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Andreev bound states and current-phase relations in three-dimensional topological insulators
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To guide the search for the Majorana fermion, we theoretically study superconductor/topological-insulator/
superconductor (S/TI/S) junctions in an experimentally relevant regime. We find that the striking features present
in these systems, including the doubled periodicity of the Andreev bound states (ABSs) due to tunneling via
Majorana states, can still be present at high electron densities. We show that via the inclusion of magnetic
layers, this 4π periodic ABS can still be observed in three-dimensional (3D) topological insulators, where finite
angle incidence usually results in the opening of a gap at zero energy and hence results in a 2π periodic ABS.
Furthermore, we study the Josephson-junction characteristics and find that the gap size can be controlled and
decreased by tuning the magnetization direction and amplitude. These findings pave the way for designing
experiments on S/3DTI/S junctions.
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I. INTRODUCTION

The prediction of Fu and Kane1 that Majorana fermions can
be realized in superconductor–three-dimensional (3D) topo-
logical insulator structures boosted theoretical predictions for
the peculiar Majorana fermion properties.2–6 Much progress
has been made in the fabrication of two-dimensional7–10 and
three-dimensional topological insulators.7,11–18 Recently, the
three-dimensional topological insulators (TIs) based on the
Bi compounds (e.g., Bi2Te3, Bi2Se3) have already led to
the realization of superconductor(S)/TI/S junctions19–24 and
superconducting quantum interference devices (SQUIDs).25,26

From an experimental point of view, it is difficult to realize
topological-insulator materials with the chemical potential at
or close to the Dirac point. It is therefore highly desirable to
have a guiding theory in an experimentally relevant regime
that can pave the way towards the verification of the Majorana
fermion in S/TI hybrids.

Here we theoretically study superconductor/three-
dimensional topological insulator Josephson junctions. In the
calculations of Refs. 1, 3, and 27–29 it is assumed that the
Fermi level is close to the Dirac point. In addition, it is always
assumed that the ferromagnet placed on top of a TI has a
magnetization |M| > μ in these calculations. In these systems,
an Andreev bound state (ABS) with a doubled periodicity is
predicted. We consider the experimentally relevant regime of
high electron densities, and show that despite the chemical
potential μ being situated far away from the Dirac point, this
characteristic feature is still present. We furthermore consider
the presence of a ferromagnetic layer with magnetization
|M| < μ on top of the junction, and show that it can drastically
alter the Josephson characteristics, even when (|M|,�) �
μ. This is particularly interesting since the magnetization
opens a gap not at the Fermi energy, as the superconducting
correlations do, but at the Dirac point, far away from EF . We
show that a gap in the superconducting bound-states spectra
always opens at a finite angle of incidence. However, the size
of this gap can be tuned and decreased, and can, in prin-
ciple, vanish by increasing the perpendicular magnetization
amplitude.

The discussion of the bound states of a S/TI/S junction
in this paper is organized as follows: first we study the case
without a ferromagnetic layer on top of the TI. Then we discuss
the bound states with a ferromagnet. We will see that a 4π

periodic Andreev bound state is still present in the 3D case,
but only for one channel. This 4π periodic ABS is a feature of
the presence of Majorana fermions. We show the supercurrent
obtained by the bound states and discuss the observation of a
4π periodic ABS in a 3D topological insulator.

II. THE S/3DTI/S JUNCTION

The configuration of the junction we consider is shown in
Fig. 1(a). In the Nambu basis

� = (ψ�,ψ�,ψ
†
� ,ψ

†
� )T , (1)

the Hamiltonian with a superconducting and magnetic prox-
imity effect is27

H =
(

H0(k) + M �(k)

−�∗(−k) −H ∗
0 (−k) − M∗

)
, (2)

where

H0(k) = vF (σxkx + σyky) − μj , M = m · σ , (3)

with M being the magnetization due to the ferromagnet and
m = (mx,my,mz) being the exchange field. σi are the Pauli
matrices and the index j of the chemical potential is S in
the superconducting part and TI in the topological insulator.
From this Hamiltonian, we calculated the eigenvectors of
the TI in the presence of the proximity effects. We assume
the superconductor to be an s-wave superconductor, �(k) =
�eiφS , where φs is the superconducting phase and � = 0
outside the superconductor. This Heaviside function of the
order parameter simplifies the calculations. However, it is not
expected that there will be a qualitative difference with the
results when a self-consistent order parameter is used, as, for
example, is shown in Ref. 30 for a d-wave superconductor
where the induced order parameter is taken into account in the
normal metal, and the Andreev bound-state spectrum does not
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FIG. 1. (Color online) (a) Schematic drawing of a topological
insulator (TI) with a superconductor (S) and ferromagnet (F) on
top. We consider the bound states at the surface of the TI with the
proximity effect from both the superconductor and ferromagnet. (b)
The energy dispersion at the TI surface (left) and at the S side (right).
DP indicates the Dirac point. Here the case is shown without a F and
with an incoming electron at the right interface.

change near zero energy. It is this regime in the spectrum that
is relevant for the appearance of a Majorana mode.

The nonsuperconducting part can be under the influence
of a ferromagnetic proximity effect. In Majorana devices, the
magnetization is taken perpendicular to the TI surface, M =
mzσz (the resulting eigenvectors are listed in the Appendix).
Magnetization parallel to the interface causes only a shift in the
wave vector but does not open a gap. In the known topological
insulators, the Dirac point is in the middle of the band gap or
close to the valence band. The chemical potential is usually
close to the conduction band as the topological insulators
based on Bi compounds are not really good insulators yet.
Therefore, the chemical potential μTI,S is much larger than
the superconducting gap in experiments. In this case, we have
only normal Andreev reflection at the interface and no specular
Andreev reflection.31

For most proposals, it is desired to have a ferromagnet
on top of the TI (preferably an insulator so that practically
no current flows through the ferromagnet).3,27–29 We estimate
here how much the gap at the Dirac point can be opened by
such a ferromagnet. For a magnetic moment of nμB per unit
cell of size a3, where n is an integer and μB is the Bohr
magneton, we can estimate the value of the mzσz part of the
Hamiltonian. By making the assumption that the atoms can
be approximated by spheres with n elementary dipoles and
perfect coupling to the TI, we estimate that the opened gap
will be about 0.0002n/a3 eV, where a is in Å. This value is
typically smaller than the value of the Fermi energy inside the
gap (>0.05 eV). We therefore study the relevant regime of
mz < μTI,S .

With these assumptions, we solve the Andreev and normal
reflection coefficients at both left and right interfaces for
incoming electrons and holes by matching the wave functions
at the interface. Following Kulik32 (see example in Ref. 33),
the wave function in the topological insulator can be written as

ψ = aψ+
e + bψ+

h + cψ−
e + dψ−

h , (4)

where the indices e and h indicate an electron and hole wave
function, respectively. The coefficients a,b,c,d are related by

cψ−
e e−i|ke |L̃ = ree,raψ+

e ei|ke|L̃ + rhe,rdψ−
h e−i|kh|L̃,

bψ+
h ei|kh|L̃ = reh,raψ+

e ei|ke|L̃ + rhh,rdψ−
h e−i|kh|L̃,

(5)
aψ+

e e−i|ke |L̃ = ree,lcψ
−
e ei|ke|L̃ + rhe,lbψ+

h e−i|kh|L̃,

dψ−
h ei|kh|L̃ = reh,lcψ

−
e ei|ke|L̃ + rhh,lbψ+

h e−i|kh|L̃,

where L̃ = L
2 cos θ . The second indices of the wave functions

refer to the right (r) and left (l) interface. The right interface
is placed at L/2 and the left interface is placed at −L/2. θ is
the angle of incidence from the TI to the S where zero angle
means orthogonal to the interface. The wave vectors kh and
ke are the wave vectors of the hole and electron, respectively.
They are given by

|kh| =
√

(μTI − E)2 − m2
z

/
vF ,

(6)
|ke| =

√
(μTI + E)2 − m2

z

/
vF ,

where vF is the Fermi velocity. The mismatch between these
wave vectors and the wave vector in the superconductor causes
an effective barrier at the interface. The superconducting
gap can be neglected in this mismatch as � � μTI,S .
Conservation of k‖ (due to translational invariance) then
gives, for the angle of transmission in the superconductor,
θS = arcsin(sin θ

√
μ2

TI − m2
z/μS). Solving Eq. (5) gives the

energy as a function of the phase difference, φ, between the
superconductors.

III. ANDREEV BOUND STATES

First we consider the case with no ferromagnet on top of the
TI. For perpendicular incidence, we find a 4π periodic ABS
with a gapless dispersion, even in the presence of a momentum
mismatch (the solid curves in Fig. 2; the arrows in Fig. 2(a)
follow one ABS that is 4π periodic). However, in the presence
of a momentum mismatch, a nonzero angle of incidence results
in a nonzero scattering amplitude and a gap is always present
[Figs. 2(a)–2(c)]. The larger the mismatch between the wave
vectors, the larger is the gap that opens. For μTI = μS , the inter-
face is effectively fully transparent and all trajectories give a 4π

periodic ABS. This is a consequence of the model where the su-
perconducting gap is neglected. The opening of the gap at finite
angles is due to finite backscattering at nonzero angle of inci-
dence. For a larger mismatch between the chemical potentials,
the difference in angles of the particle in the TI and supercon-
ductor is larger. This causes also a larger mismatch in the spin
direction, which increases the barrier and hence results in more
reflected electrons. Only at zero angle of incidence is backscat-
tering prohibited by the topological nature. So, in experiments,
no 4π periodicity of the ABSs can be obtained for all angles; it
is a single-channel effect, as is also concluded by Fu and Kane1

for a system with a small μTI,S . Note that even when this 4π pe-
riodic ABS is present, it will only be noticeable in ac measure-
ments since interactions with the environment already cause
the system to reside in the lower (2π ) ABS branches.29,34–36

For a different length [Fig. 2(c)], the curve correspond-
ing to θ = 2π/5 is now lower in energy than the bound
states of θ = π/4 and θ = π/3 compared to the graphs of
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FIG. 2. (a) Andreev bound states for different trajectories in a
S/TI/S junction. A gap opens at finite angle. The arrows indicate
which bound-state branches are connected to form a 4π periodicity.
In these branches, a Majorana fermion is present at φ = π . The
legend applies to all of the figures. μTI/� = 100, μS/� = 1000, and
L/L0 = 0.01 where L0 = vf h̄/μTI. (b) μTI/� = 100, μS/� = 120,
and L/L0 = 0.01. (c) μTI/� = 100, μS/� = 120, and L/L0 = 0.1.
(d) μTI/� = 100, μS/� = 120, mz/� = 60.0, and L/L0 = 0.01.
(e) Bound-state energy for different angles and phase difference φ =
π . Furthermore, μS/� = 120, μTI/� = 100,mz/� = 0. The energy
is oscillating with length. Egap is defined as the distance from E/� =
0 to the minimum of the ABS. (f) Bound-state energy for fixed phase
difference φ = π and angle using the formula from Ref. 37.

Figs. 2(a) and 2(b). In Fig. 2(e), the bound-state energy for
specific angles at φ = π is plotted as a function of length.
We see an oscillating behavior as a function of length due to a
Fabry-Perot resonance. The oscillation period is determined by

the Fabry-Perot resonant condition: 2LkTI cos θ = 2πn where
kTI is the wave vector in the topological insulator and n is
an integer.37 There is a strong similarity to a superconductor–
normal-metal–superconductor (SNS) junction. In Fig. 2(f), a
plot is made of the bound-state energy of a SNS junction for a
fixed angle of π/4 and phase difference of π by determining
the pole in the spectral supercurrent in Eq. (5) of Ref. 37, i.e.,

	n = 0 = (
K2
2

n + ω2
n

)
cosh

(
2ωnL

h̄vn

)

+ 2Kωn
n sinh

(
2ωnL

h̄vn

)
− (K2 − 1)
2

n cos (2kNL) + �2 cos φ, (7)

where 
n = √
ω2

n + �2, ωn = π (2n + 1) /β, β = 1/kBT ,

kN =
√

2m
h̄

(μ − U ) − k2
||, kS =

√
2m
h̄

μ − k2
||, K = k2

N+k2
S

2kN kS
, and

vN(S) = h̄kN(S)

m
. 	n = 0 corresponds to a pole in imaginary

space which is equal to the energy of the Andreev bound
state. The decrease of the amplitude is determined by the ratio
of the length of the junction and the coherence length of the
superconductor in the topological insulator. It should, however,
be noted that varying the junction length will not result in a
closing of the gap at a certain length. The calculation above is
valid for every particular angle. When all angles are included,
the oscillations will be averaged out.

When a ferromagnet is included, the magnetization is found
to decrease the gap [see Fig. 2(d)]. This can be understood by
considering the extreme case where the magnetization m is
close to the chemical potential so that the wave vectors of the
electrons and holes are nearly zero [Eq. (6)]. In that case, it
also follows from the conservation of k‖ that θs is practically
zero. Then, by using the eigenvectors [Eqs. (10), (11), and
(17)] in the Appendix and substituting these values of the
wave vectors and angle into them, the resulting equations at
the interfaces simplify. From these equations, it can be seen
that there is perfect Andreev reflection. Quantitatively, it can
be understood by noticing that the mismatch between the spins
for the different particles in the system also causes a barrier.
By the magnetization, this mismatch becomes smaller due to
the alignment.

In Figs. 3(a) and 3(b), we show the bound states as a function
of ky , i.e., the wave vector parallel to the interface. For a phase
difference of π between the superconductors, we see that the

)c()b()a(

FIG. 3. Bound-state energy vs the wave vector parallel to the interface for different phase differences. For all of the cases, a nonhelical
Majorana quantum wire is seen at φ = π . The legend is shown in (a) and holds also for the other two. (a) μTI/� = 100, μS/� = 1000, and
L/L0 = 0.01. (b) μTI/� = 100, μS/� = 110, and L/L0 = 0.01. (c) μTI/� = 100, μS/� = 1000, mz/� = 60, and L/L0 = 0.01.

104507-3



SNELDER, VELDHORST, GOLUBOV, AND BRINKMAN PHYSICAL REVIEW B 87, 104507 (2013)

zero-energy mode has a dispersion as a function of ky . This
is also called a nonchiral Majorana state.1 For large mismatch
between kS and kTI, the model of Fu and Kane applies1 where
the chemical potential is smaller than the superconducting
gap. This situation resembles the case of a large mismatch at
the interface, in our case, as the waves in the superconductor
are then fully evanescent. For smaller mismatches, the gap is
smaller, which results in smaller slopes in the ky − E graphs.
A smaller slope indicates a smaller velocity of this propagating
mode along the interface, as already noted in Ref. 38. Based on
the same reasoning as in the previous paragraph, the ky − E

graphs have a smaller slope if magnetization is included. The
result for mz/� = 60.0 is shown in Fig. 3(c).

IV. SUPERCURRENT

In this section, we numerically calculate the angle-averaged
supercurrent of the Andreev bound states. We consider here
only the supercurrents for small junction length, as longer
lengths give no additional features regarding the 4π periodic
ABS and the influence of the chemical potential and
magnetization on this. In the work of Ref. 39, discretized
bound states were used but the continuum was missing in the
calculation for larger length scales. Because we only consider
here small length scales, only the discretized spectrum has to
be considered,

I/I0 =
∫ π/2

−π/2
dθ cos θ tanh

(
E

2kBT

)
dE/�

dφ
, (8)

where I0 = eN�/h̄. Three plots of this normalized Josephson
supercurrent are shown in Fig. 4(a). The temperature is
T/Tc = 0.01, where Tc is the critical temperature.

Although a 4π periodicity is present in the Andreev bound
state for zero angle of incidence, the other channels are 2π

periodic. Hence, the 2π periodic character is dominating
the angle-averaged supercurrent and therefore this current
will be 2π periodic in measurements. Moreover, the thermal
equilibrium of the system even makes the ABS for zero
angle of incidence 2π periodic since inelastic scattering can
relax quasiparticles to an ABS that is lower in energy.40–42

This thermal equilibrium is due to the exchange between the
bulk superconducting electrodes and the Andreev bound-state
levels in the junction.41

We see that for larger mismatch, the supercurrent as a
function of phase has a more sinusoidal shape. For small
mismatches, there is a sharp transition at φ = π from positive
to negative supercurrent, which is also the case in a normal
superconducting junction.43 Also, for a larger mismatch or
for a magnetization, the slope of the energy-phase curves
becomes less steep, causing a smaller supercurrent for both
cases. In Fig. 4(b), we plot the dependence of the normalized
IcRN product as a function of mismatch in the Fermi level
and as function of magnetization. RN is here averaged over
all angles. For larger mismatch in the Fermi level, the value
of the IcRNe/� is saturating towards 0.5π , as expected in the
tunneling limit. For small mismatch, the value is π , as is also
the case in the ballistic limit in normal SNS junctions. The
critical current is also decreasing for a larger magnetization.
However, we see that for values larger than mz/� = 60,
the critical current is increasing again. When analyzing the
Andreev bound states, we notice that there is a competition

FIG. 4. (Color online) (a) Normalized Josephson supercurrent as
a function of the phase difference between the superconductors. The
numbers indicated in the inset correspond to the following param-
eters: (1) μs/� = 1000, μTI/� = 100, mz/� = 0, L/L0 = 0.01,
(2) μs/� = 120, μTI/� = 100, mz/� = 0, L/L0 = 0.01, and (3)
μs/� = 120, μTI/� = 100, mz/� = 60.0, L/L0 = 0.01. (b) De-
pendence of the normalized IcRNe/� product on both the magneti-
zation (dashed line) and the chemical potential of the superconductor
(solid line) separately. μTI/� is kept constant to 100. In the
dependence of the magnetization, μS/� is kept constant to 120. The
temperature is T/Tc = 0.01 in (a) and (b). (c) Sketch of an Andreev
bound state at nonzero angle of incidence. Due to magnetization, the
gap of the ABS has become so small that through Zener tunneling,
the electron in the lower branch can be promoted to the upper branch
around φ = π ± n2π where n is an integer. (d) The influence of the
magnetization and μS/� on the value of the gap. For both situations,
μTI/� = 100, θ = π/3, and L/L0 = 0.01.

between the flattening of the bound states and the lowering of
the barrier, both due to magnetization. The latter depends on
the relative magnitude of the magnetization to the mismatch. In
Fig. 4(b), the mismatch of the wave vectors due to a difference
in the chemical potentials is relatively small: μTI/� = 100 and
μS/� = 120. The aligning of the spins for larger magnetiza-
tion can therefore make the interface almost transparent. The
corresponding Andreev bound states also resemble therefore
an almost transparent interface: small gap and, at φ = 0 and
2π , the energy is E/� = ±1. For a larger difference between
μS and μTI, the effect is less and the critical current is
monotonically decreasing for larger magnetization. However,
if we analyze the normal resistance, the resistance increases
for larger magnetization. This is because the spins in the
topological insulator with the ferromagnet on top are now more
misaligned compared to the topological insulator side without
a ferromagnet on top. The combination of both an increasing
Ic and RN results in a normalized IcRNe/� product of 2π .

V. SIGNATURES OF 4π PERIODIC ABS BY MEANS
OF ZENER TUNNELING

We have seen that the 4π periodic ABS is a single-channel
effect for perpendicular trajectories only. Next to it, measuring
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in thermal equilibrium makes even the single 4π ABS 2π

periodic because the electrons will follow the lowest ABS
branches, i.e., below E/� = 0. The latter can be solved by
doing ac measurements such as Shapiro step and/or noise
measurements. The 4π periodic ABS will only contribute to
the Shapiro steps at a voltage equal to nh̄ω/e, where n is an
integer and ω is the frequency of the applied microwave.29,34 A
2π periodic ABS will result in Shapiro steps at V = nh̄ω/2e,
which is half the step size of the 4π periodic bound state.

However, due to the presence of just one single 4π periodic
ABS in 3D TIs/superconductor Josephson junctions out of
many, one would expect that a 4π periodic signature in ac
measurements is not visible due to angle averaging. Usually,
one can enhance the zero-angle contribution by introducing
a physical barrier of finite width due to the exponential
dependence of the wave function on the width. It is, however,
not possible to cancel the nonzero angles by introducing a
physical barrier between the superconductor and TI because of
Klein tunneling, which renders barriers effectively transparent
(see, for example, the discussion of Klein tunneling in
graphene in Refs. 31 and 44). So, in order to see a 4π periodic
ABS, the ABSs of all angles should be 4π periodic. By means
of Zener tunneling, this can be achieved.

In order to obtain Zener tunneling, a bias voltage across
the junction is required (which is, for example, the case in
Shapiro steps measurements). Due to this bias voltage, the
quasiparticles in the junction can gain enough kinetic energy
so that they can transfer from a lower Andreev bound state to
an upper bound state despite the separation by a gap.45,46 It is
noted in Ref. 47 that for large transparency of the interface,
this can result in a 4π periodic ABS. So, when the gap is small,
it can no longer be distinguished from an Andreev bound state
without a gap. Hence, when electrons in the lower branch of
these Andreev bound states with small gaps are promoted to
the upper branch, it can result in 4π periodic signatures in ac
measurements.35,48 In Fig. 4(c), a sketch is shown of an ABS
with a finite but small gap. Due to magnetization, this can
result in a 4π periodic signature in, for example, Shapiro step
and/or noise measurements. Physically, the small gap is similar
to having a finite length in the 1D Kitaev model, where also a
gap is present due to the interaction of the Majorana fermions
at the ends.35,49–51 A way to reduce the gaps of all nonzero
angle of incidence channels in a 3D TI, in order to enhance
the chance of Zener tunneling to get the 4π periodicity of all
ABSs, is by exploiting magnetization, as is shown in Fig. 2(d).

The influence of the magnitude of the magnetization
depends, first of all, on the relative magnitude of the chemical
potentials to each other, as we can see from Fig. 4(d). The larger
the mismatch, the less the influence is of the magnetization.
Second, the influence of the magnetization depends on its
magnitude compared to the absolute magnitude of the chemical
potential. With a larger chemical potential, the influence of the
magnetization is less. To get a clearer picture of the influence
of the magnetization, we have plotted the gap in the Andreev
bound state (at φ = π ) for several conditions in Fig. 4(d). For
an increase of mismatch, we kept the magnetization constant to
mz/� = 0, length L/L0 = 0.01, and angle θ = π/3. A similar
result is obtained for other angles. Furthermore, μTI/� = 100
for both graphs. We see that the gap is a strong function
of magnetization in the beginning, but saturates at larger

mismatches in the chemical potentials. The graph that shows
the influence of the magnetization has a constant (small)
mismatch, μS/� = 140 and μTI/� = 100. When the mag-
netization energy is half the value of the Fermi level in the TI,
the energy gap is already decreased by 50% of its original value
at zero magnetization. However, we have estimated before that
the magnetization energy is typically on the order of 1% of the
Fermi energy, i.e., μ � mz, in experiments. So only for small
mismatches in the chemical potentials is it possible to reduce
the gap so that by means of Zener tunneling, the 4π periodicity
of the ABSs remains for all angles. This reduction of the gap
can be made visible in SQUID experiments, as proposed in
Refs. 52 and 53, where it is shown that the reduction of the
gap size results in a different critical current modulation of
the SQUID as a function of the applied flux through the ring.
These results hold even in equilibrium experiments, so that
these SQUID devices can be used for ABS spectroscopy.

VI. CONCLUSIONS

We studied the Andreev bound states and the resulting su-
percurrent for S/TI/S junctions with and without a ferromagnet
on top of the TI. In experiments, it is often the case that
μ � � and mz < μ, and therefore we extended the model (by
Fu and Kane1 and Linder et al.27) towards this regime. The
bound states are solved by means of the total wave function
in the topological insulator and its relation to the reflection
coefficients, providing insight in the process. The important
conclusion is that the results from Fu and Kane1 (e.g., the 4π

periodic ABS existing only for θ = 0) are confirmed, even for
large chemical potentials. Therefore, these features are also
valid in actual experiments on TIs. The 4π periodicity of the
bound states only remains in a 3D topological insulator for
zero angle of incidence. This 4π feature cannot be observed,
as all of the other angles, which give 2π periodic bound
states, cause the 2π periodicity to dominate. However, Zener
tunneling can cause a transition from the lower branches to the
upper branches of the Andreev bound states, even when a gap
is present. We can enhance this Zener tunneling, and hence
enhance the 4π periodicity of the nonzero angle ABSs, by
depositing a ferromagnet on top. The magnetization effectively
lowers the barrier, which causes the gap in the Andreev bound
states to become smaller.
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APPENDIX: EIGENVECTORS AND
BOUNDARY CONDITIONS

The eigenvectors in the topological insulator are calculated
to be

ψ1 = n1

⎛
⎜⎜⎜⎝

−m +
√

m2 + v2|k1|2
−v|k1|eiθ

0
0

⎞
⎟⎟⎟⎠ , (A1)
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ψ2 = p2

⎛
⎜⎜⎜⎝

0
0

m +
√

m2 + v2|k|22
−v|k2|e−iθ

⎞
⎟⎟⎟⎠ , (A2)

ψ3 = p3

⎛
⎜⎜⎜⎝

m +
√

m2 + v2|k3|2
v|k3|eiθ

0
0

⎞
⎟⎟⎟⎠ , (A3)

ψ4 = n4

⎛
⎜⎜⎜⎝

0
0

−m +
√

m2 + v2|k4|2
v|k4|e−iθ

⎞
⎟⎟⎟⎠ , (A4)

where nj = 1/

√
2(m2 + v2|kj |2 − m

√
m2 + v2|kj |2) with

j = 1,4 for ψ1 and ψ4, respectively. Furthermore, pj =
1/

√
2(m2 + v2|kj |2 + m

√
m2 + v2|kj |2) with j = 2,3 for ψ2

and ψ3, respectively. The eigenvalues are

E1 = −μ −
√

m2 + v2|k1|2, (A5)

E2 = μ −
√

m2 + v2|k2|2, (A6)

E3 = −μ +
√

m2 + v2|k3|2, (A7)

E4 = μ +
√

m2 + v2|k4|2. (A8)

ψ1 and ψ3 are the electrons belonging to the lower and upper
half of the Dirac cone, respectively. ψ2 and ψ4 are the holes
corresponding, respectively, to the lower and upper half of the
cone. The wave function in the superconductor is given by

ψs = 1

2
√

E

⎛
⎜⎜⎜⎜⎝

eiφ
√

E − μ + v|ks |
eiφeiθ

√
E − μ + v|ks |
−�eiθ√

E−μ+v|ks |
�√

E−μ+v|ks |

⎞
⎟⎟⎟⎟⎠ , (A9)

with an energy given by E =
√

�2 + (v|ks | − μ)2.
The reflection and transmission coefficients can differ at

both interfaces due to magnetization. If we consider the
electrons at the upper cone, as depicted in Fig. 1(a), we need
the wave functions ψ2 and ψ3. By taking the direction of the
particles into account in the angle θ in the TI and θs in the
superconductor, we arrive at the following set of equations.

Right interface, incoming electron:

pm,3 (1 + ree) = eiφ

2
√

E
(c1tee + d1teh) ,

pk,3(eiθ − reee
−iθ ) = eiφ

2
√

E
(c1teee

iθs − d1tehe
−iθs ),

(A10)

pm,2reh = �

2
√

E

(
−tee

eiθs

c2
+ teh

e−iθs

d2

)
,

−pk,2e
−iθ reh = �

2
√

E

(
tee

1

c2
+ teh

1

d2

)
,

where

|kse| = μ/v +
√

E2 − �2/v,

|ksh| = μ/v −
√

E2 − �2/v,

c1 =
√

E − μ + v|kse|,
d1 =

√
E − μ + v|ksh|,

(A11)
c2 =

√
E − μ + v|kse|,

d2 =
√

E − μ + v|ksh|,

pm,j = m + √
m2 + v2|kj |2√

2(m2 + v2|kj |2 + m
√

m2 + v2|kj |2)
,

pk,j = v|kj |√
2(m2 + v2|kj |2 + m

√
m2 + v2|kj |2)

.

Right interface and incoming hole:

pm,3rhe = eiφ

2
√

E
(c1tee + d1teh) ,

−pk,3rhee
−iθ = eiφ

2
√

E
(c1teee

iθs − d1tehe
−iθs ),

(A12)

pm,2 (1 + rhh) = �

2
√

E

(
−tee

eiθs

c2
+ teh

e−iθs

d2

)
,

pk,2(eiθ − rhhe
−iθ ) = �

2
√

E

(
tee

1

c2
+ teh

1

d2

)
.

Left interface, incoming electron:

pm,3(1 + ree) = eiφ

2
√

E
(d1teh + c1tee) ,

pk,3(−e−iθ + reee
iθ ) = eiφ

2
√

E
(d1tehe

iθs − c1teee
−iθs ),

(A13)

pm,2reh = �

2
√

E

(
−teh

eiθs

d2
+ tee

e−iθs

c2

)
,

pk,2rehe
iθ = �

2
√

E

(
teh

1

d2
+ tee

1

c2

)
.

Left interface, incoming hole:

pm,3rhe = eiφ

2
√

E
(d1teh + c1tee) ,

pk,3rhee
iθ = eiφ

2
√

E
(d1tehe

iθs − c1teee
−iθs ),

(A14)

pm,2(1 + rhh) = �

2
√

E

(
−teh

eiθs

d2
+ tee

e−iθs

c2

)
,

pk,2(−e−iθ + rhhe
iθ ) = �

2
√

E

(
teh

1

d2
+ tee

1

c1

)
.

These equations can be used to calculate the coefficients that
are used in Eq. (5) in the main part of the paper.

104507-6



ANDREEV BOUND STATES AND CURRENT-PHASE . . . PHYSICAL REVIEW B 87, 104507 (2013)

1L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
2J. Nilsson, A. R. Akhmerov, and C. W. J. Beenakker, Phys. Rev.
Lett. 101, 120403 (2008).

3Y. Tanaka, T. Yokoyama, and N. Nagaosa, Phys. Rev. Lett. 103,
107002 (2009).

4M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
5J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).
6C. W. J. Beenakker, arXiv:1112.1950v2.
7G. Tkachov and E. M. Hankiewicz, Phys. Status Solidi 250, 215
(2013).

8M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W.
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10A. Roth, C. Brüne, H. Buhmann, L. W. Molenkamp, J. Maciejko,
X.-L. Qi, and S.-C. Zhang, Science 325, 294 (2009).

11L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).
12S. Murakami, New J. Phys. 9, 356 (2007).
13J. E. Moore and L. Balents, Phys. Rev. B 75, 121306(R) (2007).
14D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and

M. Z. Hasan, Nature (London) 452, 970 (2008).
15L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803

(2007).
16H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S.-C. Zhang,

Nature Phys. 5, 438 (2009).
17D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal, J. H. Dil, J. Osterwalder,

F. Meier, G. Bihlmayer, C. L. Kane, Y. S. Hor, R. J. Cava, and
M. Z. Hasan, Science 323, 919 (2009).

18Y. Tanaka, M. Sato, and N. Nagaosa, J. Phys. Soc. Jpn. 81, 011013
(2012).

19D. Zhang, J. Wang, A. M. DaSilva, J. S. Lee, H. R. Gutierrez,
M. H. W. Chan, J. Jain, and N. Samarth, Phys. Rev. B 84, 165120
(2011).
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