq

q
+ θ (−ω)

∫ p↓+
√

p2
↓−2m∗

↓ω

−p↓+
√

p2
↓−2m∗

↓ω

dq

q

}√√√√√
( qp↓

m∗
↓

)2 − (ω + q2

2m∗
↓

)2
( qp↑

m∗
↑

)2 − (ω + q2

2m∗
↑

)2
⎤
⎥⎦ . (3.15)
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From the constraint equation (3.13), we can conclude that pσ � m∗
σ ω

pσ
. Thus, we can expand the integration limits and the

integrands in powers of m∗
σ ω

pσ
to find

1

τ↑↓
= (m∗

↓)2m∗
↑W

↑↓
0

h4
4
∫ ωmax

0
dω

ω

sinh βω

∫ 2p↓− m∗↓ω

p↓
m∗↓ω

p↓

dq

q

1√
(p2

↑ − q2/4)(p2
↓ − q2/4)

. (3.16)

In (3.16), we have used the low-temperature result μσ =
εp,σ + O[(T/TFσ )2] to simplify the argument of the second
exponential in Eq. (3.15). This is valid only to O(T 2) because
this is a nonideal gas. That is, at low temperature and zero
polarization (for simplicity), for an interacting system one has

μ(T ) = μ(0) −
(

∂m∗

∂n

)
T

π

6

1

h̄2 k2
BT 2, (3.17)

where n is the areal density.21 For an ideal gas, (∂m∗/∂n)T = 0.
This is in agreement with the exact relation for the chemical
potential of an ideal Fermi gas in two dimensions: μ(T ) =
kBT ln [exp(πnh̄2/mkBT ) − 1], where at low temperatures
the finite-T corrections are exponentially small. With this
change, the integrand of Eq. (3.15) becomes even in ω.

The q integration is dominated by the lower limit:

∫ 2p↓− m∗↓ω

p↓
m∗↓ω

p↓

dq

q

1√
(p2

↑ − q2/4)(p2
↓ − q2/4)

≈ 1

p↑p↓
ln (4εF↓/ω). (3.18)

In the limit of low temperature, the leading-order term is

1

τ↑↓
= (m∗

↓)2m∗
↑W

↑↓
0

h4

(kBT )2

p↑p↓
π2D↑↓(xmax) ln (βεF↓), (3.19)

where we have used βωmax ≡ εF↓/kBT � 1. The quantity
1/τ↓↑ can be obtained from (3.19) by flipping all of the arrows
except that in the argument of the ln . The function D(xmax)
introduced in (3.19) is defined by

Dσ−σ (xmax) ≡ 4

π2

∫ xmax

0
dx

x

sinh x
, (3.20)

where xmax = βωmax. The integration can be done analytically,
and we find

Dσ−σ (xmax) = 4

π2

[
2Li2(e−xmax ) − 1

2
Li2(e−2xmax )

]
, (3.21)

where Li2 is the dilogarithm function.17 In the two important
limits, we have D(0) = 0 and D(∞) = 1. The σ superscripts
on D reflect the implicit σ dependence in the definition of
ωmax: Eq. (3.14). The D functions are only used to ensure the
proper full-polarization limit as discussed below.

The expression for 1/τσσ follows immediately from (3.19)
after noting that for the integral equivalent to (3.16) both the
upper and lower limits have leading-order contributions. We
find

1

τσσ

= (m∗
σ )3Wσσ

0

h4

(kBT )2

p2
σ

3π2

4
Dσσ ln (βεFσ ). (3.22)

Adding (3.19) and (3.22), the quasiparticle-quasiparticle col-
lision frequency is given by

1

τσ

= π2

h4
m∗

σ

[
3

4

(m∗
σ )2

p2
σ

DσσWσσ
0 ln (βεFσ )

+ (m∗
−σ )2

pσp−σ

Dσ−σWσ−σ
0 ln (βεF↓)

]
(kBT )2. (3.23)

1. Zero-polarization limit

At exactly zero polarization, it is clear from inspection of
Eq. (3.1) that the two terms reduce to the same form, and that
the calculation is identical to that for 1

τσσ
. Thus, the collision

frequency at zero polarization is(
1

τσ

)
0

= 3π2

4

(m∗)2

h4

[
1

2
Wσσ

0 + Wσ−σ
0

]
(kBT )2

εF

ln (βεF ).

(3.24)

The D′s = 1 at zero polarization and low temperature. It
should be noted that one can not obtain Eq. (3.24) by taking
the zero-polarization limit of (3.23).

We can obtain information concerning the small polariza-
tion limit by reexamining Eq. (3.16). The integrand can be
rearranged as follows:(

1

τσ−σ

)
0

≈ (m∗
−σ )2m∗

σWσ−σ
0

h4
2
∫ ∞

0
dω

ω

sinh βω

× 1

p2−σ

∫ 2p−σ − m∗−σ ω

p−σ

m∗−σ ω

p−σ

dq

(
2

q
+ 1

(2p−σ − q)

)

×
√

p2−σ − q2/4

p2
σ − q2/4

, (3.25)

where this form assumes pσ � p−σ and we have set the
upper limit of the ω integral equal to infinity. The square-
root factor is regular throughout the integration region, and
2p−σ − q vanishes only at the endpoint ω = 0. The first
term in parentheses is a maximum at the lower limit of the
q integration, and the second term is a maximum at the
upper limit. At exactly zero polarization, the square-root term
in (3.25) is unity, and this expression is equal to the second term
in Eq. (3.24). If we perform the expansions and integrations in
the usual way, we find(

1

τσ−σ

)
0

≈ (m∗
−σ )2m∗

σWσ−σ
0

h4
2
∫ ∞

0
dω

ω

sinh βω

1

p2−σ

× ln

(
2p2

−σ

m∗−σω

)⎡⎣2 +
√

m∗−σω/p2−σ

(2P)
1
2

⎤
⎦ . (3.26)
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At this stage, we see that in order to obtain the correct zero-
polarization limit, we must let ω → 0 and P → 0 in such a
way that the second term goes to unity. Thus, as the polarization
vanishes, the upper limit on the ω integration also must vanish.
In our approach as described above in Sec. III A, the second
term is omitted since it is not lowest order in temperature.

2. Full-polarization limit

In the fully polarized limit, there are no spin sums, and so
the only contribution is from 1

τ↑↑
. Thus, the collision frequency

at complete polarization is

(
1

τ↑

)
1

= 3π2

4

(m∗)2

h4

[
1

2
W

↑↑
0

]
(kBT )2

εF

ln (βεF ). (3.27)

This result does follow from Eq. (3.23) due in part to
the introduction of the D functions. This is easy to see.
From the definition of the D functions (3.20), we have in
the full-polarization limit (p↓ → 0) D↑↓,D↓↑,D↓↓ ≈ xmax =
β(p2

↓/2m∗
↓) � 1. From Eq. (3.19), we see that without the D

function τ−1
σ−σ ∼ O(p−1

↓ ). Thus, in that limit the D function
drives those terms to zero. The situation is more complicated
for τ−1

↓↓ ∼ O(p−2
↓ ). The D function can only cancel out the

explicit p↓ dependence. However, from the forward scattering
sum rule, we can show that limP→1 W

↓↓
0 = 0. From Fermi-

liquid theory, we can write the transition rates in terms of
the scattering amplitudes: W

↓↓
0 = 2π

h̄
|a↓↓

0 |2. The scattering
amplitudes are obtained from the Landau parameters using9

a
↓↓

 = f

↓↓

 (1 + N

↑
0 f

↑↑

 ) − N

↑
0 (f ↓↑


 )2

(1 + N
↑
0 f

↑↑

 )(1 + N

↓
0 f

↓↓

 ) − N

↑
0 N

↓
0 (f ↑↓


 )2
, (3.28)

where the density of states Nσ
0 is defined in Eq. (2.8a). In the

limit of full polarization, f
↑↓

 = f

↓↓

 = 0 for 
 � 1.22 Thus,

from (3.28), a
↓↓

 = 0 for 
 � 1 in the p↓ → 0 limit. But, the

down-spin forward scattering sum rule is
∑∞


=0 a
↓↓

 = 0. Thus,

we conclude that a
↓↓
0 = 0.

The vanishing of ( 1
τ↑↓

) and ( 1
τ↓↑

) in the p↓ → 0 limit is due
to the vanishing of the available phase space. If we assume that
p−σ is the minority Fermi sea, then from Eq. (3.12) it is obvious
by inspection that when p−σ → 0 one step function in each
pair must vanish for all q. The situation is more complicated
for ( 1

τ↓↓
) since in that limit the denominator of the first square

root in the curly brackets also vanishes. In this case, we proved
above that W

↓↓

 = 2π

h̄
|a↓↓


 |2 = 0,∀
.

B. Quasiparticle-phonon collisions

By definition, an adsorbed Fermi-liquid film such as 3He is
in close proximity to a substrate surface, and so in principle
one should also look for relaxation due to quasiparticle-phonon
interactions. In fact, we shall show that for 3He on a preplated
4He substrate, the mismatch between the maximum Fermi
velocity in the 3He film and the speed of sound in the 4He
substrate rules out any dynamical role from the substrate. The
contribution to the quasiparticle scattering rate can come from

both phonon emission and absorption processes. Thus,(
1

τp

)
q−p

= 1

τ em
p

+ 1

τ abs
p

. (3.29)

The two scattering rates can be written as

1

τ em
p

= 1

A

∑
q

W (q)np−q[nph(q) + 1]δ(εp − εp−q − h̄ωq),

(3.30a)
1

τ abs
p

= 1

A

∑
q

W (q)np+qnph(q)δ(εp+q − εp − h̄ωq),

(3.30b)

where np is defined in (3.2), nph(q) is a phonon (boson)
distribution function, and h̄ωq = csq is the substrate phonon
spectrum. We can adapt a result of Callaway’s23 for the
transition rate W (q)/A in the Debye approximation

W (q) = πh̄qDn4

m4kB�D

q|V (q)|2, (3.31)

where V (q) is the Fourier transform of the lateral adatom-
substrate potential, and n4 = N4/L

2 is the areal density of the
4He substrate preplating.

We first examine the contribution from phonon emission.
Using the techniques described above in Sec. III, we immedi-
ately find

1

τ em
p

= m∗
3

2π2h̄2

∫ ∞

0
dq

W (q)

sinh (βh̄ωq)

× θ (εp − h̄ωq)θ [2p − (2m∗
3cs/h̄ + q)]√

4p2 − (2m∗
3cs/h̄ + q)2

, (3.32)

where cs is the sound speed in the substrate. The second step
function imposes a constraint on the allowed range of q:

h̄q < 2m∗
3(vF − cs). (3.33)

The Debye temperature for the 4He preplating monolayer
can be taken from Hering, Van Sciver, and Vilches:24 �D =
26.6 K, at a density =0.093 Å−2, which yields a Debye wave
vector qD = 1.081 Å−1, and a sound speed cs = 322 m/s.
Polarization-dependent Fermi velocities for 3He films can
be found in Fig. 9 of Ref. 10. At the lowest density shown
(0.0132 Å−2), the Fermi velocity ranges from approximately
50 m/s at zero polarization up to about 100 m/s at full
polarization. At the highest density shown (0.0543 Å−2), the
Fermi velocity ranges from about 25 m/s at zero polarization
up to about 180 m/s at full polarization. We note that much of
this variation of the Fermi velocity with polarization is due to
the decrease in the effective mass as a function of polarization
at a fixed areal density. All of the Fermi velocities are smaller
than the substrate sound speed and so the condition (3.33) is
never met. Thus, the emission process is not allowed.

Using Eqs. (3.30) and (3.31), the relaxation time due to
phonon absorption can be written as

1

τ abs
p

= m∗
3

2π2h̄2

∫ q+

q−
dq

W (q)

sinh (βh̄ωq)

× 1√
4p2 − (2m∗

3cs/h̄ − q)2
, (3.34)
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where the endpoints of the q integration are given by

h̄q± ≡ 2m∗
3(cs ± vF ). (3.35)

The q± are roots of the square root in the denominator;
however, the 1√

x
type of divergence is integrable. The

overwhelmingly dominant term in this expression is the
argument of the sinh. The typical phonon energy is given by
h̄ωq = 2m∗

3(cs ± vF )cs ∼ 200 K. Since common experimental
temperatures25 are on the order of β−1 ∼ 5–10 mK, it is clear
that for this system, phonon absorption is also frozen out
because of the mismatch between accessible Fermi velocities
and the substrate speed of sound.

IV. APPLICATION TO 3He THIN FILMS

In this section, we shall apply the results of Secs. II and III
to the thin-film Fermi-liquid system of adsorbed second-layer
3He on graphite or preplated graphite. The review article
by Godfrin and Lauter7 contains a summary of the relevant
experimental literature, together with a detailed description
of the properties of this system. As shown above, the key
elements needed to calculate the sound speeds and attenuation
are the Landau parameters. In previous work,9,10 exact analytic
expressions for the Landau parameters were obtained from
perturbation-theoretic calculations of the ground-state energy
of a two-dimensional many-fermion system to quadratic order
in the s-wave (g0) and p-wave (g1) effective interaction
parameters. The values of these parameters were obtained
by fitting existing heat-capacity effective masses reported by
Greywall,5 and spin susceptibility measurements reported by
Lusher, Cowan, and Saunders.6 An important advantage of
fitting the underlying interaction parameters directly instead
of the state-dependent Landau parameters is the ability to
compute the angular components of the Landau parameters
to all orders. In this approach, the basic assumption is that
the low-density energy expression is a reasonable model at
the moderate submonolayer coverages of interest. Figure 1,
reproduced from Ref. 10, shows the fitted, effective s- and
p-wave T-matrix components as functions of density. We note
in support of our basic assumption that the parameters show
only modest dependence on density.

The relations that connect the Landau parameters to the
T-matrix effective interactions are lengthy, and so we refer the
reader to Refs. 9 or 10 for the details. In Fig. 2, we reproduce
from Ref. 10 the density and polarization dependence of the
Landau parameters: F̃

↑↑
0 , F̃

↑↓
0 , and F̃

↓↓
0 . These are the most

important input for the sound speeds and attenuation. For a
similar figure showing the 
 = 1 Landau parameters, see LAM.
These Landau parameters are scaled with the bare, single spin-
state density of states as discussed in Sec. II B.

The Landau parameters yield the zero-sound and first-sound
speeds. The Fermi-liquid theory expressions for the zero-
sound speeds can be found in Eqs. (2.22), (2.37), and (2.51).
Similarly, the expressions for the first-sound speeds can be
found in Eqs. (2.27), (2.44), and (2.56). In Fig. 3, we show
the results of the calculations of the sound speeds using 
 = 0
and 1 Landau parameters. In Ref. 10, we showed that for
accurate results one can either truncate the zero-sound speed
calculation after 
 = 1 or 3 because of the nonmonotonicity of
the Landau parameters. It should be noted that when the zero-

FIG. 1. (Color online) The fitted values of the effective interaction
parameters g0 and k2

Fg1 as a function of film coverage. The triangles
are determined from measurements of the effective mass and spin
susceptibility of second-layer 3He on a graphite substrate. These are
the data used in the calculations reported in this paper. The squares
and circles are from 3He-4He thin mixture film data of Ref. 15, which
are shown for comparison.

sound calculation is carried beyond the 
 = 1 contribution, the
resulting high-order polynomial allows multiple propagating
solutions in principle. We find one and only one such solution
at each density and polarization. Figure 3 shows that for a thin
3He film at low coverages, the zero-sound speed is larger than
the first-sound speed at a given density and polarization. It is
the main objective of this work to compute the transition from
one sound speed to the other as a function of temperature.

We collect in Table I the values of the zero-polarization
limit, symmetric and antisymmetric, 
 = 0 and 1 Landau

FIG. 2. (Color online) The Landau parameters F̃
↑↑
0 , F̃

↑↓
0 ,

and F̃
↓↓
0 for a thin 3He film on graphite at five coverages as a function

of polarization. In each figure, the lowest curve corresponds to the
lowest coverage, and the curves progress in order up to the highest
curve at the highest coverage. The five coverages are n = 0.0132,
0.0252, 0.0370, 0.0459, and 0.0543 Å−2.
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FIG. 3. (Color online) Zero-sound and first-sound speeds from
Ref. 10 for 3He on graphite for the five coverages n = 0.0132, 0.0252,
0.0370, 0.0459, and 0.0543 Å−2.

parameters. F a
0 and F s

1 are determined by fitting the spin
susceptibility and the effective mass, respectively, whereas
F s

0 and F a
1 are predicted values. These zero-polarization Lan-

dau parameters are normalized by the customary actual, two
spin-state density of states. At zero polarization, the stability
of the zero-sound mode is due to the fairly large value of
F s

0 . Likewise, the instability of the spin zero-sound mode
is due to the small and negative values of Fa

0 . Our results
indicate that at absolute zero, zero sound will propagate at all
polarizations, and that spin zero sound will not propagate in
any of these thin-film systems. At absolute zero, first sound
does not propagate in a normal Fermi liquid [see, for example,
Eqs. (2.28) and (3.24) at P = 0].

As mentioned in Sec. III A2, the Landau parameters also
determine the transition probabilities Wσσ ′

0 ’s. The transition
probabilities can be expressed in terms of the scattering
amplitudes: Wσσ ′

0 = 2π
h̄

|aσσ ′
0 |2, and the scattering amplitudes

can be written in terms of the Landau parameters. For a
↓↓

 , see

Eq. (3.28); for a
↑↑

 , flip the spins in (3.28); and for a

↑↓

 , replace

the numerator in (3.28) by f
↑↓

 . In Fig. 4, we show |aσσ ′

0 |2 as
a function of polarization at n3 = 0.0132 Å−2. In the P = 0.0
limit, scattering in the antiparallel spin channel dominates, as
is to be expected from Pauli principle considerations. In the
limit P → 1, scattering in the spin parallel channel for the
majority Fermi sea becomes dominant as the probability of
antiparallel spin collisions goes to zero.

TABLE I. The 
 = 0,1 symmetric and antisymmetric Landau
parameters for second-layer 3He on a graphite substrate. Note that
these are defined with the two spin-state density of states F

a,s

 =

2(m∗/m)F̃ a,s

 .

Density (Å−2) F s
0 F a

0 F s
1 F a

1

0.013 2.56 −0.50 0.30 −0.32
0.025 5.32 −0.62 0.72 −0.56
0.037 10.7 −0.72 1.6 −0.96
0.046 16.7 −0.72 2.6 −1.3
0.054 23.6 −0.80 3.8 −1.8

FIG. 4. (Color online) The square of the scattering amplitudes
as a function of polarization at n3 = 0.0132 Å−2. At P = 0, the
antiparallel channel dominates. In the limit of P ≈ 1, the parallel
spin channel for the majority Fermi sea dominates.

The scattering rates given by Eqs. (3.23), (3.24), and (3.27)
are shown in Fig. 5 as a function of temperature at the coverage
n3 = 0.0132 Å−2, and three polarizationsP = 0,0.5,1. Driven
by the Pauli principle, the scattering rate is a maximum
at zero polarization, and then dramatically decreases with
increasing polarization. At polarizations between zero and
one, the scattering rate is state dependent. In Fig. 5, one
can just make out the double line at P = 0.5 that is due to
1/τ↑ > 1/τ↓. The components of the scattering rates as defined
by Eqs. (3.10) are shown in Fig. 6 for P = 0.5. The figure
shows that the dominant contribution to each of the scattering
rates comes from the spin antiparallel channels. In addition, the
scattering rates must also increase with increasing temperature
as the Fermi surfaces become more diffuse. In Fig. 7, we

FIG. 5. (Color online) Scattering rates as a function of tem-
perature for three polarizations P = 0,0.5,1.0, and density n3 =
0.0132 Å−2. This figure illustrates the dramatic decrease in scattering
rate as the antiparallel spin scattering channel is shut down. At
P = 0.5, the slightly higher scattering rate is 1/τ↑ as shown in Fig. 6.
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FIG. 6. (Color online) The components of the scattering rate
as defined in Eq. (3.10) at P = 0.5 and n3 = 0.0132 Å−2. This
figure shows the dominance of scattering contributions from the
antiparallel spin scattering channel for both the majority and minority
constituents.

examine the polarization dependence of the scattering rates
at a fixed temperature 10 mK. The majority-spin scattering
rate decreases monotonically as a function of polarization
due to the increasing improbability of antiparallel scattering
as discussed above. On the other hand, the minority-spin
scattering rate goes through a minimum around P = 0.54 and
then increases until the D function defined in Eq. (3.20) drives
the scattering rate to zero in the limit of full polarization. On the
right-hand ordinate of this figure, we show TF↓. The increase
in the scattering rate begins at a Fermi temperature of 272 mK.
At this point, the system is still deep in the low-temperature
limit. This behavior is artificial, and is probably due to slightly
wrong polarization dependence of the scattering amplitudes.

FIG. 7. (Color online) The scattering rates 1/τ↑ and 1/τ↓ as a
function of polarization P at T = 10 mK, and n3 = 0.0132 Å−2

on the left ordinate. The minority-spin Fermi temperature TF↓ vs
polarization on the right ordinate (dashed line). The increase in
scattering rate for the minority-spin constituent begins at P = 0.54
where TF↓ = 272 mK.

FIG. 8. (Color online) P = 0.0 transition from first sound c1 to
zero sound c0 as a function of temperature (left ordinate), and the
attenuation q2 as a function of temperature (right ordinate). The 3He
density is n3 = 0.0132 Å−2 and the frequency ω = 500 MHz. The
horizontal arrows shown next to c0 and c1 indicate that the sound
speed goes to zero sound in the low-temperature limit and first sound
in the high-temperature limit.

For example, as discussed in Sec. III A2, as a consequence of
the forward scattering sum rule a

↓↓
0 = 0 in the limit of full

polarization. However, in Ref. 9 it was pointed out that the
scattering amplitudes derived from a low-energy expansion
do not obey the forward scattering sum rules in general. The
nonvanishing of a

↓↓
0 in the limit P = 1 can be seen in Fig. 4.

Nevertheless, in that limit there are relatively few minority
spin atoms, and also |a↑↑

0 |2 is approximately four times the
magnitude of |a↓↓

0 |2.
In Figs. 8, 9, and 10, we show the transition from first sound

to zero sound with decreasing temperature atP = 0.0,0.5,1.0,

FIG. 9. (Color online) P = 0.5 transition from first sound c1 to
zero sound c0 as a function of temperature (left ordinate), and the
attenuation q2 as a function of temperature (right ordinate). The 3He
density is n3 = 0.0132 Å−2 and the frequency ω = 30 MHz. The
horizontal arrows shown next to c0 and c1 indicate that the sound
speed goes to zero sound in the low-temperature limit and first sound
in the high-temperature limit.
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FIG. 10. (Color online) P = 1.0 transition from first sound c1 to
zero sound c0 as a function of temperature (left ordinate), and the
attenuation q2 as a function of temperature (right ordinate). The 3He
density is n3 = 0.0132 Å−2 and the frequency ω = 30 MHz. The
horizontal arrows shown next to c0 and c1 indicate that the sound
speed goes to zero sound in the low-temperature limit and first sound
in the high-temperature limit.

respectively. Each of the figures is at n3 = 0.0132 Å−2. These
results are obtained by numerically solving Eq. (2.32) for the
complex q. The region of the transition is adjusted by choosing
a size for the frequency ω. With larger ω, the transition moves
to lower temperature. The choice is made to ensure that the
transition occurs at low temperatures (T � TF ), and in an
experimentally relevant interval. The need for a much larger
frequency atP = 0 than atP = 0.5 or 1.0 can be seen directly
by inspecting the scattering rates in Fig. 5. The right-hand
ordinate is the attenuation q2, the imaginary part of the wave
vector. The attenuation is a maximum in the transition region
where ωτ ≈ 1. These figures echo the results in the classic
paper of Abel, Anderson, and Wheatley26 for bulk 3He.

V. CONCLUSION

In this paper, we have studied the propagation and attenua-
tion of zero sound and first sound in thin, arbitrarily polarized
Fermi-liquid films. In Sec. II, we solved Landau’s linearized
kinetic equation to yield expressions for the sound speed, and
also the attenuation in the relaxation-time approximation. The
main results in this section for the complex speeds of sound
are Eqs. (2.18) for P = 0, (2.32) for 0 < P < 1, and (2.49)
for P = 1. In each case, the general solution was expanded in
the limits ωτ � 1 for zero sound, and ωτ � 1 for first sound.

In Sec. III, we calculated the relaxation time in the low-
temperature limit. We utilized an approach based on the simi-
larity of the the collision integral to the free-fermion dynamic
structure factor. The major results in this section are Eq. (3.23)
for the scattering rate for 0 < P < 1, Eq. (3.24) for the
scattering rate at P = 0, and Eq. (3.27) for the scattering rate
at P = 1. We showed that the low-temperature quasiparticle-
quasiparticle scattering rate 1/τ ∼ T 2 ln (TF /T ). This same
behavior was previously predicted to be present in the inverse

spin-diffusion coefficient for two-dimensional 3He by Fu and
Ebner,27 and also by Miyake and Mullin.18

In Sec. III B, we investigated the possibility that scattering
from the substrate phonons might provide an additional
limiting process for the 3He quasiparticle lifetime. We showed
that this was not the case. Because of the mismatch between
the substrate speed of sound and the 3He Fermi velocities,
quasiparticle-phonon scattering was not allowed at low tem-
peratures. This argument was made for a 4He preplating
substrate. We note that since the 4He speed of sound is
likely to be much smaller than other substrates, this result has
great generality. In the absence of this result, the 3He quasi-
particles would not be infinitely long lived at absolute zero
temperature.

Zero-sound propagation speeds at absolute zero tempera-
ture were discussed in our earlier publications.9–11 Some of
those results are relevant to this work. First, we note that
in addition to the approach of Khalatnikov and Abrikosov,12

which is used here to solve the linearized kinetic equation
in Sec. II, there is a second approach that was introduced
by Sanchez-Castro, Bedell, and Wiegers (SBW).28 In the KA
approach, one divides the kinetic equation (2.7) by the factor
(qvσ

F cos θ − ω) and then takes moments with respect to the
T
(cos θ ). In the SBW approach, one simply takes moments
of Eq. (2.7) without dividing through by that factor. They
yield different-looking expressions for the zero-sound speed;
however, they are quite close numerically in the density and
polarization ranges investigated in this paper. We have not
applied the second approach to the kinetic equation with a
collision integral. Next, we showed that truncating the kinetic
equation after the 
 = 1 term gives results very similar to
those obtained by extending the calculation to include up to

 = 3. Because of the nonmonotonic behavior of the Landau
parameters, one can not truncate the series after 
 = 2. This
forms the basis for the truncation after 
 = 1 that is used in this
work. Finally, we find one and only one propagating mode at
each density and polarization. The mode is always zero sound.
We do not find any values of density and polarization which
admits a propagating spin-zero-sound mode. We pointed out
above that this can be inferred at zero polarization from the
relative values of F s

0 and Fa
0 as shown in Table I. The question

of whether there is a Mermin’s theorem29 at finite polarization
is still being addressed.

The major results in this paper are Figs. 8, 9, and 10,
showing the transition from first sound at higher temperature
to zero sound at lower temperature for three polarizations: 0.0,
0.5, and 1.0, respectively. In each figure, we also include the
attenuation which has a well-defined maximum (at ωτ ∼ 1) in
the region of the transition. We remind the reader that the
transition region is tuned by adjusting the frequency. The
frequencies were chosen to ensure that the transition occurred
at a temperature that is small relative to the important Fermi
temperatures in each case, and also was in a temperature range
of interest to experiment.

Equation (2.32) is the exact solution of the linearized kinetic
equation for arbitrary polarization including the 
 = 0 and
1 contributions. In the zero-polarization limit, it reduces to
Eq. (2.34), and in the complete-polarization limit, it reduces
to Eq. (2.49). By examining the solutions in the ωτ � 1 and
ωτ � 1, we obtained exact, analytic expressions for the speeds
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and attenuation of zero sound and first sound, respectively, for
arbitrary polarization. Although, in some cases, the relations
are implicit.

We found that the approach we used to compute the
scattering rates due to quasiparticle-quasiparticle collisions
did not permit us to obtain a single general result valid
at all polarizations. Thus, the lifetime is given by three
expressions valid at zero polarization, complete polarization,
and at arbitrary polarizations with P �= 0,1. Further, the
lifetime results are only valid in the limit of T � TFσ since
they use Stern’s zero-temperature result for the imaginary part
of the dynamic susceptibility χ ′′(k,ω) [Eq. (3.8)].20 The limit
of zero polarization is especially complicated. The limits on
the q integration (3.12) can become ambiguous due to the
interaction between the step-function constraints and the ω

frequency integral. In the full-polarization limit, the minority
Fermi sea eventually disobeys the low-temperature constraint
T � TF↓. A fix for this situation was the introduction of the
D functions in Eq. (3.20). The upper limit of the integral
defining this function was chosen to be xmax = βωmax in order
to satisfy the reality constraint (3.14). We note, however, that ω
should also obey the inequality Eq. (3.13), which implies that
the upper limit on the D functions ought to be considerably

smaller. A smaller upper limit to the integral would presumably
remove the peak at high polarization shown for 1/τ↓ in Fig. 7.

The numerical results are all predictions for thin-film 3He
with arbitrary polarization. Testing these predictions will be
difficult since polarizing the 3He system means ordering
a nuclear moment. In Ref. 10, we pointed out that there
exists a single measurement of a zero-sound speed for a
3He film at zero polarization by Godfrin, Meschke, Lauter,
Böhm, Krotscheck, and Panholzer.25 Their substrate was
graphite, the 3He areal density was n = 0.049 Å−2, the
wave vector was q = 5.5 nm−1, and the energy transfer was
ω = 0.68 ± 0.05 meV. This yields a zero-sound speed of c0 ≈
190 ± 14 m/s. Our predicted results for this system of c0 =
181 m/s are in excellent agreement. However, for the ultracold
gases, nonzero polarization is not a critical issue. There
has been considerable recent progress in preparing ultracold
Fermi-gas systems in quasi-two-dimensional configurations.
In a recent paper, Vogt, Feld, Fröhlich, Pertot, Koschorreck,
and Köhl30 report measurements of the transition between the
ballistic regime to the hydrodynamic regime for a quadrupolar
collective excitation in the trapped gas. They also report
measurements of the shear viscosity as a function of interaction
strength.
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