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Athermal energy loss from x-rays deposited in thin superconducting films on solid substrates
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When energy is deposited in a thin-film cryogenic detector, such as from the absorption of an x-ray, an
important feature that determines the energy resolution is the amount of athermal energy that can be lost to
the heat bath prior to the elementary excitation systems coming into thermal equilibrium. This form of energy
loss will be position dependent and therefore can limit the detector energy resolution. An understanding of the
physical processes that occur when elementary excitations are generated in metal films on dielectric substrates
is important for the design and optimization of a number of different types of low-temperature detectors. We
have measured the total energy loss in one relatively simple geometry that allows us to study these processes
and compare measurements with calculation based upon a model for the various different processes. We have
modeled the athermal phonon energy loss in this device by finding an evolving phonon distribution function that
solves the system of kinetic equations for the interacting system of electrons and phonons. Using measurements
of device parameters such as the Debye energy and the thermal diffusivity we have calculated the expected energy
loss from this detector geometry, and also the position-dependent variation of this loss. We have also calculated
the predicted impact on measured spectral lineshapes and have shown that they agree well with measurements. In
addition, we have tested this model by using it to predict the performance of a number of other types of detector
with different geometries, where good agreement is also found.
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I. INTRODUCTION

An understanding of the key processes that take place when
energy is deposited is important for any type of radiation
detector. In this paper we present direct measurements and
detailed calculations of energy loss and fluctuations in this
loss from athermal phonons that escape from a metal film into
a dielectric substrate. This loss mechanism can influence the
measured energy resolution performance of a wide variety of
particle detectors.

There are two major classes of low-temperature photon
detectors. The first is a class of devices operating under
nonequilibrium conditions; the best examples of these are su-
perconducting tunnel junctions (STJs) and microwave kinetic
inductance detectors (MKIDs). For these detectors, nonequi-
librium quasiparticles are created in the process of energy
down conversion, which results in the breaking of numerous
Cooper pairs. This down-conversion process typically lasts
from several tens to hundreds of picoseconds. During the
down-conversion process the photon energy is transformed
into electronic excitations and phonons, the properties of
nonequilibrium distribution of quasiparticles and phonons
being used to determine the energy deposited. The mechanisms
for determining the energy partition between the two systems
far away from equilibrium are important and lead to the
well-known statistical Fano limit for the resolution of this
type of detector.

A second class of low-temperature detectors are equilib-
rium devices. These include microcalorimeters and bolometers
that are used to measure the energy of single photons and
the power from a flux of photons, respectively. In these
devices the different types of excitations rapidly come into
thermal quasi-equilibrium at a temperature slightly above

that of the thermal bath. We consider the distributions to
have reached quasithermal equilibrium when the electron
and phonon systems are in equilibrium with each other,
but the temperature of these systems is still changing. The
measured signal is determined from the mean energy of all
excitations and is determined by the temperature excursion.
In low temperature (�1 K) microcalorimeters thermal quasi-
equilibrium is typically established on the time scale of less
than 1 μs, and Fano fluctuations are completely washed out.

One key question that is relevant to all types of detectors is
whether the whole deposited energy is retained in the sensing
element and converted into the response signal. Energy that is
leaked from the sensor prior to generating the ultimate number
of quasiparticles or establishing thermal quasi-equilibrium
may naturally occur in all types of detectors. Although the
energy down-conversion process is usually fast, a significant
fraction of the photon energy can be accumulated within
the energetic phonon system (athermal phonons). Depending
upon the geometry of the detector, these phonons have some
probability of escape from metal films into a dielectric support,
such as a silicon wafer. This can result in a significant
deficit in the energy detected. A number of different detector
types have athermal phonons produced in films fabricated on
solid substrates, where athermal phonon escape can degrade
performance either from the deficit in the amount of energy
finally detected, or through variations in the amount of
energy lost, depending upon the location of the initial photon
interaction. An example of performance being affected by
the deficit in energy is in single-photon detectors operating
at visible and near-infrared wavelengths.1 Here the spectral
resolving power is typically not very high (∼10), and therefore
variations in energy loss ∼1% are not important. But the loss in
energy, as high as 50% in these low-energy photon detectors,
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can significantly affect the performance. An example where
the broadening of energy resolution is more important than
the energy deficit is in some x-ray detectors fabricated on
solid substrates with STJ sensors. Variation in athermal
phonon escape was identified as the mechanism responsible for
these devices not being able to achieve Fano-limited spectral
resolution in the optical and soft-x-ray band.2–4

Traditional x-ray microcalorimeter geometries often em-
ploy thin-film membranes5 or narrow silicon legs6 to isolate
the temperature sensor from the substrate. In these geometries
athermal phonon energy loss is often substantially reduced
or almost eliminated. With a membrane geometry, athermal
phonons are preferentially thermalized or reabsorbed rather
than lost from the detector due to the physical geometry.
An energy resolving power of over 3000 has been achieved
while detecting 6 keV photons,7 and over 4000 while detect-
ing 100 keV photons.8 While this very high spectroscopic
performance is achievable with this type of device geometry,
the low thermal conductance of the membranes can lead
to detectors that return to the temperature of the thermal
bath with a relatively slow time constant, leading to lower
count-rate capability than desired. There are many applications
where high count-rate capability and high spectral resolution
is desired.9 Another drawback to using membrane supports is
that large arrays of fine-pitch and close-packed pixels become
more difficult to design and fabricate.

To produce a fast microcalorimeter that does not have
degraded energy resolution, a geometry was fabricated with
a transition-edge sensor (TES) on a solid substrate which is
attached to an x-ray absorber supported by attachments points
(“stems”) that supports it above the sensor and substrate. By
making these contact points small, the effects of athermal
energy loss were minimized.10 It was found that, for this
geometry, the energy resolution degraded as the area of contact
of the “stem contact” increased. The detector geometry with
the smallest contact area between absorber and solid substrate
was not only fast, but also demonstrated the best energy
resolution seen by any low-temperature detector at 6 keV of
1.6 eV full width at half maximum (FWHM).10 In similar
devices where the absorber was twice as thick, the dependence
of energy resolution on contact area was not apparent. Thus
there was strong evidence for the energy resolution of this
type of detector being highly dependent on the amount of
athermal phonon loss, which is very geometry dependent. It
is the understanding of the important physical processes that
takes place when athermal phonons are generated in metal
films that motivates this work. With this understanding, it
will be possible to predict the effects on performance for a
wide variety of absorber and stem dimensions. It will also
be possible to optimize the geometry and material properties
according to the requirements of the different detector types,
taking into account the need to simplify fabrication processes
as much possible.

In Sec. II we describe two experimental results that are
affected by athermal phonon loss. In the first, we consider the
performance for when x-rays are stopped in a microcalorimeter
sensor film on a solid substrate without an absorber. In this
type of geometry, the performance is known to be poor
for decades due to athermal phonon loss. However, we
use the width and shape of the spectral response from the

almost monoenergetic source as an important measurement
for comparison with our model. In the second, we look at
signals from a microcalorimeter with a similar film on a solid
substrate with an absorber attached. In this latter case, by
comparing the signal profiles when x-rays are stopped in the
absorber with those that are stopped in the sensor, we are
able to measure important parameters in the energy-transport
process. For both of these experiments the sensor is a magnetic
penetration-depth thermometer (MPT),11 a relatively new type
of thin-film thermometer. It is particularly useful for these
studies because of important sensor properties that we describe
in Sec. II that ensure that the energy loss observed is dominated
by the processes modeled. In Secs. III–V we describe a
framework for studying how athermal phonon loss can affect
the performance and characterization of different detector
designs on solid substrates.

Prior to this paper there have been no direct measurements
or calculations of energy loss and fluctuations in this loss
that will influence measured spectral lineshapes. For the high
resolving power of TES sensors fabricated on suspended
membranes this was not important. For STJs the energy loss
can only be evaluated indirectly through line shifts which must
be correlated with certain sharp features in the dependence
of the photon absorption coefficient on energy either due to
peaks associated with the onset of interband transitions for the
optical photon range or in x-ray absorption-edge spectroscopy
for soft x-rays. In both cases the abrupt change in photon
absorption coefficient and distribution of absorption sites
result in strong variations in energy loss and corresponding
line shifts. However, indirect measurements cannot yield
sufficiently accurate results because of practical experimental
details such as the poor quantum efficiency of thin metal
films and often-complicated fine x-ray absorption spectra. The
direct measurements of energy loss from thin-layer systems
through athermal phonons therefore is of great importance.
The results are relevant to a wide variety of thin-film metallic
sensor geometries, where the sensors can be transition-edge
sensors (TESs),12 metallic magnetic calorimeters (MMC),13

magnetic penetration thermometers,11 MKIDs, STJs, and
nanobolometers.

II. EXPERIMENTAL DETAILS

In this section we describe two experimental results that
provide information about the energy loss that occurs when an
x-ray is stopped in a thin metallic film on a solid dielectric sub-
strate, prior to the film reaching quasithermal equilibrium. For
both of these experiments, the quasithermal signal is measured
using a magnetic penetration thermometer (MPT).11,14,15 This
type of thermometer utilizes the temperature-dependent dia-
magnetic susceptibility of a superconducting film. A schematic
diagram of the two experiments is depicted in Fig. 1, which
shows the layout of a MPT-based x-ray microcalorimeter.
When an x-ray is stopped in the gold absorber the entire
absorber and the MPT superconducting film quickly come into
thermal equilibrium. The MPT film is a bilayer consisting of
molybdenum and gold. The temperature of the microcalorime-
ter ideally rises according to

�T = �E/Ctotal, (1)
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FIG. 1. (Color online) Schematic depicting the components of a
MPT microcalorimeter (left) and an assembled pixel (right).

where �E is the energy of the x-ray, and Ctotal is the heat
capacity of the absorber plus the MPT bilayer. The temporal
profile of a typical event where an x-ray is stopped in the
absorber is shown in the inset of Fig. 2. After the first ∼1 μs the
electron and phonon systems are in equilibrium, but the tem-
perature of this system is changing. Thus we consider the
device to be in quasithermal equilibrium. After the temperature
rises, the microcalorimeter decays back to the temperature
of the heat bath with an exponential decay time constant
given by Ctotal/G, where G is the thermal conductance of
the MPT film to the substrate. G is determined by the Kapitza
conductance of the MPT film to the dielectric substrate below.
The signal is read out with a pickup coil that is beneath the MPT
superconducting film. This pickup is connected to the input coil
of a superconducting quantum interference device (SQUID)
forming a purely superconducting loop. As the temperature
rises, the MPT diamagnetic susceptibility is reduced, and
the inductance of the pickup coil increases. The inductance
[Lp(T )] is sensed from current seen through the SQUID input
(Ii) according to

Ii = −Ib[Lp(∞) − Lp(T )]

Lp(T ) + Li

, (2)

where Li is the sum of the SQUID input inductance and stray
inductance, and Ib is the near-constant bias current supplied
to the parallel combination of the SQUID input coil and the
MPT pickup coil, provided by a large ballast inductor in the
bias circuit. Ib is actually a persistent dc current that is applied

FIG. 2. (Color online) Spectrum from Mn K α x-rays deposited
directly into MPT bilayer. The natural lineshape of the Mn K α x-rays
is shown as the narrow solid lines underneath the data points. The
inset shows the temporal profile of a typical Mn K α pulse.

FIG. 3. (Color online) Measured SQUID signal as a function
of temperature for MPT without absorber attached. Ib = 1.0 mA,
producing an anisotropic magnetic field in the region of the MPT
bilayer.

with a procedure that ensures that almost all of the current
flows through the pickup coil.16 The magnetic field produced
by the pickup is nonisotropic and has been investigated in
detail by Fleischmann et al.13 In Fig. 3 we see an example of a
SQUID signal as a function of temperature with an anisotropic
field, which is approximately the temperature dependence
of the MPT diamagnetic susceptibility. Unlike many other
microcalorimeters, the MPT film has no electrical connections,
so the possibility of electric connections that could allow
energy loss through these contacts is eliminated.17

These MPT microcalorimeters are fabricated using standard
microfabrication techniques.18 There is a 250-nm-thick Al2O3

layer that provides isolation between the Si substrate and
the first Nb layer, which forms the pickup coil. To isolate
the MoAu sensor from the Nb pickup coil, we anodize the
Nb, forming a 50-nm-thick Nb2O5 layer and then deposit
a 250-nm-thick layer of Al2O3. A second Nb layer is then
deposited to form low-inductance microstrip leads in all
regions of the circuit except that of the pickup coil. Deposited
over the area of the insulated pickup coil is the MoAu
superconducting bilayer. The lower layer of the bilayer is
50-nm-thick Mo, and the upper layer is 330-nm-thick Au.
In the first and second experiments the pickup coil had
different geometries and calculated inductances of 0.76 and
0.53 nH, respectively. The MPT chip is connected to a separate
SQUID chip with aluminum wirebonds, which contribute a
stray inductance, typically measured to be ≈1.6 nH. Low-
temperature characterization of our devices is performed in an
adiabatic demagnetization refrigerator capable of reaching a
minimum temperature of 30 mK. Our readout is accomplished
using a two-stage SQUID provided by PTB-Berlin.19 The
first-stage SQUID has an input inductance of 1.8 nH, an
input coupling of 5.4 μA/�0, and the overall readout has
a broadband noise level that is less than 0.4 μ�0/

√
Hz at

our operating temperature referred to the first-stage SQUID.
The SQUIDs are read out using Magnicon SQUID electronics.
Further details of our experimental procedure can be found in
Rotzinger et al.16

In the first experiment, where there was no x-ray absorber,
the x-rays were stopped directly in the MPT film. The main part
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of the x-ray spectrum of pulse sizes is shown in Fig. 2. These
signals are from 5.9 keV Mn K α x-rays that are produced when
a radioactive 55Fe source undergoes electron capture; signals
from Mn K β were also observable at a lower count rate. The
ratio of Mn K α and K β signal sizes, 500 eV apart, was used to
calibrate the responsivity. The Mn K α x-rays are practically
monoenergetic on the scale of the signal-size variation seen
in this measurement. Based upon the signal and noise, the
detector resolution for this measurement was 4.1 eV (FWHM)
and the Mn K α complex extends only over a range of 10 eV,
as seen in Fig. 2. We are able to compare the distribution of
pulse sizes with those we would expect from mechanisms that
we can model to learn about energy loss processes. Figure 3
shows the SQUID output as a function of temperature for this
particular device. For this measurement with Ib = 1.0 mA, it
was necessary to operate at a temperature of 115 mK. This
ensured a responsivity that was only slightly nonlinear with a
signal gain that could be accurately calibrated. It also ensured
that the response from the x-ray signal was not too large to
maintain the flux-locked loop of the SQUID readout from the
∼12 mK temperature rise that is seen on the time scale of the
signal rise time which is ∼0.2 μs.

In the second experiment, with a different geometry MPT
sensor coil, the x-ray absorber is attached and the majority of
x-rays are stopped in this absorber. The absorber is a thin gold
foil that is suspended above and coupled to the MoAu film; the
absorber dimensions are 250 × 250 × 2.8 μm3. In Fig. 1 the
connection points are shown schematically as solid stems; for
these devices the contact stems were small regions where the
absorber material is lowered to contact the sensor and substrate
with small contact points that are 3.5 μm × 3.5 μm. There
was a single contact point onto MoAu, and four contact points
onto just the dielectric substrate that were introduced to add
mechanical stability. The total area of contact of these stems
is just 0.1% of the area of the MoAu. The superconducting
transition temperature was lower for this experiment and the
temperature of operation of 35 mK is at the steepest part of
the MPT transition curve for Ib = 0.38 mA14. When x-rays are
stopped in the absorber, i.e., when the whole energy of the x-ray
was retained in the spectrometer following its absorption, the
measured spectral resolution of Mn K α complex was 4.3 eV
(FWHM).14 This spectral resolution level is consistent with the
resolution expected based upon the signal and noise. It is only
limited by the microcalorimeter thermodynamic fluctuations
and the SQUID amplifier noise level, given the temperature
responsivity of this device under the operating conditions.
Thus for this design, with a relatively small contact area
between the absorber and solid substrate, the energy resolution
is apparently not affected by the degrading effects of athermal
phonon loss. In this respect it is close to “ideal.”

A small fraction of the x-rays passed through the absorber
and were stopped in the MPT film. Based upon the geometry
of the device and the known attenuation lengths of the different
materials we estimate that 1.55% of the 5.9 keV x-rays incident
on the absorber actually pass through it and are stopped in the
Mo/Au sensor. The measured fraction of 1.85% ± 0.23% is
within the range of what we would expect given the known
accuracy of absorber thickness (∼10%). The events where the
x-rays are stopped in the bilayer have a very different temporal
profile, as shown in Fig. 4. We can see a very fast signal rise

FIG. 4. (Color online) Temporal profiles of the Mn K α x-ray
signals stopped in the absorber and in the bilayer. Inset is a plot of
the same signals on an expanded time-scale, with a logarithmic scale
for the signals.

(<1μs) followed by an almost as fast initial decay (∼2.7 μs)
as the MPT film comes into quasithermal equilibrium with the
absorber, and then the signal decays with the slower time
constant associated with the microcalorimeter sensor plus
absorber heat capacity. What is interesting is that although
the slow time decay constant is identical for x-ray events
into the absorber and the MPT film, the signal is measurably
smaller when absorbed in the MPT film. By fitting to the
regions of the temperature decays where there is just a single
exponential decay we determined that the MPT absorption
events are 3.8% ± 0.1% smaller. It is this difference in signal
size that we interpret as mostly being the energy that is lost
to the substrate through athermal phonons. One alternative
mechanism for losing heat is due to the additional thermal
conductance of heat out of the microcalorimeter due to the
MPT film being at a higher temperature for a short duration.
Knowing the heat capacities of the MPT film and absorber, and
knowing the thermal conductances, we modeled this heat-loss
path and determined that the additional amount of heat that
is conducted away thermally is approximately 0.4% ± 0.1%.
Thus we attribute the remaining 3.4% of the difference in signal
heights as being due to energy loss via athermal phonons. In
addition to the obvious difference in pulse shape over the first
2 μs there is a small departure of the two curves from simple
exponential decays for approximately the first 100 μs after
the absorber and bilayer have come into thermal equilibrium
(represented by the dashed lines in Fig. 4).

III. THEORETICAL SIMULATION OF ENERGY LOSS
AND SHAPE OF SPECTRAL LINES

The use of the term “athermal” phonons refers to a situation
where phonons as well as all other excitations are far away
from thermal equilibrium. This term, however, is too broad to
properly describe the important features of a nonequilibrium
phonon distribution. Nonetheless we adopt this terminology
while discussing general concepts. This is not misleading
because in all situations we characterize interacting phonons
and electrons participating in the energy down-conversion
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cascade in a complete way using time-evolving solutions of
the appropriate kinetic equations.

The energy down conversion following the absorption of an
energetic photon in a metal can be viewed as evolving through
three distinct stages.2–4,20 Stage I starts from the ejection
of a photoelectron and proceeds through electron-electron
(e-e) interactions, finishing with the formation of a highly
nonequilibrium distribution of electrons and holes in the
conduction band occupying a tiny volume in the vicinity of
an absorption site. During stage I the entire photon energy is
transferred from photoelectron to the ensemble of secondary,
ternary, etc. electronic excitations with rapidly diminishing
mean energy.

Stage II takes over when the mean energy of electronic
excitations becomes sufficiently low for the electron-phonon
(e-ph) interaction to determine further momentum and energy
relaxation processes. This happens below a threshold E∗

1 , i.e.,
ε � E∗

1 where ε is the electron energy. For typical metals E∗
1

far exceeds the Debye energy: E∗
1 � �D. During this stage

electrons and holes mostly relax via emission of phonons. As
a result, a bigger fraction of photon energy is transformed
into the energy of the evolving phonon distribution. Stage
II is completed once the mean excitation energy reaches
the low-energy threshold �1, which is determined from the
relation τe-ph(�1) = τph-e(�1). Below this threshold (stage
III) a rapid energy conversion into predominantly electronic
excitations takes place. The scenario described is correct
provided the electron-electron interaction in the whole region
ε � �1 remains weaker than the electron-phonon interaction
with spontaneous emission of a phonon, τe-e(ε) � τe-ph(�1).
Whether this is true depends on material parameters and on
the amount of disorder, which has a strong effect on the
electron-electron interaction. We will consider both cases
keeping the notation �1 for the end point of the stage II
accounting possible role of electron-electron interactions.

During stages I and III practically all the initial photon
energy is stored within the electronic system and cannot be
lost from the detector. In contrast with electronic excitations,
phonons can easily escape through metal/dielectric interfaces.
Therefore the only stage during which a significant energy loss
may occur is stage II where athermal phonons carry most of
the photon energy.

The simplest planar geometry that we will consider is
shown in Fig. 5. The only possible phonon escape interface
is at z = −d/2. The film is supposed to be grown on a solid
substrate occupying the half space z � −d/2. Since z = +d/2
is a vacuum interface this is not an escape interface. There
are several phenomena associated with escape of athermal
phonons.3

First, the energy loss, Eloss(z), is a function of the coordinate
of an absorption site relative to the escape interface. We only

FIG. 5. Sensor film geometry.

show the z-coordinate dependence, where the z axis in Fig. 5
is in the direction normal to the film. Lateral coordinates are
not important as long as photon absorption does not occur
very close to the edges of the film. However, the z dependence
is important determining the distance to the escape interface
relative to mean-free paths of athermal phonons.

Second, only phonons propagating inside the critical cone
can pass through the interface, otherwise they are internally
reflected. The existence of this restriction on transmission
introduces statistical fluctuations to the loss of energy due to
fluctuations in the number of phonons emitted into the critical
cone. The statistical fluctuation in the number of escaping
phonons contributes to a Gaussian fluctuation in the energy
loss and can be viewed as an specific “athermal phonon noise,”
and thus can be added in quadrature with other statistically
independent noise sources. These fluctuations are important
for optical and near-infrared photons, but their effect becomes
progressively small for x-rays.20

Finally, since the energy loss depends on the coordinate z,
the distribution P (z) of the x-ray absorption sites is an impor-
tant factor determining the spectral lineshape. The lineshape
depends on the x-ray energy and the angle of incidence.

A. Energy loss due to phonons of first generation

The phonon distribution of the first generation is established
during the very fast electron down-conversion E1 → �D and
was found in explicit form in our earlier work. Energy loss due
to the escape of phonons of the first generation created at the
point of absorption at z0 has the form20

Eloss,1(z0)=4E

∞∑
m=0

κ(m2ζ 2) cos mπ (1/2 + z0/d)

1 + δm,0

×
∫ 1

0
dξξη(ξ )� (ξ − ξc)

∫ �D

0

dε

�D

(
ε

�D

)3

× lph-e(ε)

d

[1 − exp(imπ − d/lph-e(ε)ξ )]

1 + m2π2l2
ph-e(ε)ξ 2/d2

, (3)

where we denote κ(x) = exp(−x) sinh(x)/x, and define ζ 2 =
π2Dtdc/2d2, D is the diffusion coefficient of down-converting
electrons (ε � �D), tdc is the duration of E∗

1 → �D stage and
lph-e(ε) is the phonon mean-free path with respect to electronic
reabsorption. The transmission coefficient η(ξ ) is a function of
incidence angle, and ξc = cos ϑc, where ϑc is the critical angle.

We simplify the general expression (3) further. In what
follows we use the linear dispersion relations for phonons
taking ωq = cq, where c is the velocity of sound and q is the
phonon quasimomentum. In many low-temperature detectors
such as TESs, MPTs, and MMCs the sensor film is either a
normal metal or a superconductor operated close to the critical
temperature Tc. Even in most other detectors such as STJs
and MKIDs, which are operated at T 	 Tc, the lower-energy
threshold of the phonon stage of down-conversion cascade
satisfies the condition �1 � �. Under this condition both
electronic excitations and the matrix elements for the electron-
phonon interaction are essentially the same as in a normal
metal. Therefore we consider the asymptotical limit � → 0.
In this limit the expression for the phonon lifetime due to
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reabsorption by the electron system in metal is

τ−1
ph-e(ε) = 4πN (0)α2(ε)ε

h̄N
, (4)

where α2(ε) is a coupling strength for the electron-phonon
interaction entering the Eliashberg function α2(ε)F (ε), F (ε)
is the phonon density of states, N (0) is the density of states
per spin at the Fermi level, and N is the density of atoms.
Although α2(ε) is a function of phonon energy and may
exhibit variation over the phonon spectrum, the model becomes
especially simple if we can use for it some averaged value. We
thus introduce another model assumption taking α2(ε) as a
constant, so that τ−1

ph-e(ε) ∝ ε. In this case the last integral in
the expression (3) has the form

Y (m,β,ξ ) = β4ξ 3
∫ 1/βξ

0
dxx4 1 − exp(imπ − x)

x2 + m2π2
, (5)

where β = lph-e(�D)/d. This integral can be explicitly calcu-
lated. It has the simplest form in the asymptotic limit β → 0.
Neglecting small terms of the order of exp(−1/β) 	 1 we
obtain

Y (m,β,ξ ) = β

3

{
1 − 3m2π2β2ξ 2 − 3β3ξ 3(−1)m(2 − m2π2)

+ 3m3π3β3ξ 3

[
arctan

(
1

mπβξ

)

+ Si(mπ ) − π

2

]}
, (6)

where Si(x) is the integral sine function. Integration over ξ

in the expression (3) is within the limits between ξc and
1. For acoustically soft metals on rigid substrates, ξc is
close to unity and because the function Y (m,β,ξ ) depends
smoothly on ξ it can be evaluated at ξ = 1. Introducing
η̄ = ∫ 1

0 dξξη(ξ )/
∫ 1
ξc

dξξ and p = sin2(θc/2) we finally obtain
the energy loss due to escaping phonons of the first generation
in the form

Eloss,1(z0) = 4Eη̄p (1 + ξc)
∞∑
0

κ(m2ζ 2)

× cos mπ

(
1

2
+ z0

d

)
Y (m,β,1). (7)

In expressions (3) and (7) there are two separate factors
that determine the magnitude of the loss: the probability of
phonons to reach the escape interface (depending on intrinsic
material properties), and the transmission characteristics of the
interface.

B. Energy loss during �D → �1 substage

The energy loss from the first generation of phonons may
not be the dominant mechanism for energy loss because their
mean energy is very high and so their mean-free paths are
relatively short. For the same reason the first generation of
phonons rapidly decays and after one to two generations
asymptotically converges to the automodel solution of the
kinetic equations describing the interaction between electrons
and phonons. The details of this solution were discussed in our
earlier work.21

Each subsequent phonon generation is characterized by a
lower mean energy. In the first phonon generation the majority
of phonons occupy states in the region of the highest density of
states, i.e., close to the Debye energy. Thus the lifetime of the
first generation of phonons is roughly τph-e(�D). The absorp-
tion of one of these phonons creates two electronic excitations
with mean energy of �D/2. The lifetime of electrons in metals
with respect to the spontaneous emission of a phonon is

τ−1
e-ph(ε) = 2π

h̄Z(0)

∫ ε

0
d�α2(�)F (�), (8)

where Z(0) is the renormalization factor of a metal. For
ε � �D we obtain τ−1

e-ph(ε) = τ−1
e-ph(�D) = τs and this time

does not depend on electron energy. For ε � �D and assuming
α2 is a constant value, τ−1

e-ph(ε) ∝ ε3 for the Debye model
of the phonon spectrum. From this estimate it follows that
the intermediate electrons (holes) will diffuse during their
average survival time, i.e., τe-ph(�D/2) = 23τs .

Another important factor is the evolution of the electron
diffusivity. During the stage E∗

1 → �D the electron momen-
tum relaxation is determined by the combined action of elastic
scattering and electron-phonon scattering with the rate τ−1 =
τ−1
i + τ−1

s . The intermediate electrons have a typical energy
of �D/2; they emit lower-frequency phonons of the second
generation and therefore are scattered less efficiently. For these
electrons τ−1(�D/2) = τ−1

i + τ−1
s /23 so that D′ � D, where

D′ is their diffusion coefficient. This diffusion coefficient is
faster than for electrons with ε � �D resulting in a much
greater spread of phonons of the second generation. The extent
of spatial spread can be evaluated by comparing the factor Dtdc

for the first generation of phonons with 8D′τs for the second.
The accurate evaluation of the contribution of the second-

generation phonons to energy loss, fluctuations, and spectral
lineshape is difficult. As we will see below, most of the energy
loss occurs at an advanced stage of the �D → �1 cascade.
Starting with the decay of phonons of the first generation,
the phonon distribution rapidly converges to an asymptotic
automodel solution.2 The automodel solution at least partially
takes into account contributions from the second-phonon
generation. The dominant role of the �D → �1 stage in energy
loss arises because, as the mean phonon energy decreases,
more phonons are likely to reach the escape interface. In
contrast, phonons of the first generation make a dominant
contribution to fluctuations of the energy loss and asymmetry
of the spectral lineshape. In metals with a long �D → �1

stage, i.e., �D � �1, we expect the automodel solution to
be a good approximation. It is only in the situation when the
strong inequality �D � �1 is not fulfilled that contributions
from second phonon generations may be needed.

An expression for Eloss,�D→�1 can be written as

Eloss,�D→�1 = Eηp
1 + ξc

2

12Z(0)

11Z(0) + 3
βg

(
�D

�1

)
, (9)

where

g(x) = x

∫ 1

1/x

dz

z
f (z)

{
Ei(1,z(x − 1)) − Ei(1,1 − z)

+ exp(z)[Ei(1,1) − Ei(1,xz)] + ln
x − 1

x(1 − z)

}
,
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with Ei(a,z) being the exponential integral and

f (z) = 1 − z − z

12
{z2[cos

√
2 ln z − 7

√
2 sin

√
2 ln z] − 1}.

In Eq. (9) we kept only spatially homogeneous contributions
and neglected all spatially varying terms in the general
solution,21 which are not important. The order of magnitude
of the neglected terms is d2/[π2Dτph-e(�D)], which is much
less than unity for all realistic situations.

Combining all results we finally arrive in the total energy
loss from our sensor film

Eloss(z0) = Eloss,1(z0) + Eloss,�D→�1 , (10)

where the first contribution is strongly dependent upon the z

coordinate of the absorption site, while the second contribution
is highly insensitive to such a dependence. The magnitudes of
both contributions are determined by the effective transmission
coefficients for the first and subsequent generations of phonons
and by the extent of the �D → �1 substage of the stage
II down-conversion cascade. In an ideal film the second
contribution can be the largest and is determined by the
intrinsic properties of the film material. In real films the
duration of the �D → �1 substage may become significantly
shortened by a strong elastic scattering enhancing electron-
electron interaction. The dependence of Eloss,�D→�1 on the
parameter �1/�D is illustrated in Fig. 6. This dependence
is strong, so that the relative contributions of the first and
subsequent phonon generations to the total energy lost is
sensitive to the strength of the electron-electron interaction.

Finally, the integrands in expressions (3) for Eloss,1(z0) and
the function g(x) for Eloss,�D→�1 in Eq. (9) give the spectral
distribution of athermal phonons escaping from a metal film
into a substrate. There are many physical situations where
this information may be important. Here we mention just two
examples: The first is in calculating the amount of energy
back-flow into a thermalizing metal film. Due to the strong
elastic scattering in the substrate (either isotope related or due
to disorder), the back-scattered phonon flux depends upon the
energy of athermal phonons. It can be evaluated provided that
the spectral distribution of escaping phonons is known. In
special cases this energy back flow may ultimately affect the

FIG. 6. (Color online) Dependence of Eloss,�D→�1 on low thresh-
old �1/�D.

energy loss from the film. A second example is in quantifying
the thermalization or energy down-converting properties of
thin metal films grown on the surfaces of semiconductors
or dielectrics where there is an incident flux of high-energy
phonons. In this situation the excitations that are generated
within the metal film are induced by the incident athermal
phonon flux. With a slight modification to the initial phonon
distribution in the film, the quantitative relations for spectral
transformations of the reflected flux relative to the incident
flux can be derived.

C. Spectral lineshape

In the previous subsections we presented several important
asymptotical results derived from the general expressions as
preliminary material for the original development below. In
this subsection we start discussing modeling of the spectral
lineshape.

This topic in the area of low-temperature detectors so far
has been restricted to a very limited number of cases; namely,
detectors with a spatially homogeneous response where the
spectral lineshape is Gaussian, and spatially inhomogeneous
STJs where the standard approach was fitting the experimental
data with a skewed Gaussian allowing the variance to depend
on energy. Systematic attempts to study the role of spatial inho-
mogeneities in lateral directions and to simulate the effects of
quasiparticle losses at the edges or in the leads or local defects
have been reported in several works both experimental22–24 and
theoretical.25–28 The only theoretical simulation of the spectral
lineshape28 in laterally inhomogeneous detectors has revealed
that spectral lineshape is sensitive to the details of energy loss.

In the nearly ideal detectors which we discuss in this paper
we focus our attention on the fundamental z dependence
of Eloss and ignore the less fundamental potential effects
of lateral inhomogeneity. The only discussion of the role of
“vertical” inhomogeneities on worsening of the FWHM, when
fitting the experimental lines with a skewed Gaussian, is
available in Kozorezov et al.20 We will demonstrate below in
Secs. IV and V that further development of the model aimed
at simulation of spectral lineshape of a nearly ideal detector is
possible and desirable. It becomes very informative because
of the sensitivity of detector response to details of energy
deposition and loss.

In the ideal situation when there is no energy loss,
Eloss = 0, the normalized spectral lineshape S(E) is Gaussian,∫ ∞
−∞ dE S(E) = 1,

S(E) = 1√
2πσ

exp

[
− (E − E0)2

2σ 2

]
. (11)

The line is centered around photon energy E0, and its full
width at half maximum is 2

√
2 ln 2σ . If Eloss(z0) �= 0, then the

lineshape is

S(E,z0) = 1√
2πσ

exp

{
− [E − E0 + Eloss(z0)]2

2σ 2

}
, (12)

provided that an absorption takes place at a site with fixed
coordinate z0. If P (z0,E0) is the normalized [

∫
dz0P (z0,E0) =

1] distribution function of absorption sites at a depth z0 for a
photon energy E0 then the spectral lineshape is given by the
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convolution

S̄(E) =
∫

detector
dz0P (z0,E0)S(E,z0).

The lineshape due to absorption events in the sensor film is

S̄(E) =
∫ d/2

−d/2
dz0Ps(z0,E0)S(E,z0), (13)

where the distribution of absorption sites in the sensor for
x-rays incident onto the z = +d/2 interface is

Ps(z0,E0) = exp[(z0 − d/2)/L(E0)]

L(E0){1 − exp[−d/L(E0)]} , (14)

where L(E0) is the 1/e photon absorption depth. Finally, if
the source is not monochromatic, an extra straightforward
convolution with its spectral density is needed.

IV. MODELING SPECTRAL LINESHAPE AND ENERGY
LOSS FROM X-RAY ABSORPTION EVENTS

IN MO/AU FILM

In this section we concentrate on modeling the spectral
lineshape and energy loss from x-ray absorption events in a
Mo/Au film. In soft x-ray range the role of fluctuations on
spectral lineshape was shown to be generally small.20 For soft
x-rays at 6 keV using the expression J for fluctuation factor,20

we estimate the variance due to fluctuations in the number of
escaping phonons of the first generation for the Mo/Au sensor
to be σf � 1.0 eV. For all purposes of this work this is small
and can be neglected.

The two different experiments described in Sec. II allow us
to probe different physical parameters of the film. In particular,
energy loss is mostly sensitive to the duration of stage II
and transmissivity of the escape interface, but not to the size
and position of the initial phonon bubble (first generation
of phonons) relative to the escape interface. In contrast, the
spectral lineshape is sensitive to both the size and the position
of a phonon bubble. Another aspect to consider is that phonon
transmission may be strongly assisted by scattering if there
is significant roughness of the interface. Fitting the model
predictions to both sets of data potentially reveals details of
the energy that is transferred across the escape interface by
athermal phonons over a broad frequency range. It also allows
us to evaluate the strength of the electron-electron interaction
relative to the electron-phonon interaction in metals, both in
the high-excitation-energy range, from a few eV down to the
Debye energy above the Fermi level, and at much lower
energies close to equilibration. These insights, apart from
their obvious practical implications for single-photon low-
temperature detectors, also have more fundamental importance
for characterizing the interactions in highly excited metals and
the equilibration process over a much wider spectral range
than those previously accessible with other experiments.

A. Definitions of down-conversion stages I and II in Au and Mo

In our modeling, we start from the time during stage I when
the e-ph interaction becomes stronger than the e-e scattering.
This happens at the threshold E1 determined from the
condition τ−1

e-e (E1) = τ−1
s . In our earlier work2 we considered

the metal to be sufficiently pure that, for E1 in the eV range
above the Fermi energy, the e-e scattering could be considered
as in ideal metal and to not be affected by disorder. However, in
thin films with residual resistivity ratios (RRRs) less than 10 it
is often the case that elastic scattering times for electrons,
τimp, either due to bulk scattering or diffuse scattering at
surfaces or interfaces, are of the same order of magnitude as
τs . Correspondingly, at the energy E1, the electron-electron
scattering is significantly affected by elastic scattering. In
this energy range single–electron-phonon scattering events
are quasi-elastic and also contribute to elastic scattering. The
effect of elastic scattering on electron-electron interactions
depends on the system dimensionality.29 The criterion for the
normal direction of the film of thickness d to not contribute to
the dimensionality30 is d <

√
h̄D/ε. For the lowest energies

of interest, ε � �1, the system becomes two-dimensional in
the context of e-e scattering only if d <

√
h̄D/�1. Thus

we expect that, even for small thresholds �1 	 �D, unless
the film is very thin it is still three-dimensional for most of
the �D → �1 interval so that τ−1

e-e (ε) ∝ ε3/2. At the same time
both impurity and electron-phonon scattering times in this
energy range may be taken to be independent of energy. As a
rough estimate we scale τ−1

e-e (ε) up in energy according to the
ε3/2 law until it becomes as big as τ−1

imp + τ−1
s . We thus redefine

E1 so that in less-pure metals it sets the threshold below which
electron momentum scattering is controlled by impurities and
phonons:

τ−1
s + τ−1

imp = τ−1
e-e (E1) = aτ−1

e-e,ideal(E1) = a
E2

1

h̄EF

(
r

1/2
s

7.96

)
,

(15)

where EF is the Fermi energy, rs is the radius of a sphere in
atomic units which encloses one electron charge, and a > 1
is a numerical factor that takes into account that at E1 the
disorder scattering slightly enhances the e-e scattering relative
to the ideal situation. The last term in Eq. (15) is the expression
for the e-e scattering rate in an ideal metal.31

At the end of stage I at an energy E∗
1 the electron-

phonon scattering also becomes a dominant source of energy
relaxation. The latter can be found from the equation32

τe-e(E∗
1 ) = 2E∗

1

3�D
τs. (16)

The meaning of this balance is that, over the duration of the
time equal to τe-e(E∗

1 ), the probability of having the electron
energy relaxed by a factor 3 in the e-e scattering process
(splitting the initial energy E∗

1 equally between the three
electronic excitations after e-e iteration) is the same as for
the process of sequential emission of the 2E∗

1/(3�D) Debye-
energy phonons. Taking τ−1

e-e = τ−1
e-e (E1)(E∗

1/E1)3/2 and using
Eqs. (15) and (16) we obtain

E∗
1 = �D

(
13.67

r
1/2
s

h̄EF

τs�
2
D

)3/10 (
a

1 + τs/τimp

)1/10

. (17)

To estimate the duration of the down-conversion stage from
E1 down to �D we first evaluate the duration of E1 → E∗

1 , i.e.,
tdc(E1 → E∗

1 ). Assuming that with each e-e scattering event
the energy of electrons decreases by a factor of 3, we must
sum the geometric progression with the scale factor 33/2. Thus
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tdc,E1→E∗
1

< τe-e(E∗
1 )/(33/2 − 1). This is an upper limit to the

estimate because the geometric progression must be truncated
due to the finite ratio E1/E

∗
1 and weaker parallel phonon

emission also takes place. Below E∗
1 the relaxation down to a

level E∗
1/3 occurs over the duration τe-e(E∗

1 )/2 with the e-e and
e-ph scattering processes at E∗

1 contributing equally. Further
relaxation from E∗

1/3 to �D lasts for another τe-e(E∗
1 )/2

only taking into account phonon scattering. Combining all of
these estimates we have tdc < [1/(3

√
3 − 1) + 1]τe-e(E∗

1 ) ≈
1.24τe-e(E∗

1 ) ≈ (E∗
1/�D)τs .

More detailed studies of the down-conversion stages I and II
require estimates of the electron-phonon coupling strength in
the bilayer. In practice this is very difficult to analyze. Indeed,
gold belongs to a class of weakly coupling metals, while
molybdenum belongs to the intermediate-coupling metals.
We will make estimates for Au and Mo separately before
hypothesizing about the appropriate parameter values for the
Au(330 nm)/Mo(50 nm) bilayer.

We first estimate τs . Taking τs = τe-ph(�D) from Eq. (8)
and using the experimentally measured Eliashberg function
α2(�)F (�) for gold33 we obtain τs ≈ 0.13 ps. A similar
estimate for molybdenum based on the calculated Eliashberg
function34 yields τs ≈ 0.030 ps. Thus, tdc in Mo is likely to be
a factor of 4 faster than in Au assuming roughly the same ratio
E∗

1/�D, [in Mo, �D = 33 meV, and the combination τs�
2
D in

Eq. (17) is nearly the same for both materials].
In order to evaluate τph-e(�) we use expression (4).

Assuming α2(�) to be a constant value and expressing it in
terms of the first reciprocal moment of the Eliashberg function
λ (mass enhancement factor), in the Debye approximation we
obtain

τ−1
ph-e(ε) = 4πN (0)�D

9N
λε. (18)

The accuracy of this approximation is known not to be high.
However, it is unlikely to be worse than the use of the
one-branch nondispersive phonon-spectrum model that we
adopted at the beginning. The use of expression (18) yields
τ−1

ph-e(ε) = τph-e(�D) ε
�D

. In the same approximation we obtain
from (8) τe-ph(ε) = τs( ε

�D
)3. Combining the two results we

obtain

�1 = �D

√
τs/τph-e(�D). (19)

This expression with τph-e(�D) taken from Eq. (18) turns out to
be close to the one obtained directly from τ−1

ph-e(�1) = τ−1
e-ph(�1)

and using Eqs. (4) and (8). Then assuming �1 	 �D and
taking for α2(�) its limiting value α2(0) and approximating
F (�) by its Debye value, which is accurate in this frequency
range, we finally obtain

�1 = �D

√
2

3

N (0)�D

N
(1 + λ). (20)

This is a better approximation than Eq. (19) because the only
assumption used for its derivation is α2(�1) = α2(0). For Au
we obtain �1/�D = 0.036 and 0.039 from Eqs. (19) and (20),
respectively. For Mo we obtain from Eq. (20) �1/�D = 0.12,
which sets a higher threshold than �1 in gold.

Using for an estimate the numbers for Au as a weaker-
coupled e-ph system, EF = 5.51 eV, �D = 14.2 meV, rs =

3.0, and τs = 130 fs, we obtain E∗
1/�D ≈ 8.2 neglecting the

last term in Eq. (17) and E1/E
∗
1 ≈ 4.0[a−1(1 + τs/τimp)]3/5 


4.0. The duration of E1 → �D stage therefore is tdc � 0.8 ps.

B. Modeling the bilayer

The model parameters determining the phonon loss and
spectral lineshape are �1/�D, L(E),D, tdc, β = lph-e(�D)/d,
and ηeff . The first group are the parameters depending on
the bulk properties of sensor. The diffusion coefficient D

of down-converting electrons and tdc enter in combination
Dtdc as a single parameter defining the size of the excited
volume filled with the first generation of phonons. During the
E∗

1 → �D down-conversion stage, the diffusion coefficient of
a bilayer is modified by strong elastic scattering due to phonon
emission, so that D = D(0)/(1 + τimp/τs), where D(0) is the
measured low-temperature value. The x-ray absorption depth
L(E) and correspondingly distribution function of absorption
sites Ps(z0,E) is modeled in a piecewise way to incorporate the
discontinuity of x-ray absorption in a bilayer. This is necessary
to account for the factor ∼2.5 difference in x-ray absorption
efficiency in Au and Mo. The parameter ηeff is of special
importance. It depends on bulk properties such as the acoustic
impedances of both the sensor film and the substrate. It also
depends on the properties of the sensor to substrate interface.

1. Ideal interface

For ideal atomically clean interfaces without phonon
scattering, η, p, and ξc can be calculated using the acoustic
mismatch model (AMM) of the elastic isotropic continuum.35

This model allows us to evaluate the average transmission
coefficients for phonons of individual polarizations which are
incident from the metallic side onto the horizontal interface
with the substrate. There are two shear waves with horizontal
and vertical displacements, SH and SV, respectively, and
a longitudinal L wave. AMM coefficients are useful in
defining the probable range for phonon transmission of longer-
wavelength phonons depending upon the elastic impedances
of the metal and substrate and the angles of total internal
reflection for individual modes. We will use the one-mode
model of the phonon spectrum and take the sound velocity c

of the metal to be equal to that entering the Debye model, i.e.,
3/c3 = 2/c3

t + 1/c3
l , where ct and cl are sound velocities for

transverse and longitudinal phonons, respectively. Similarly,
for the substrate we use cs which is expressed using the
same relation through respective sound velocities cst and csl .
Furthermore we assume that c is significantly smaller than cs ,
so that the angle of total internal reflection θc = arcsin(c/cs)
is small. Under these conditions we approximate η as for SH
waves35 and p = sin2 θc

2 . We stress that the actual product
ηp(1 + ξc)/2 entering the energy loss and affecting the spectral
lineshape is a fitting parameter to be found from fitting the
theoretical Eloss and lineshape to experiment, thus such an
estimate serves as a consistency check.

2. Rough interface

The transmission of higher-frequency phonons requires
a special analysis. The first generation of phonons peaks
at the maximum of the phonon density of states. Thus,

104504-9



ALEXANDER G. KOZOREZOV et al. PHYSICAL REVIEW B 87, 104504 (2013)

the characteristic energy is 
�D. The transmission of these
phonons may significantly differ from the AMM predictions.
For a sufficiently rough interface, phonon transmission is better
approximated by the diffuse mismatch model (DMM).36 In
fact, the real transmission lies between the two estimates.37,38

In the case of roughness scattering the expression (7) also can
be used, but the factor ηp(1 + ξc)/2 must be replaced by an
effective transmission coefficient ηeff . A significant difference
between the two limiting cases arises because of different
physical mechanisms of phonon transmission. For an ideal
interface the AMM transmission properties are determined by
the bulk characteristics of the sensor and adjacent media, i.e.,
acoustic impedances. For scattering-assisted phonon transfer
across the interface, the transmission becomes strongly de-
pendent on the correlation scales of the interface roughness.
Therefore, the transmission characteristics for first-generation
phonons and longer-wavelength athermal phonons of subse-
quent generations may strongly differ. The most important
distinction is not only in quantitative differences resulting in
differences in magnitudes of transmission but also that, in
scattering-assisted phonon transmission of short-wavelength
phonons, the interface roughness is being probed locally and
thus the transmission coefficient may fluctuate from point to
point along the interface. Thus, Eloss,E∗

1 →�D will contain a
stochastic component dependent on lateral coordinates and
will introduce an extra broadening to the spectral lineshape.

C. “Effective-medium” model

The simplest model for considering phonon transport in a
bilayer is that of the effective medium, which is a single layer
with thickness d the same as the thickness of the Mo/Au
bilayer but with phonon characteristics being intermediate
between those of Au and Mo. For example, we may let
c vary between 1.4 × 105 � c � 3.7 × 105 cm/s; the lower
limit being the average sound velocity for Au and the upper
limit being that for Mo. The athermal phonons entering from
Au into Mo layer interact with electrons in Mo stronger than
in Au so that phonons can further down convert even in the
small-thickness layer of Mo. The down-conversion process in
Mo is no different than that described above for Au, and hence
we may also discuss down conversion in the effective medium
in terms of effective parameters having values intermediate
between those in Au and Mo. There exists a slight problem
connected with a small number of cases of x-ray absorptions in
Mo: Phonons of the first generation in Mo above �D,Au in gold
(we added extra reference to Au to emphasize that this quantity
relates to gold) cannot enter and propagate in Au and hence
cannot be described in the framework of the effective-medium
model. However, these phonons in Mo (∼33 meV) decay
very fast and may be disregarded on their own. Their decay
products, the subsequent generations of athermal phonons in
Mo, fall below �D,Au and may be considered within the model
of an effective homogeneous single layer.

D. “Effective-interface” model

An alternative model can be also suggested. In this model
we completely ignore x-ray absorptions in the Mo layer for the
Au(330 nm)/Mo(50 nm) bilayer. The absorption coefficient in

Mo at 6 keV is a factor of 2.4 smaller than in Au. With the
thickness of the Mo layer being ∼0.13d only 6.9% of the
x-ray photons are absorbed in the Mo. The role of Mo layer in
this model is in modifying the transmission characteristics of
phonons at the Au/Si interface. In this sense the Mo layer plays
the role of an effective interface. The properties of an effective
interface are determined by the strong e-ph interaction in Mo.
From Eq. (18) we obtain for Mo layer τph-e(�D) = 1.7 ps and
τph-e(�1) = 15 ps. Therefore the mean-free paths for phonons
with � 
 �D,Au are short in comparison with the thickness
of the Mo layer and these phonons entering Mo from the
Au layer are reabsorbed and further experience enhanced
down conversion in Mo. A rough estimate for the effective
transmission coefficient to be used instead of ηp(1 + ξ )/2 in
expression (7) can be taken as

ηeff = ηAu/MopAu/Mo(1 + ξMo/Au)/2

1 + τesc,Mo/Si/τesc,Mo/Au
. (21)

This expression reflects the balance of the flux incoming
from Au into Mo with the outgoing phonon fluxes from
Mo into gold and Mo into the Si substrate. The ratio of
the latter is taken as the ratio of phonon escape times from
the Mo layer of thickness dMo via the respective interfaces,
τesc,Mo/Au = 4dMo/(ηMo/AucMo) and similarly for the escape
into the Si substrate, and is equal to the ratio ηMo/Au/ηMo/Si.

V. MODELING SPECTRAL LINESHAPE IN MO/AU
SENSOR FOR MN K α COMPLEX

The energy loss from a thin film is given by the ex-
pression (10). If the source of x-rays is monoenergetic at a
photon energy E0, then the lineshape is determined by the
coordinate-dependent part of Eloss(z0). As was determined
from expressions (7) and (9), dEloss(z)

dz
|±d/2 = 0. This is a

consequence of the phonon distribution being related to the
local density of diffusing electrons which are characterized
by zero flux at the interfaces with vacuum or dielectric. For
σ → 0 we have S(z,E0) → δ(E − E0 + Eloss(z)) = δ(z −
z∗)/|E′

loss(z
∗)|, where z∗(E) is the solution of E − E0 +

Eloss(z) = 0. Due to the presence of the derivative in the
denominator there appears an integrable singularity at E =
E0 + Eloss(±d/2) resulting in a characteristic “double-peak”
or shoulder in the lineshape, as depicted in Fig. 7. The left

FIG. 7. Two calculated spectral redistributions, given in terms of
probability versus energy, due to the energy loss in a thin film from a
monoenergetic photon source. The double-peak lineshape (arbitrary
units) depends upon the film material parameters, and two examples
are shown.
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TABLE I. Model parameters for Au film.

τs ps τph-e(�D) ps c × 105 cm/s σ eV ηeff D cm2/s tdc ps

0.13 80 1.4 4.15 0.035 500 0.75

and right panels of Fig. 7 correspond to different material
parameters.

We model our experimental results using the Holzer
spectrum39 for the Mn K α complex. The double-peak struc-
ture will be present for all components of the Holzer spectrum.
Therefore, the resulting lineshape is more complicated and
contains more features. These features, however, may be
significantly smeared if the baseline resolution described by
the variance σ is not sufficiently high. Below we describe in
detail simulation of the lineshape using the effective-interface
model to describe Mo/Au bilayer. Table I shows all parameters
used for the lineshape simulation.

The choice of parameters has been discussed in the previous
section. For ηeff in Table I we show the AMM estimate
for Au/Mo interface reduced by the fitting factor 2 (see
below) to account for the role of the denominator in Eq. (21).
Figure 8 shows the results of the simulation together with
a breakdown of the overall spectrum into contributions from
different depths of the 330 nm Au film, i.e., from four different
notional 82.5-nm-thick sublayers. The outermost left line is
for the sublayer which neighbors the Mo layer and shows
the highest loss. This is followed by successive sublayers
at larger distances from the escape interface and therefore
smaller respective losses. Figure 9 shows the simulated line
superimposed upon the experimental result.

When we compare our simulated curve with the experimen-
tal data it is apparent that both have approximately the same
FWHM. Thus the dependence of energy loss on the coordinate
of the absorption site results in line broadening, which is
roughly in agreement with the experiment. The simulated
lineshape shows a significantly different behavior on both sides
of the peak and also a well-defined shoulder. The origin of the
shoulder was discussed above and is clear from Fig. 8. The
experimental line exhibits a longer tail on the lower-energy
side and also a much smoother drop on the left side of the

FIG. 8. (Color online) Simulated normalized lineshape including
the contributions from absorption within different depth regions of
the Au film.

FIG. 9. (Color online) Comparison of simulation line andinter-
face experiment.

peak. The theoretical curve also exhibits a rapid decrease on
the right-hand side of the peak, with this drop occurring over
10 to 15 eV, in contrast with the measured spectrum, which
has a much slower decrease in number of counts with energy.

The lower-energy tail is easier to interpret within the model
of energy loss from the Au/Mo film. Absorptions in Mo
typically result in a bigger loss from the Mo film. This is not
only due to the closeness to the escape interface, but also to
the better acoustic matching to the Si substrate. The additional
broadening to lower energies in Fig. 9 can also be explained
because the distribution function Ps(z0,E) for a bilayer has
not yet properly been taken into account. It can be written in
the form

Ps(z0,E)

= �Au exp(−�Aud)

1 − exp(−�AudAu − �ModMo)

×
[

exp(−�Auz0)�(d/2 − z0)�(z0 + d/2 − dMo)

+ �Au

�Mo
exp(−�Moz0)�(z0 + d/2)�(dMo − d/2 − z0)

]
,

(22)

accounting for the weaker absorption in Mo relative to Au.
This will reduce the weight of the smallest (left) peak in Fig. 8
(due to absorptions close to the escape interface), down by a
factor of 2.4.

It is not possible to explain the higher-energy side of
the peak profile within either of the two models. With the
experimental baseline resolution σ = 4.15 eV and the intrinsic
distribution of Mn K α x-rays (as described by Holzer)
extending over just 10 eV, there are no physical reasons within
our model of phonon losses to have this profile less steep than
10 to 15 eV.

In order to understand the leading-edge discrepancy we
have examined the phonon escape from the sensor in
more detail. As we have seen, the spectral lineshape is sensitive
to both the bulk-phonon transport characteristics and the
transmission across interfaces. Simplifications in modeling
the bulk-phonon transport cannot be responsible for the failure
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to correctly reproduce all the major features of the spectral
lineshape. More realistic models of the phonon spectrum and
the evolution of phonon distributions will only slightly modify
the statement that the first generation of down-conversion
phonons has a dominant effect on spectral lineshape, while
subsequent generations, due to their fast spatial spread, only
contribute to the height of the peak and its horizontal shift
(total energy loss). Our derivation of the distribution function
for the first generation of phonons can be generalized to
a spectrum containing three acoustic branches. A generic
feature of this distribution function is that it forms as a
result of spontaneous emission of phonons by down-converting
electrons during the E∗

1 → �D stage, when electrons are
capable of emitting all phonons. It is also important that the
lifetimes of all phonons emitted are much larger than the
duration of this stage. As a result, the first phonon generation
distribution function is a snap-shot of the distribution of
phonons at a time t = tdc. The details of this distribution are
determined by the densities of states at each energy together
with the Eliashberg coupling functions for individual modes
to determine the relative magnitudes. The more complicated
three-branch bulk model is capable of changing the structure
on the left-hand side of the measured x-ray spectrum by
splitting the shoulder into individual features due to loss of
transverse and longitudinal phonons. However, it is unlikely
that this structure will be smooth and it definitely cannot
introduce a smoother variation for the higher-energy side of
the x-ray spectrum. On the left, the spectrum begins from x-ray
absorption from E = E0 − Eloss(−d/2), while on the right it
terminates at E = E0 − Eloss(d/2).

The origin of the discrepancy between the model and
data is most likely to be connected with the transmission
characteristics of phonons of the first generation whose escape
determines the spectral lineshape. So far we have shown the
results of simulations in Figs. 8 and 9 assuming coherent
transmission of phonons across the ideal interface. Phonons
of the first generation in Au have energies close to �D,
corresponding to maxima in the phonon density of states
in Au of 6 to 8 meV for transverse and 12 to 14 meV for
longitudinal phonons. The wavelengths of these phonons are
on the nanometer scale so that any roughness of the interface on
the nanometer scale will cause strong phonon scattering. The
transmission of the first-generation phonons ��D,Au, which
are incident onto the Au/Mo interface from gold, is more
strongly affected by the roughness than the transmission of
the same-frequency (but larger-wavelength) phonons which
are incident on the same interface from the molybdenum side.
Moreover in the effective-interface model of Mo/Au bilayer
phonons inside Mo layer experience more effective down
conversion and therefore at any moment of time will have lower
mean frequencies. Thus, the phonon transmission across the
Au/Mo interface (from Au to Mo) may be determined by its
roughness while at the same time transmission of phonons
across the Mo/Au interface, i.e., moving in the opposite
direction (from Mo to Au) can be described by the AMM
model. If this is the correct picture then the expression (21)
can be rewritten as

ηeff = ηAu/Mo
ηs,Au/Mo/ηAu/Mo

1 + ηMo/Au/ηesc,Mo/Si
= νηAu/Mo, (23)

FIG. 10. (Color online) Comparison of simulation with experi-
ment. Averaging the pulse in Fig. 9 over lateral coordinates with
ση = 0.065η̄eff .

where ηs,Au/Mo is the scattering-assisted transmission coeffi-
cient for high-frequency phonons from Au into Mo, while
ηAu/Mo, ηMo/Au, and ηMo/Si are AMM transmission coefficients,
and ν is the fitting parameter. The scattering-assisted effective
transmission coefficient, ηs,Au/Mo, differs from its AMM
counterpart. Correspondingly, ν is likely to be less than
1 because of the large value of the ratio ηMo/Au/ηesc,Mo/Si

being balanced by the factor ηs,Au/Mo

ηAu/Mo
� 1. In our simulation

of the lineshape in Figs. 8 and 9 we chose ν = 1/2. The
coupling constant entering the scattering cross sections may
be large due to strong variation of material densities at the
interface.

An important aspect of scattering-assisted phonon transfer
is the statistical variation in the probability of scattering and the
dependence of the scattering cross section of short-wavelength
phonons on the local characteristics of the roughness of
the interface. This introduces statistical fluctuations in the
interface scattering and hence in the transmission coefficient
in longitudinal directions. Thus, we may expect the effective
transmission coefficient to be a random function of the lateral
coordinate r, ηeff(r). We have implemented the averaging over
the plane of the interface assuming a Gaussian distribution
of ηeff with the variance ση about the mean value η̄eff ,
Pη = 1√

2ση

exp[−(ηeff − η̄eff)2/(2σ 2
η )]. Figure 10 shows the

result of this simulation. Overall, the agreement between
the model and data looks much better. The slopes of the
leading and trailing edges of the distribution are reproduced
well with some tailing in the data still remaining on both
sides.

Some of the remaining tailing can be explained by the
model not having taken into account that 6.9% of x-ray
absorptions generate phonons in the molybdenum part of
the Mo/Au bilayer. The enhanced loss from Mo can result
in a small separate peak on the left side of the spectrum.
We could implement this by attributing some extra energy
loss for all absorption events in the layer closest to the Si
interface. In Fig. 8 these events are from the notional sublayer
on the left. By including some small extra energy loss for
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absorption in this sublayer, the corresponding spectrum is
shifted further to the left, potentially giving a better fit to the
data.

The broadening seen in the leading edge of the data in
region 3 can be due to the fact that effective transmission has
both coherent and scattering mediated regions. The presence
of disorder-free patches of the interface, where this region is a
small fraction of the total interface area, will mean that ηeff is
locally suppressed and will result in smaller energy loss. Some
of the remaining tailing in region 1 is difficult to explain within
the phonon-loss model and probably has a different origin.

The extended tail in region 1 can be interpreted as being due
to a universal mechanism related to loss of energy during the
E0 → E1 cascade. A certain percentage of the photon energy
can leak via the loss of energetic electrons if their energy is
larger than the work function from a metal by the time they
hit the vacuum surface or dielectric interface. Our modeling
of this mechanism of loss will be published in separate
presentation.

Finally, the simulation based on the effective-medium
model yields very similar results using same parameters
as in Table I except taking for the mean sound velocity
c = 2.0 × 105 cm/s. This value is close to the weighted value
for the Au/Mo bilayer accounting for fractional volumes of
Au and Mo.

A. Energy loss and e-e interaction

So far we have not included in the modeling of the spec-
tral lineshape the coordinate-independent term Eloss,�D→�1 .
Incorporation of this term results in shifting the pulse towards
lower channels without changing its shape. The only extra
fitting parameter entering this term as discussed in Sec. III
is the threshold �1. Including small energy loss, Eloss,thermal,
due to the additional thermal conductance of heat out of
the microcalorimeter due to the MPT film being at a higher
temperature for a short duration as discussed in the exper-
imental section, we obtain for the total energy loss Eloss =
Eloss,thermal + Eloss,1 + Eloss,�D→�1 . For the set of parameters
in Table I the averaged loss due to phonons of the first
generation is Eloss,1 = 0.7%. Taking Eloss,thermal = 0.4% as
estimated above we obtain that, in order to fit the experimental
result of Eloss ≈ 3.8%, the remaining loss term must account
for 2.7% of the energy loss. Thus, as expected, this is the
dominant loss term. Fitting this number yields the threshold
�1 by a factor 1.24 higher than given by expression (20),
which is derived for the situation when τe-e(�1) � τph-e(�1).
We therefore arrive at the conclusion that the electron-electron
interaction in our Au film is relatively weak and only slightly
modifies the lower threshold of the phonon stage of the
down-conversion cascade.

This result further proves the consistency of our model.
Indeed, at higher threshold E1 the estimated electron-electron
relaxation time was τe-e(E1) 
 65 fs. We have shown in Sec. III
that the electron-electron interaction rate scales from this
energy down practically to the �1 threshold according to the
ε3/2 law. Accounting the correction of 1.24 determined from
fitting the energy loss to experiment we estimate the ratio
E1/�1 
 675. Thus, the e-e interaction time scaled down to
energy �1 is estimated to be τe-e(�1) 
 1.1 ns, which is close

to our initial estimate τph-e(�1) 
 1.5 ns. The latter estimate
was obtained by taking τph-e(�D) = 80 ps from Table I and
scaling its rate to the threshold �1 according to the linear
law (18).

One of the important practical implications of this result is
that the e-e interaction in 330-nm-thick Au film has been found
to be relatively weak, allowing therefore for an extended long-
lasting phonon stage of down-conversion cascade. It is this
property of the high-quality Au film of the Mo/Au bilayer that
made possible the observation and identification of athermal
phonon loss.

VI. DISCUSSION

Strong energy leaking from a thin film was experimentally
observed by Cabrera40 in a thin-film tungsten TES designed
for detection of single optical photons. The measured fraction
of energy detected with a W TES was surprisingly low at
∼42%. This was attributed to the loss of athermal phonons.
Such a big energy loss and reduction in energy efficiency
is well known for detectors operating in the nonequilibrium
regime; for example, STJs and MKIDs. These sensors op-
erate at low temperatures T 	 Tc. Generation of non-pair-
breaking phonons during the down-conversion cascade in a
superconductor with finite gap � results in approximately
42% energy loss due to the decoupling of non-pair-breaking
phonons from the condensate and the very weak interaction
with quasiparticles. In a TES which is operated close to
the critical temperature T − Tc 	 Tc, the order parameter
� → 0 and all the nonequilibrium phonons generated can be
reabsorbed by quasiparticles. This situation is very similar to
the electron-phonon interaction in normal metals.

We are able to explain this high loss of energy using the
same calculations used to explain the 3.4% energy loss from
the escape of athermal phonons in our Mo/Au MPT bilayer.
On this basis, we suggest that the large energy loss from a W
TES can be explained by athermal phonon loss when taking
into account all possible modes of athermal phonon loss. In
an earlier analysis of spectral degradation of optical TESs
due to phonon down-conversion noise,4 the energy efficiency
in a W TES described by Cabrera et al. was estimated to
be 7%. However, this calculation only took into account the
first two phonon generations. It is now clear that a dominant
contribution to energy loss can be due to lower-energy phonons
which are emitted during the extended �D → �1 stage.

Using the calculated Eliashberg function for tungsten41

and parameters from Table II, and after averaging over the
coordinates of absorption sites, we obtain from Eqs. (5), (7),
(9), and (10) Eloss 
 46.9%. The breakdown of the observed
losses due to different mechanisms for this experiment requires
a special analysis. However, the overall number that we have
calculated clearly dominates the observed 58% loss. It is also
consistent with the magnitude of the experimentally observed
improvement of energy efficiency from ∼42% to ∼80% that

TABLE II. Model parameters for W film.

τs ps τph-e(�D) ps c × 105 cm/s ηeff D cm2/s tdc ps

0.0125 13.3 3.18 0.043 35 0.40
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FIG. 11. This graph shows the spectrum of Mn K α observed by
Verhoeve et al.43 The solid line superimposed on this spectrum is the
result of our simulated lineshape which takes into account the spatial
broadening of the Mn K α complex due to loss of athermal phonons
as well as intrinsic and electronic noise sources.

was seen in TESs that were fabricated on micromachined
Si3N4 membranes,1 which reduced the athermal phonon loss.
The scattering rates derived from the parameters shown in
Table II are consistent with the estimates of electron-phonon,
phonon-electron, and electron-electron scattering rates in
tungsten.42 Both sets of data give close values for �1 and
τe-ph(�1) 	 τe-e(�1) justifying our estimate energy loss.

It is remarkable that a relatively simple model can correctly
describe the loss of athermal phonons in the process of energy
deposition from such different thin metal films, even when the
resulting fractional energy loss efficiency varies by over an
order of magnitude.

In an experiment using an STJ consisting of Ta(110 nm)/
Al(5 nm)/AlOx/Al(5 nm)/Ta(95 nm) grown on a sapphire
substrate by Verhoeve etal.,43 the best spectral resolution
achieved was �E = 15.7 eV (FWHM) at 6 keV. Based on
the responsivity of the STJ and the total noise from all noise
contributions, the best achievable energy resolution was 8.9 eV
(FWHM).

In Fig. 11 we show the results of spectral shape modeling
for the geometry of this STJ. The material parameters for
Ta used for this modeling are shown in Table III. Just as
we did for the previous experiments, the intrinsic lineshape
of Mn K α x-rays from Holzer was used,39 and a detector
resolution of 8.9 eV (FWHM) was assumed. In order to
evaluate τs we used the calculated Eliashberg function and
its first reciprocal moment λ for Ta.34 The results from this
modeling is shown in Fig. 11, as well as the original spectrum.
It is apparent that the coordinate-dependent energy loss via

TABLE III. Model parameters for Ta film.

τs ps τph-e(�D) ps c × 105 cm/s σ eV D cm2/s tdc ps

0.026 1.2 2.33 3.8 500 0.25

escape of athermal phonons can adequately explain most of
the measured spectrum.

In another similar experiment using a Ta-based x-ray
absorber on a solid substrate, utilizing a distributed STJ
detector readout, Li et al.44 reported a spectral resolution of
12 eV (FWHM) for 6 keV x-rays, close to the theoretically
achievable limit for this particular device. According to our
models, the expected broadening that occurs due to the z-
dependent athermal phonon energy loss for this 600-nm-thick
Ta absorber is ∼6 eV (FWHM). Therefore, this level of spectral
broadening would not significantly impact the performance of
this sensor.

VII. CONCLUSIONS

We have shown experimentally that, following a photon
absorption in a thin metal film grown on a solid substrate,
a substantial fraction of the energy deposited may be lost
prior to establishing thermal equilibration due to the escape of
athermal phonons to the substrate below. This form of energy
loss can significantly affect the performance of high-resolution
spectrometers on solid substrates. When the whole energy
of the x-ray was retained in the spectrometer following its
absorption in the absorber, the measured spectral resolution
of the Mn K α complex was 4.3 eV (FWHM). However, for
absorption events directly in the sensor film with a measured
energy loss of 3.4%, the energy resolution deteriorated to
≈40 eV (FWHM). The main source of degradation in the soft-
x-ray region is now understood to be due to the “z”-dependent
energy of athermal phonon loss, while the effect of fluctuations
in energy loss is small.

We have developed a theoretical model for simulation of the
spectral lineshape and have shown that the latter is sensitive
to details of energy deposition, energy exchange between
electron and phonon systems, and phonon transmission to
the substrate across the escape interface. Apart from trivial
geometrical factors the amount of energy loss reflects the
relative strength of electron-electron versus electron-phonon
interactions over a broad spectral range (∼1 eV) about the
Fermi energy and the magnitude of the phonon transmission
coefficient. The spectral lineshape is mostly determined by
the high-energy, short (atomic scale) wavelength of first-
generation phonons which are released during the initial stages
of the energy down-conversion process. The loss of lower-
energy athermal phonons of subsequent generations results
only in a parallel shift of the spectral line without affecting
its shape. Fitting the theoretical lineshape to the experimental
lineshape allows us to evaluate the degree of scattering-assisted
phonon transmission due to sub-nanometer-scale roughness of
the interface.

Our relatively simple model explains a wide variety of
measured energy losses and effects on measured spectral
resolution. It is important for the design of future detectors
with small or large regions of solid substrate contact.
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