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We classify distinct types of quantum number fractionalization occurring in two-dimensional topologically
ordered phases, focusing in particular on phases with Z2 topological order, that is, on gapped Z2 spin liquids.
We find that the fractionalization class of each anyon is an equivalence class of projective representations of
the symmetry group, corresponding to elements of the cohomology group H 2(G,Z2). This result leads us to a
symmetry classification of gapped Z2 spin liquids, such that two phases in different symmetry classes cannot be
connected without breaking symmetry or crossing a phase transition. Symmetry classes are defined by specifying
a fractionalization class for each type of anyon. The fusion rules of anyons play a crucial role in determining the
symmetry classes. For translation and internal symmetries, braiding statistics plays no role, but can affect the
classification when point group symmetries are present. For square lattice space group, time-reversal, and SO(3)
spin rotation symmetries, we find 2 098 176 ≈ 221 distinct symmetry classes. Our symmetry classification is not
complete, as we exclude, by assumption, permutation of the different types of anyons by symmetry operations.
We give an explicit construction of symmetry classes for square lattice space group symmetry in the toric code
model. Via simple examples, we illustrate how information about fractionalization classes can, in principle,
be obtained from the spectrum and quantum numbers of excited states. Moreover, the symmetry class can be
partially determined from the quantum numbers of the four degenerate ground states on the torus. We also extend
our results to arbitrary Abelian topological orders (limited, though, to translations and internal symmetries),
and compare our classification with the related projective symmetry group classification of parton mean-field
theories. Our results provide a framework for understanding and probing the sharp distinctions among symmetric
Z2 spin liquids and are a first step toward a full classification of symmetric topologically ordered phases.

DOI: 10.1103/PhysRevB.87.104406 PACS number(s): 05.30.Pr, 75.10.Kt

I. INTRODUCTION

One of the characteristic features of topologically ordered
states of matter1–3 in two dimensions is the presence of
anyons—quasiparticle excitations with nontrivial braiding
statistics. Another important feature is quantum number
fractionalization: if some degree of symmetry is present, the
anyons can carry fractional quantum numbers. The charge e/3
quasiparticles of the ν = 1/3 Laughlin fractional quantum
Hall state4 are a celebrated example of this phenomenon.
The fractional charge of these excitations has been directly
observed,5–7 while a direct, unambiguous measurement of their
statistics remains elusive.8 As in this case, it is important to
recognize that fractionalization may often be easier to detect
than other characteristic features of topological order.

Given the important role of fractionalization in topolog-
ically ordered states of matter, it is important to develop
a better understanding of the interplay among symmetry,
fractionalization, and topological order. Many of the most
basic questions along these lines are not well understood, for
instance, among states having the same topological order and
the same symmetry, are there distinct types of fractionalization
that can be used to distinguish phases? If so, how can we
describe and classify distinct types of fractionalization? What
types of fractionalization are consistent with a given type of
topological order? In this paper, we answer these questions
for one of the simplest types of topological order, namely,
the topological order of the deconfined phase of Z2 gauge
theory,9 which we refer to as Z2 topological order. We will
introduce the notion of fractionalization class of an anyon,
which describes its characteristic type of fractionalization.

To be more specific, we shall confine our attention to two
dimensions, to zero temperature, and to local bosonic models

(i.e., spin models with finite-range or exponentially decaying
interactions). For simplicity, we exclude the possibility of
spontaneously broken symmetry. In this setting, states with
Z2 topological order are referred to as gapped10 Z2 spin
liquids.11–19 Despite the restriction to two dimensions, it
should be noted that nowhere will we assume a strict two-
dimensional system. That is, our two-dimensional system may
lie on the boundary of a gapped three-dimensional bulk. This
point may have interesting implications for future work, and
we return to it in Sec. IX.

Our results can also be viewed through the lens of classifi-
cation of distinct phases of matter. More specifically, we may
ask for a classification of all distinct phases of matter sharing a
given fixed topological order and fixed symmetry group. In this
situation, it is known that many distinct “symmetry enriched”
topological phases exist.20–29 The distinctions among these
phases disappear upon breaking of all symmetries, while the
topological order is unaffected.

We shall see that specifying fractionalization classes for
each type of anyon defines a symmetry class, so named because
it determines the action of symmetry on the topological
degrees of freedom. Two states (i.e., states of matter) in
different symmetry classes are distinct phases, and cannot
be adiabatically connected without closing a gap or breaking
symmetry. This is only a partial classification of phases,
though, because a given symmetry class may contain more
than one distinct phase. Nonetheless, symmetry classification
is a first step toward classification of all phases sharing a
fixed topological order and symmetry group. We provide such
a symmetry classification for gapped Z2 spin liquids, for an
arbitrary symmetry group. It should be noted that the symmetry
classification we give here is not complete; for simplicity,
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we do not consider cases where some symmetry operations
permute the different types of anyons. This kind of action
of the symmetry group is “beyond fractionalization,” and its
study is left for future work.

Our approach is not limited to Z2 topological order. Indeed,
if only translation and internal symmetries are considered,
we describe the straightforward extension of our results to
arbitrary Abelian topological orders in Sec. V. Including full
space group symmetry, with further work, we believe our
approach could be extended to give a symmetry classification
for an arbitrary Abelian topological order. We have not yet
considered extensions to non-Abelian topological order or to
topological order in three dimensions.

Classifications such as ours are useful because they provide
a systematic basis for understanding sharp distinctions among
phases. Along these lines, we hope that our results will be of
use in finding new ways to identify and distinguish different
spin liquids in numerical simulations and in experiments.
Indeed, our focus on gappedZ2 spin liquids is partly motivated
by the recent striking evidence that such states are present in
simple, fairly realistic S = 1/2 Heisenberg spin models on
the J1-J2 square lattice and the kagome lattice.30–35 We do
present some results here touching on determination of frac-
tionalization and symmetry classes in numerical simulations
(see Secs. III C and VII), but substantial further progress is
likely possible, and we hope to stimulate further work in this
direction.

We begin with the familiar observation that quantum
mechanics allows for symmetries to be realized projectively.
One classic example is the fact that rotation by 2π gives
a phase −1 when acting on a wave function for a single
half-odd integer spin. Another is the magnetic translation
group of a single particle in a uniform magnetic field, where
two translation operators Tx and Ty do not commute but
instead satisfy TxTy = eiφTyTx . More generally, but somewhat
loosely, we say symmetries are realized projectively when
identities among group elements hold only up to a phase when
acting on a quantum state. Group representations with this
property are called projective representations.

On the other hand, for any local bosonic model describing a
spin system built from an even number of electrons (or, for that
matter, an even number of neutral atoms), symmetry operations
act linearly—as opposed to projectively—on many-body wave
functions. For instance, TxTy = TyTx . If one has a system with
an odd number of electrons, we can always consider a larger
system with an even number, so, with this constraint on lattice
size in mind, we assert that symmetries act linearly on the
many-body wave functions of any physically reasonable local
bosonic model.

However, it is well known that, in general, symmetries act
projectively on anyons. For instance, SO(3) spin rotation sym-
metry acts projectively on the S = 1/2 spinon quasiparticles
appearing in many gapped Z2 spin liquids. The crucial issue
is how to describe and distinguish such projective actions to
arrive at a set of fractionalization and symmetry classes.

Before proceeding, we first have to briefly mention some
facts about Z2 topological order. There are four particle types
or classes of quasiparticle excitations, denoted 1, e, m, and
ε. It may be helpful to think of these in terms of Z2 gauge
theory coupled to bosonic matter fields; the deconfined phase

of such a theory is a concrete realization of Z2 topological
order. The e particles are Z2 electric charges, the m particles
are Z2 magnetic fluxes, and ε particles are e-m bound states.
1-particles, also referred to as “trivial” particles, are excitations
that are not part of the topological structure. The nontrivial
particles (i.e., anyons) have nontrivial braiding statistics: any
two distinct anyons (e.g., an e and an m) have θ = π mutual
statistics. The e and m particles are bosons, but ε particles are
fermions due to the mutual statistics of e and m. 1-particles
are bosonic and have trivial mutual statistics with the other
particle types. The fusion of two particles gives a unique third
particle type, according to the fusion rules:

e × e = m × m = ε × ε = 1, 1 × 1 = 1,

e × 1 = e, m × 1 = m, ε × 1 = ε, (1)

e × m = ε, e × ε = m, m × ε = e.

It is important to note that these properties are unchanged
under the relabeling e ↔ m.

Now, to state our results, the action of the symmetry
group on each type of topological quasiparticle is given by
a projective representation, which is associated with a Z2

central extension of the symmetry group. (For 1-particles,
this is always the trivial extension.) These central extensions
can be grouped into equivalence classes, which we call frac-
tionalization classes. Fractionalization classes are in one-to-
one correspondence with elements of the cohomology group
H 2(G,Z2). A symmetry class is then defined by specifying
the fractionalization class for each anyon. The symmetry class
is a universal property of a Z2 spin liquid phase; that is, two
states (i.e., states of matter) with different symmetry classes
cannot be adiabatically connected without breaking symmetry.
The fractionalization class for each anyon follows from the
other two by fusion, so only two elements of H 2(G,Z2) need
be specified. Equivalently, one can instead specify a single
element of H 2(G,Z2 × Z2).

Pairs of elements of H 2(G,Z2) are not quite in one-to-one
correspondence with distinct symmetry classes. This occurs
because pairs of e and m fractionalization classes related by
relabeling e ↔ m are not distinct.

If G consists only of translations and internal symmetries,
braiding statistics play no role in this classification. In this
case, the fractionalization class of, say, ε is given simply by the
H 2(G,Z2) group product of the classes for e and m particles.
However, the statistics can enter when G contains more general
space group operations, and in this case the H 2(G,Z2) product
can be “twisted” by statistics.

We hope that the reader is not discouraged at this stage by
the appearance of perhaps unfamiliar mathematics. The neces-
sary terminology and results are explained in a self-contained
fashion in Sec. III B. In our opinion, learning this material does
not require any special mathematical sophistication. Group co-
homology is certainly more sophisticated, but only the second
cohomology group appears, and that only as a convenient name
for the group of equivalence classes of group extensions.

A. Prior work

The idea that symmetry acts projectively on topological
quasiparticles also lies at the heart of X.-G. Wen’s projective
symmetry group (PSG) classification of mean-field spin liquid
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states,20 which is a key inspiration for our work and can be
viewed as an attempt to answer some of the same questions.
However, PSG classification, while a very useful tool, does not
give a symmetry classification. PSG classification begins with
a parton construction, where, for instance, the spin operator is
written as a bilinear of bosonic or fermionic spinon operators.
One then constructs a mean-field theory in terms of the
partons, and such mean-field theories are classified by PSG.
Fluctuations about mean-field theory can be incorporated by
coupling the partons to a dynamical gauge field, giving a true
low-energy effective theory.

The PSG classification is inherently tied to parton effective
theories. A symmetry classification should be built only on
the essential, defining properties of Z2 topological order—
namely, the types of anyons and their fusion and braiding
properties. Parton constructions provide a concrete means to
realize these properties, but there is no reason to believe they
do more than this. Put another way, Z2 topological order does
not seem to be essentially linked to parton theory, so, in our
view, parton theory and PSG do not provide the right language
to construct a symmetry classification. We provide a more
detailed discussion contrasting PSG classification with our
symmetry classification in Sec. VIII.

We also note that some ideas having significant overlap with
ours were outlined previously by A. Kitaev, in Appendix F of
Ref. 36. In particular, taking the liberty of translating results
presented there into the language of this paper, it was asserted
that for a general topological order the symmetry classes are
given by elements of H 2(G,�2), where G is the symmetry
group and �2 is a finite Abelian group determined by the type
of topological order. For Abelian topological orders, �2 is the
group of fusion rules,37 so �2 = Z2 × Z2 for Z2 topological
order, agreeing with our results. In fact, for an arbitrary Abelian
topological order, we show in Sec. V that our approach also
reproduces Kitaev’s result if G consists only of translations
and internal symmetries. This may also hold for more general
space group symmetries, but there are subtleties having to do
with the role of braiding statistics that we have only addressed
for Z2 topological order.

A number of other prior works have also investigated related
questions.21–29,38,39 In particular, in Ref. 21, the idea of using
a pair of PSGs, one for Z2 charges and one for Z2 fluxes, was
introduced. This idea enters our symmetry classification via the
need to specify two fractionalization classes (for instance, the
e and m fractionalization classes). Reference 21 also showed
that distinct pairs of charge and flux PSGs can be realized in
the toric code model, in close connection to our analysis of the
same model in Sec. VI.

B. Outline

We begin in Sec. II A with a review of Z2 topological
order in two dimensions, introducing many of the basic ideas
important for our symmetry classification as well as much
of the notation used in the rest of the paper. Of particular
importance is the concept of superselection sectors. Next, in
Sec. II B, we briefly review the toric code model,19 the simplest
concrete realization of Z2 topological order.

Sections III and IV present the central results of the paper. In
Sec. III A, the notion of fractionalization class of an anyon is

introduced, focusing on the case of translation and internal
symmetry. The notions of symmetry localization and one-
particle symmetry operators are also introduced, and play a
crucial role. (One technical detail is relegated to Appendix A.)
We show that for translation symmetry alone there are two
fractionalization classes, and similarly for U(1) or SO(3)
symmetry. Next, in Sec. III B, we introduce the mathematical
language needed to describe fractionalization classes, followed
by a general discussion of the structure of fractionalization
classes in Sec. III C. In Sec. III C, via simple examples, we also
explain how fractionalization class information can manifest
itself physically in the excitation spectrum and quantum
numbers of excited states. As part of this discussion, we intro-
duce a “coarsened” classification by UT (1) fractionalization
classes, which reflect information that is in a sense physically
simpler than that contained in the full classification. Because
point group operations can move anyons large distances, full
space group symmetry requires the further considerations of
Sec. III D. Finally, in Sec. III E, we work out the fractionaliza-
tion classes for the example of square lattice space group, time-
reversal, and spin rotation symmetry, showing there are 211

such classes (some technical details are given in Appendix B).
In Sec. IV A, we describe our symmetry classification of

Z2 spin liquids, which amounts to specifying fractionalization
classes for the e and m anyons. The crucial issue is to determine
how the ε fractionalization class follows from the e and m

classes. Following a discussion of the counting of distinct
symmetry classes, we move on to the case of translation and
internal symmetry in Sec. IV B, where we show that the ε

class is given simply by the H 2(G,Z2) group product of the
e and m classes. We also describe the symmetry classes for
the case of translation symmetry alone, and for SO(3) spin
rotation alone. Section IV C discusses symmetry classes for
space group symmetry, where the mutual statistics of e and m

particles leads, in general, to a twisting of the group product
determining the ε fractionalization class in terms of the e and
m classes. We explicitly work out this twisting for the square
lattice space group.

In Sec. V, we extend our results to general Abelian
topological orders for the case of translation and internal
symmetry. In Sec. VI, we explicitly construct one-particle
symmetry operators for the generators of the square lattice
space group in the toric code model, and show that three
symmetry classes can be realized there, by tuning the signs of
the two terms in the Hamiltonian. Section VII shows that some
of the symmetry class information can be extracted directly
from the quantum numbers of degenerate ground states, as
illustrated for the case of translation symmetry alone. We
conclude with a comparison between our classification and
PSG classification in Sec. VIII, and a discussion of open issues
and future directions in Sec. IX.

II. REVIEW: Z2 TOPOLOGICAL ORDER

A. General discussion

Here, we review Z2 topological order. We employ the
language of topological quasiparticle types and the associated
superselection sectors.36 The notion of topological superse-
lection sectors is particularly important for our classification.
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We begin by introducing these notions abstractly, and then, in
Sec. II B, illustrate them using the exactly solvable Kitaev toric
code model.19 The discussion here focuses on Z2 topological
order, but can be generalized to arbitrary Abelian topological
orders.

We are concerned with local bosonic lattice models with
an energy gap in two dimensions. One way to characterize
Z2 topological order is by properties of excitations above the
ground state. As discussed briefly in Sec. I, there are four
topological particle types, denoted 1, e, m, and ε. The e, m, and
ε particles are anyons, while the 1-particles (“trivial” particles)
are not. Under exchange, all the particle types are bosons
except ε, which is a fermion. Excluding 1-particles, any pair
of distinct particles have θ = π mutual statistics. 1-particles
have trivial mutual statistics with the other particle types.

The particles also obey the fusion rules given in Eq. (1). For
example, the e × e = 1 fusion rule expresses the fact that two
nearby e particles can be viewed as a single 1-particle. Because
the fusion and braiding rules are invariant under e ↔ m, we
are always free to relabel e ↔ m if we wish. Other Abelian
topological orders can be described in the same way; that is,
one specifies a set of particle types, fusion rules, and both
exchange and mutual statistics.

At this point, it is useful to introduce some terminology. We
consider a region R defined as some subset of all lattice sites.
Without worrying too much about precision, we also assume
that R has no small holes or rough edges. That is, we want to
be able to define R by drawing one or more sufficiently smooth
boundary curves, and selecting the lattice sites in the interior.
We will almost always assume R is a union of disjoint simply
connected regions. We denote the complement of R by R̄. The
full Hilbert space is the tensor product H(R) ⊗ H(R̄), where
H(R) is the Hilbert space of region R. We say an operator O
is supported on R if it can be written O = OR ⊗ 1R̄ . That is,
if O is supported on R, it may act nontrivially on R, but acts
as the identity operator on R̄.

It is a crucially important defining property that no local
operator can create a single isolated anyon. However, for
instance, a pair of e particles can be created locally due to
the fusion rule e × e = 1, since isolated 1-particles can be
created locally. Two e particles created in this way can then
be separated to obtain isolated e particles. This separation can
be accomplished by acting with a string operator, which is
supported on a linear region connecting the initial and final
positions of a single e particle. String operators only modify
locally observable properties of a state on which they act near
the ends of the string. That is, there is no way to discern that
a string operator has been applied to some state by making
local measurements along the length of the string, away from
the ends. String operators need not have ends, and can form
closed loops. Noncontractible closed strings are related to the
topological ground-state degeneracy, which we discuss below.

There are three distinct types of string operators, associated
with the three types of anyons. For instance, the string
operators associated with e particles are referred to as e strings.
Two string operators of the same type commute [see Fig. 1(a)].
This holds as long as their ends are well separated; if that is not
the case, the commutation relations will depend on details of
the ends. On the other hand, two string operators of different
types anticommute if they cross an odd number of times and

(b)

= (+1)

(a)

= (−1)

FIG. 1. (a) Two e-string operators (solid lines) with a single
crossing point commute. (b) e-string (solid line) and m-string (dashed
line) operators with a single crossing point anticommute.

commute if they cross an even number of times [see Fig. 1(b)].
This property, which follows from the mutual statistics, can
be expressed by saying that we get a minus sign whenever we
move a string of one type through a string of another type at a
single crossing point. In Fig. 1, and throughout the paper, we
adopt the graphical convention that strings are drawn on top
when the corresponding operator lies to the left in a product of
operators. That is, the strings on the bottom act first on a state,
followed by strings on top.

An ε string can be viewed as a pair of nearby, parallel e and
m strings, as depicted in Fig. 2(a). Since the e string has to
lie on one side or the other, ε strings thus carry an orientation
[see Fig. 2(a)]. The orientation changes at a point where one
of the e or m constituent strings passes under the other; at such
a point we say the ε string is twisted. There are two kinds of
twists, since the e string can pass over or under the m string
[see Figs. 2(b) and 2(c)]; these two twists are related by a
minus sign.

We will primarily be interested in considering Z2 topolog-
ically ordered states on a torus (i.e., with periodic boundary
conditions). In this case, we can form noncontractible loops in
both x and y directions. Let Le

x be a closed e-string operator
winding once around the system in the x direction, with
corresponding definitions for Le

y , Lm
x , and Lm

y . We can think
of the product Le

xLm
x as an ε string running in the x direction,

so it is not necessary to introduce more operators to represent
noncontractible ε strings. These string operators satisfy the
following commutation and anticommutation relations:

{
Le

x,Lm
y

} = {
Lm

x ,Le
y

} = 0,
(2)[

Le
x,Le

y

] = [
Lm

x ,Lm
y

] = [
Le

x,Lm
x

] = [
Le

y,Lm
y

] = 0.

(b)

=

(a)

=

(c)

=

m
ε

e

FIG. 2. (a) e (solid line) and m (dashed line) strings can be viewed
in combination as an ε string. The arrow points from the m string
toward the e string. (b) Twisted ε string where the e string passes
underneath the m string. (c) Twisted ε string where the e string
passes over the m string. Note that the configurations in (b) and (c)
are related by a minus sign.
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We also assume(
Le

x

)2 = (
Le

y

)2 = (
Lm

x

)2 = (
Lm

y

)2 = 1. (3)

This can be justified by noting that, for instance, moving a
pair of nearby e particles (equivalent to a 1-particle) around
a closed loop should be equivalent to doing nothing, except
perhaps accumulating a phase that can be removed by a trivial
redefinition of the string operators.

We refer to Eqs. (2) and (3) as the loop algebra. This algebra
has a single, four-dimensional irreducible representation, and
this implies that the ground state on a torus must be fourfold
degenerate. We note that there are situations where the loop
algebra and the topological ground-state degeneracy are both
modified by choice of boundary conditions,40 but we will not
consider such cases.

Associated to each of the four particle types is a topological
superselection sector. To understand what this means, it is
first helpful to think about a single isolated and localized e

particle in an infinite plane, where no other excitations are
present. Starting from such a state, we define an arbitrarily
large but finite connected region Re containing the e particle.
It is important that the system be “locally in the ground state”
near the boundary of Re (and outside of Re), in the sense that
local measurements in these areas should give the same result
as in the ground state. Then we can obtain all states in the e

sector by acting with (almost)41 arbitrary operators supported
on Re. The resulting states correspond to moving the e particle
to different positions, “dressing” it in various ways, modifying
any internal quantum numbers it may carry, and so on. The e

sector is thus closed under action of operators supported on
Re. Moreover, no operator supported on Re can act on an e

sector state and turn it into a state belonging to a different
superselection sector.

We will also have occasion to consider regions that are not
connected. To handle this situation, we make the following
definition: an s operator on R is an operator that, restricted to
R̄, consists entirely of string operators (of any type) connecting
disconnected components of R. If an s operator on R has only,
say, e strings in R̄, we call such an operator an e operator on
R. Again, if the region Re contains an isolated e particle and
no other excitations, we can obtain all e-sector states (for the
region Re) by acting with s operators on Re, and the e sector
is closed under the action of such operators.

This discussion needs to be modified on a finite torus, where
nontrivial particles must occur in pairs. Indeed, in this situa-
tion, all physical states belong to the 1-sector, because any state
can be obtained from a ground state by acting with operators
supported on the whole system. To see that the superselection
sectors still have meaning here, consider a state with two local-
ized and well-separated e particles, with no other excitations
present [see Fig. 3(a)]. Any operator acting on a ground state
to create such a two-particle state will involve an e string
connecting the positions of the two particles; therefore it is
useful to think of the particles as being connected by an e string.

Now, as illustrated in Fig. 3(a), we define two regions Re
1 and

Re
2 by drawing a box around each e particle. The boundaries

of these regions, and the space outside the regions, should be
locally in the ground state. From such a reference state, acting
with arbitrary operators supported on, say Re

1, one generates
all e-sector states in the region Re

1.

R
1

mR
1

eR
1

eR
2

R 1

(b)

(a)

R
1
ε

eR
2

e
e

e
ε

e

m

FIG. 3. (a) State with two isolated e particles, with e-sector
regions Re

1 and Re
2. The e string connecting the particles is shown

as a solid line. The two regions can be combined together to give the
1-sector region R1. (b) State as in (a) but where the e particle in Re

1

has split into isolated m and ε particles as allowed by the e = m × ε

fusion rule. Re
1 can thus be subdivided into Rm

1 and Rε
1 as shown.

Strings connecting the particles are not shown.

More generally, we can decompose a state into regions
R1

i , Re
i , Rm

i , and Rε
i . Such a decomposition is not unique and

can be modified according to the fusion rules. For instance,
going back to the example of two e particles, if we draw
a larger box containing both Re

1 and Re
2, the resulting new

region R1 contains a state in the 1-sector due to the fusion rule
e × e = 1. On the other hand, due to the e = m × ε fusion
rule, there can be a state in Re

1 consisting of a localized m

particle well separated from a localized ε particle, with no
other excitations. In this case, we can subdivide Re

1 into Rε
1

and Rm
1 , as shown in Fig. 3(b).

B. Toric code model

The toric code is a spin model that makes manifest all
the essential features of the Z2 theory with a minimum of
extra structure. It is therefore a very useful test bed for
our discussion, and in Sec. VI, we will present explicit
constructions that give substance to the general considerations
of Secs. III and IV. The model can be defined on any lattice in
two dimensions, but we restrict ourselves to the square lattice.

The model consists of spin-1/2 degrees of freedom on the
edges of the square lattice. We label lattice sites by r, and
write Pauli matrices acting on the nearest-neighbor edge (r,r′)
as σ z

r,r′ , and so on. Four edges meet at each site to form a vertex,
denoted s, and four edges bound each plaquette, denoted p (see
Fig. 4). The Hamiltonian is built from the following products,
associated respectively with vertices and plaquettes:

As =
∏

(r,r′)∈s

σ x
r,r′ , Bp =

∏
(r,r′)∈p

σ z
r,r′ . (4)

These operators can be viewed as measuring Z2 charge and
flux, respectively. The Hamiltonian is

Htc = −Ke

∑
s

As − Km

∑
p

Bp. (5)
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p

s

FIG. 4. Thick bonds depict the four edges meeting the vertex s

and bounding the plaquette p.

The exact eigenstates of Htc are easily constructed, because
[Htc,As] = [Htc,Bp] = [As,Bp] = 0.

Here, we assume Ke,Km > 0, although in Sec. VI we
consider more general situations. Any ground state satisfies
As = Bp = 1. On a finite torus there are four such ground
states, which can be seen by explicitly constructing the loop
operators as products of Pauli matrices,

Le
x,y =

∏
(r,r′)∈Ce

x,y

σ z
r,r′ (6)

Lm
x,y =

∏
(r,r′)⊥Cm

x,y

σ x
r,r′ , (7)

as illustrated in Fig. 5. Here, the contours Ce
x,y consist of

a path of lattice edges winding around the system in the x,y

directions, where the Cm
x,y contours pass through perpendicular

edges. It is straightforward to check that these operators satisfy
the loop algebra. More generally, e (m) strings are products of
σ z

i (σx
i ) along an appropriate contour.

We can be even more explicit by constructing the state

|ψ0〉 =
[∏

s

1√
2

(1 + As)

] ∣∣{σ z
i = 1

}〉
. (8)

This is easily seen to be a ground state, and Le
x,y |ψ0〉 = |ψ0〉.

However, this state is not an eigenstate of Lm
x,y , and the other

three ground states are Lm
x |ψ0〉, Lm

y |ψ0〉, and Lm
x Lm

y |ψ0〉.
Along the same lines, we can also construct contractible

e and m strings. Any such e string can be written as a
product of Bp operators; a single Bp operator is an elementary
contractible e string encircling a single plaquette. Similarly,
contractible m-string operators are products of As operators.

FIG. 5. Depiction of contours Ce
x (thick solid line) and Cm

x (thick
dashed line) used to define the loop operatorsLe

x andLm
x , respectively.

Therefore the ground states are eigenstates of all contractible
string operators with eigenvalue unity.

There is a gap to excited states, which have vertices where
As = −1 and/or plaquettes where Bp = −1. Vertices with
As = −1 are e particles, and plaquettes with Bp = −1 are
m particles. (Again, which we call e and which m is arbitrary.)
To create, for instance, a state with two isolated e particles,
one can act on a ground state with a product of σ z

i Pauli
matrices (an e string) on a contour connecting the desired
particle positions. Based on the above discussion, it is clear that
we can “slide around” the string connecting the two particles
with no effect whatsoever on the state. This statement needs
to be weakened slightly when we consider states with both
e and m particles; in such cases, moving strings around can
change the state by a minus sign either when we bring an e

string through an m string or when a string of one type “slides
over” a particle of the other type. Still, the string positions are
clearly unobservable.

It is important to recognize that the toric code model is
highly fine-tuned. In particular, the quasiparticles have no
dynamics (dispersion) and a vanishing correlation length.
These features are convenient for our study when we come to
an explicit implementation in Sec. VI. To consider the generic
properties of a phase of matter, however, one must allow all
finite-range terms consistent with symmetry to be added to
the Hamiltonian. This will introduce one or more time scales
beyond which the quasiparticles should not be considered
isolated. In the absence of such processes, the fusion rules
would have little physical relevance, but we will find that, in
general, the fusion rules play a crucial role in determining the
possible fractionalization classes.

III. FRACTIONALIZATION CLASSES

In this section, we will discuss and classify the action of
symmetries on a single type of anyon in the Z2 theory. Most
of the discussion will focus on e particles, with occasional
comments on ε particles, due to the different nature of ε strings.
Everything we say also clearly holds for m particles, since the
topological properties do not change under relabeling e ↔ m.

We assume that symmetry operations do not change one
type of anyon into another. The symmetry group may consist
of internal symmetries (including antiunitary time reversal),
translation symmetry, and general space group operations. We
begin by introducing the notion of fractionalization classes
for translation and internal symmetry (see Sec. III A). Next,
introducing the mathematics of group extensions and their
equivalence classes (see Sec. III B), we discuss the general
structure of fractionalization classes (see Sec. III C). We then
show that the same general structure continues to hold for
space group symmetry in Sec. III D.

A. Translation and internal symmetries

To introduce the notion of fractionalization classes, we
begin with translation symmetry, then argue that the same
structure holds for internal symmetry (including time reversal).
We discuss e particles for concreteness, but all statements
apply just as well to ε particles, except where explicitly noted.
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i

R
1

eR
2

eL

e

FIG. 6. Depiction of the state |ψα〉 with two e particles. The
operator Oα creating this state is supported on the two shaded circular
regions and along the solid line connecting them. Oα is an e-string
operator along the solid line, which is referred to as Le

i outside of the
regions Re

i . Oα is thus an e operator on the union of the Re
i .

We consider translation symmetry generated by Tx and Ty ,
satisfying the relation TxTyT

−1
x T −1

y = 1, which holds acting
on all physical states (see Sec. I), and thus on the 1-sector.
We wish to understand the action of translations on states
with two localized, well separated e particles. More formally,
we consider a family of states {|ψα〉} (labeled by α), that
can be decomposed into two fixed, connected e-sector regions
Re

i (i = 1,2), as described in Sec. II A, and are otherwise
locally in the ground state (see Fig. 6). We also assume that
|ψα〉 = Oα|ψ0〉, where |ψ0〉 is a ground state. The operator
Oα is an e operator on the union of Re

1 and Re
2, with an e

string running between the two components. For simplicity,
we assume that |ψ0〉 satisfies Tx |ψ0〉 = Ty |ψ0〉 = |ψ0〉. This
assumption is not necessary and we describe how it can be
relaxed in Appendix A. Any desired combination of e-sector
states in the two regions Re

i can be produced by the above
construction.

We proceed by making the crucial assumption that sym-
metry operations can be localized to regions surrounding the
excitations in the states |ψα〉. We refer to this property as
symmetry localization. The basic idea is that a symmetry
operation (such as translation) changes the e-particle state
in one of the regions to another e-particle state in the same
region, and that it should be possible to accomplish such a
change locally. Formally,

Tx |ψα〉 = T e
x (1)T e

x (2)|ψα〉, (9)

where T e
x (i) is supported on Re

i . The operators T e
x (i) are inde-

pendent of α. The corresponding statements are also assumed
for Ty . The operator T e

x (1), for instance, can be interpreted
as a “one-particle” translation operator, that translates the e

particle in region Re
1 against the translation-invariant medium

of the ground state |ψ0〉. It is straightforward to generalize this
discussion to a state with multiple e-sector regions. We further
examine and justify the assumption of symmetry localization
at the end of this section.

We note that symmetry localization fails when a symmetry
operation changes one type of anyon into another type, because
this cannot be accomplished by any local operator. However,
we exclude this situation by assumption.

Now we have

|ψα〉 = TxTyT
−1
x T −1

y |ψα〉
=

∏
i=1,2

(
T e

x (i)T e
y (i)

[
T e

x (i)
]−1[

T e
y (i)

]−1)|ψα〉. (10)

For this to hold for all α, we must have

T e
x (i)T e

y (i)
[
T e

x (i)
]−1[

T e
y (i)

]−1 = eiφi . (11)

If this were not true, there would be a state |ψα〉 on which the
identity operator acts nontrivially. We have eiφ1eiφ2 = 1, which
is a consequence of the fusion rule e × e = 1. Since there is no
difference between the two regions, we also expect eiφ1 = eiφ2 .
To show this, consider instead a state with four e-sector regions
Re

i (i = 1, . . . ,4), with eiφi defined as above. Then for any
pair i 
= j , we can fuse Re

i and Re
j to obtain a 1-sector region,

acting on which we must have TxTyT
−1
x T −1

y = 1, implying
eiφi eiφj = 1. This implies the eiφi are all equal and eiφi = ±1.
Therefore, dropping the label distinguishing the two regions,
we write

T e
x T e

y

(
T e

x

)−1(
T e

y

)−1 ≡ σ e
txty = ±1. (12)

The parameter σ e
txty defines the fractionalization class of

the e sector. Evidently, there are two fractionalization classes
in the case of translation symmetry alone. It is important
to emphasize, as follows from the discussion above, that
σ e

txty is constant on the e sector. Putting essentially the same
argument in different terms, suppose there is one type of
e particle with σ e

txty = 1 and another with σ e
txty = −1. We

could then fuse these to obtain a 1-particle acting on which
TxTyT

−1
x T −1

y = −1, a contradiction. Since σ e
txty is discrete and

is constant on the e sector, it cannot change within a Z2 spin
liquid phase, so long as translation symmetry is preserved.
Therefore σ e

txty is a universal property of Z2 spin liquids with
translation symmetry.

There is some arbitrariness in the definition of T e
x . Looking

at Eq. (9), clearly we can redefine T e
x (i) → −T e

x (i) with
no physical effect. More generally, the redefinition T e

x (i) →
eiφT e

x (i) sends Tx → einφTx , acting on a state with n e par-
ticles. This transformation should leave Tx unchanged (apart
from possible overall multiplication by a phase, independent
of n), which only occurs when φ = 0,π , in which case
Tx → Tx since n is even. Therefore we are allowed to redefine
T e

x (i) → −T e
x (i), and similarly T e

y (i) → −T e
y (i). Note that

such redefinitions do not affect σ e
txty .

Now we generalize the above discussion to the case
of unitary internal symmetry, perhaps also combined with
translation symmetry. By internal symmetry, we roughly mean
any symmetry operation that does not move the lattice. This
includes on-site symmetries such as spin rotation, but we
need not limit ourselves to strictly on-site symmetry. If S is a
symmetry operation, we again assume symmetry localization,
that is,

S|ψα〉 = Se(1)Se(2)|ψα〉, (13)

where Se(i) is supported on Re
i . The logic is identical to

the case of translation: it should be possible to accomplish
the operation S by making local modifications near the two
quasiparticle excitations. Again, we are free to redefine Se →
−Se with no effect on the physics. Suppose we have a relation
among symmetry operations of the form S1S2 · · · Sk = 1.
Then, following the arguments above,

Se
1S

e
2 · · · Se

k = ±1. (14)
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Specifying such Z2-valued parameters for all group relations
among symmetry operations specifies the fractionalization
class of the e sector. At the present stage of the discussion,
it may not be clear how to make this last statement precise.
This can be accomplished in a straightforward fashion after the
discussion of the following section, where the mathematics of
group extensions and their equivalence classes is introduced.

It is worth explicitly discussing the particularly simple
and familiar cases of U(1) and SO(3) internal symmetry. In
the case G = U(1), 1-sector states (i.e., physical states) carry
integer U(1) charge, or more generally, they are superpositions
of states with different integer U(1) charges. Alternatively,
denoting with R(θ ) a U(1) rotation by angle θ , we have
R(2π ) = 1. On the e sector, however, we may have Re(2π ) =
±1, corresponding to integer (+1) and half-odd integer (−1)
U(1) charges. These are the only two fractionalization classes.
For instance, e particles cannot have other charges (e.g., 1/3
charge), since combining two e particles must always give
an integer charge due to the e × e = 1 fusion rule. Moreover,
e particles with charge 1/2 and charge 3/2 are not distinct
classes; starting with a charge-1/2 e particle, one can fuse it
with a charge-1 1-particle to obtain a charge-3/2 e particle.
Therefore charge-1/2 and charge-3/2 e particles always
appear together in the spectrum. This example points out that
fractionalization classes are not simply distinct irreducible
representations of the symmetry group, and are instead a
coarser type of classification. The situation for G = SO(3)
spin rotation is similar. Denoting with Rs(θn̂) a spin rotation
by θ about the n̂-axis, on the e sector we have Re

s (2πn̂) = ±1,
corresponding to the two fractionalization classes of integer
spin (+1) and half-odd-integer spin (−1).

Finally, we consider the case of antiunitary time reversal,
which can be written T = UT K , where K is complex
conjugation and UT is a unitary operator. Complex conjugation
is a global operation on a wave function and cannot sensibly
be localized to a region, so in this case, symmetry localization
takes the form

T |ψα〉 = Ue
T (1)Ue

T (2)K|ψα〉, (15)

where UT (i) is supported on Re
i . The relation T 2 = 1 implies

Ue
T

(
Ue

T

)∗ ≡ (T e)2 = ±1. (16)

Here, in the interest of concise notation, we have made a formal
definition of (T e)2.

We can also consider relations involving time-reversal
and unitary symmetry operations. For instance, suppose
T ST −1S−1 = 1 for some symmetry operation S. This implies

Ue
T (Se)∗

(
Ue

T

)−1
(Se)−1 ≡ T eSe(T e)−1(Se)−1 = ±1, (17)

where again the expression involving T e is a formal definition.
We now discuss the assumption of symmetry localization

in more detail. Let R be the union of the Re
i regions and R̄

the complement of R. In addition to acting on the e particles
in R with some symmetry operation S, we also have to act
on the e-string operator in R̄. Now, moving or otherwise
modifying the string can only result in an overall phase, but
the question is then whether this phase always factors into a
product of two phases associated with each region. In general,

eR
1

e
i

L

(a)

(b)

(c)

eR
2

eL
f

FIG. 7. Depiction of the action of a symmetry operation S on
a two e-particle state, where S is either translation or an internal
symmetry operation. The initial state on which S acts is shown in
Fig. 6. S acts nontrivially in the shaded circular regions, and also
as the closed e-string loop (solid line), as shown in (a). Outside the
regions Re

i , Le
i is the e string of the initial state |ψα〉, and Le

f is the
e string of the transformed state S|ψα〉. In (b), the e-string loop is
divided into a product of smaller loops, chosen so that each gives
unity acting on the ground state, except possibly the two loops at the
ends. Therefore the loops in the center can be eliminated (c), leaving
only two loops contained entirely within the regions Re

i , which can
be absorbed into the definition of Se(i).

we expect

S|ψα〉 = Se(1)Se(2)Le(1,2)|ψα〉, (18)

where Le(1,2) is a closed e-string loop that accomplishes the
necessary transformation of the e string in R̄ [see Fig. 7(a)].
Restricted to R̄, Le(1,2) = Le

f Le
i , where Le

i is identical to Oα

restricted to R̄; that is, Le
i is the e string of the “initial” state

|ψα〉. Le
f is the desired “final” state e string. Since Le(1,2) is

a contractible loop operator, it can be written as a product of
smaller contractible loops of e string as shown in Fig. 7(b).
We assume that e-string operators square to unity, so the
elementary contractible loop operators have eigenvalues ±1.
Assuming some degree of spatial homogeneity, by combining
and splitting the elementary loops as needed, it should be
possible to choose all the elementary loops to have eigenvalue
unity, except possibly those at the ends. Therefore Le(1,2) can
be broken in the middle and deformed as shown in Fig. 7(c),
without accumulating any phase factors. The remaining loops
on the two ends can then be absorbed into Se(1) and Se(2), and
symmetry localization holds.

The discussion of transforming the string also goes over
to the case of ε particles, where the string is oriented. It is
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still possible to construct the necessary closed ε-string loop
operator Lε(1,2) as above for e particles. The only difference
from the case of e particles is that, depending on the relative
orientations of the Lε

i and Lε
f strings, it may be necessary

for the Lε(1,2) to be twisted near the ends, inside the two
ε-regions. Otherwise, the discussion proceeds exactly in the
e-particle case.

B. Group extensions and their equivalence classes

Here, we give an account of group extensions and their
equivalence classes. For the most part, we find it clearer to
separate the mathematics from the physics, so the discussion
here focuses on the mathematics. In learning this mathematics,
we found it useful to consult Refs. 42–47. Application of
the mathematics to the physics of fractionalization follows in
Sec. III C.

Consider a group G with elements g ∈ G. We consider
a projective representation, where the group element g is
represented by a unitary matrix �(g). (We include antiunitary
group operations below.) When multiplying two �’s we have

�(g1)�(g2) = ω(g1,g2)�(g1g2), (19)

where ω(g1,g2) ∈ U(1) is a phase. The presence of these
U(1) phases is what it means for the representation to be
projective. An “ordinary” representation, where ω(g1,g2) = 1
for all g1 and g2, is referred to as a linear representation. We
allow for the possibility that the projective representation �

may be a linear representation; that is, any linear representation
is a projective representation but not vice versa. To connect
with the discussion of Sec. III A, � arises physically as the
action of the symmetry group on one of the superselection
sectors.

We restrict ω(g1,g2) ∈ A, where A is a subgroup of
U(1). In the physical applications of this paper, we will be
interested in the case A = Z2. The function ω(g1,g2) satisfies
an associativity constraint, because

�(g1)�(g2)�(g3) = ω(g1,g2)ω(g1g2,g3)�(g1g2g3)

= ω(g1,g2g3)ω(g2,g3)�(g1g2g3), (20)

where the two results are obtained by the two different ways
of using associativity to evaluate the product of three �’s. The
associativity constraint is then

ω(g1,g2)ω(g1g2,g3) = ω(g1,g2g3)ω(g2,g3). (21)

Any function ω(g1,g2) ∈ A satisfying the associativity con-
straint is called a factor set, or sometimes an A-factor set.

If G includes antiunitary operations, and if A 
= Z2, the
above discussion needs to be modified. If g is antiunitary,
then so is �(g), which acts nontrivially on elements of A by
complex conjugation. For example,

�(g1)[ω(g2,g3)�(g2g3)] = ω−1(g2,g3)�(g1)�(g2g3) (22)

for g1 antiunitary. This modifies the associativity constraint.
We define s(g) = 1 for g unitary and s(g) = −1 for g

antiunitary, and then

ω(g1,g2)ω(g1g2,g3) = ω(g1,g2g3)ωs(g1)(g2,g3). (23)

To remind ourselves of the nontrivial action of antiunitary
operations, we will call such factor sets AT -factor sets. Since

we are mostly interested in A = Z2, this complication is not
relevant to much of our discussion. However, we will also have
occasion to consider UT (1)-factor sets, so we will include the
possibility of nontrivial action of antiunitary operations in the
discussion below.

If ωa(g1,g2) and ωb(g1,g2) are factor sets, then
ωab(g1,g2) = ωa(g1,g2)ωb(g1,g2) is also a factor set. It is
simple to check that this product defines an Abelian group
structure on the collection of all factor sets. The product of
factor sets is associated with tensor products of representa-
tions: if ωa,ωb are the factor sets of the representations �a,�b,
respectively, then the product ωab = ωaωb is the factor set of
the tensor product representation �a ⊗ �b.

Suppose that we allow a redefinition of the �’s by

�′(g) = λ(g)�(g), (24)

where λ(g) ∈ A. This induces the following transformation of
the factor set:

ω′(g1,g2) = λ(g1)λs(g1)(g2)λ(g1g2)−1ω(g1,g2). (25)

ω′ is also a factor set (i.e., satisfies the associativity constraint).
Two factor sets ω and ω′ are said to be equivalent if they
are related by Eq. (25) for some λ(g), and in this case, we
write ω ∼ ω′. This notion of equivalence is reflexive (ω ∼ ω),
symmetric (ω′ ∼ ω if ω ∼ ω′) and transitive (if ω ∼ ω′ and
ω′ ∼ ω′′, then ω ∼ ω′′), therefore ∼ defines an equivalence
relation that partitions the set of factor sets into equivalence
classes. We denote the equivalence class of ω by c(ω). Note
that c(ω) = c(ω′) if and only if ω ∼ ω′. Given a class c(ω), we
say ω is a representative of the class.

The equivalence classes themselves form an Abelian group,
with product defined by

c(ω1)c(ω2) = c(ω1ω2). (26)

This product is well defined, in the sense that it does not depend
on the representatives we choose for each class. The Abelian
group of factor set equivalence classes is isomorphic to the
cohomology group H 2(G,AT ). If antiunitary operations are
not present, or if they act trivially on A as when A = Z2, we
leave off the T subscript and write H 2(G,A). We shall not
bother to give a definition of H 2(G,AT ) in terms of group
cohomology, because, for our purposes, it is sufficient to view
the group of factor set equivalence classes as the definition of
H 2(G,AT ) (see Footnote 17 of Ref. 48). We shall often refer
to factor set equivalence classes as cohomology classes [i.e.,
elements of H 2(G,AT )].

With this discussion behind us, we note that the projective
representation � (with antiunitary operations) is associated
with an AT extension of the group G. Roughly, such an
extension is a new group E in which it makes sense to multiply
elements of A and elements of G. The advantage of a defining
an extension is that it is characterized entirely by G, A and
ω, so we can equivalently speak of classifying factor sets
or classifying group extensions. Formally, an AT extension
is a group E such that (1) A is a normal subgroup of E.
(2) G = E/A. Elements of G can be viewed as cosets Au(g)
in E, where u(g) ∈ E is a representative of g. The choice
of representative is arbitrary, that is, we are free to redefine
u′(g) = a(g)u(g) where a(g) ∈ A. A general element of E is of
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the form au(g), where a ∈ A. This leads us to the third and final
condition defining an AT extension: (3) u(g)a = as(g)u(g).

We have u(g1)u(g2) = ω(g1,g2)u(g1g2), where ω(g1,g2) ∈
A is an AT -factor set again satisfying the associativity
constraint Eq. (23). At this point, it is clear that all the structure
of factor sets and their equivalence classes is identical to the
discussion given above, and that we can also view these classes
as equivalence classes of AT extensions.

If G contains no antiunitary operations, or, more impor-
tantly for the purposes of this paper, if A = Z2, then condition
(3) above reduces to the statement that A lies in the center of
E. Such AT extensions are called A-central extensions.

For the most part, it is not necessary to use the terminology
of group extensions; we can just as well talk about projective
representations and factor sets. One advantage of the above
more abstract discussion is that there is no requirement that A

be a subgroup of U(1); it can be any Abelian group.
Coming back to projective representations, we see that

any projective representation belongs to a cohomology class.
For each class, there are one or more unitarily inequivalent
irreducible representations. Therefore classifying projective
representations by cohomology class is coarser than classifi-
cation by unitary equivalence.

We now consider a few simple examples to get a feeling
for the general structure we have been describing. In these
examples, we choose �(1) = 1; this can always be done and
implies ω(1,1) = ω(g,1) = ω(1,g) = 1. When doing practical
calculations for discrete groups it is often convenient to specify
the group in terms of generators and relations. For instance,
G = Z2 is generated by a, subject to the relation a2 = 1. If we
consider A = Z2 and a projective representation �, the single
relation becomes [�(a)]2 = σ = ±1. Specifying the relation
in this way defines a factor set ω(1,1) = ω(1,a) = ω(a,1) = 1,
and ω(a,a) = σ . There are two cohomology classes
labeled by σ , and H 2(Z2,Z2) = Z2. Each class has two
one-dimensional irreducible representations: �σ=1(a) = ±1,
and �σ=−1(a) = ±i.

For any discrete group, we can follow this procedure of
writing down generators and relations. We can write the
relations so that the right-hand side of each is unity. Then,
passing to a projective representation �, the right-hand side of
each relation is replaced by an element of A. Let us work out
an example to illustrate the procedure. Suppose G = Z2 × Z2

and A = U(1). We choose generators a and b, satisfying the
relations

a2 = 1, (27)

b2 = 1, (28)

aba−1b−1 = 1. (29)

Passing to a projective representation �, we have

�(a)2 = σa, (30)

�(b)2 = σb, (31)

�(a)�(b)�(a)−1�(b)−1 = σab, (32)

where σa,σb,σab ∈ U(1).
At this point a couple of issues arise. First, the σ ’s are not,

in general, in one-to-one correspondence with cohomology

classes. That is, there is some redundancy that has to be elim-
inated. Second, some choices of the σ ’s may be inconsistent
and not give a legitimate factor set. Both these issues arise in
this example. We can set σa,σb → 1 by redefining the phase
of �(a) and �(b). Therefore we can write Eq. (32) as

[�(a)�(b)]2 = σab. (33)

Multiplying this on the left and right by �(a), we also obtain

[�(b)�(a)]2 = σab. (34)

Since [�(b)�(a)] = [�(a)�(b)]−1, these two equations are
only consistent if σab = ±1. Therefore we find H 2(Z2 ×
Z2,U(1)) = Z2.

Suppose we consider again G = Z2 × Z2, but now A =
Z2. In this case, we proceed as above, but σa,σb,σab ∈ Z2. We
can no longer eliminate σa and σb, and all choices of the σ ’s
are consistent, so we have H 2(Z2 × Z2,Z2) = Z2 × Z2 × Z2.
Notice that the number of classes increased upon changing A

from U(1) to Z2. Indeed, since every Z2-factor set is also a
U(1)-factor set, we can group the Z2 classes together into U(1)
classes: the four Z2 classes with σab = 1 belong to the same
U(1) class, and similarly for the four classes with σab = −1.

We can always “coarsen” the Z2 classification in this way,
grouping Z2 classes together into UT (1) classes. Note the
appearance of the T subscript, which is important if G contains
antiunitary operations. We denote the resulting group of UT (1)
classes by H̄ 2(G,Z2). In general, H̄ 2(G,Z2) is the subgroup of
H 2(G,UT (1)) generated by all elements of order 2. In the above
example with G = Z2 × Z2, H̄ 2(G,Z2) = H 2[G,UT (1)], but
this is not true in general. We will see that this coarsening has
an important physical interpretation.

If G is a continuous group, it is natural that there should
be some kind of continuity condition on ω(g1,g2). The naive
choice of requiring ω(g1,g2) to be a continuous function on
the group is not adequate;47 for instance, it is easily seen that
ω is discontinuous for the S = 1/2 representation of SO(3).
Instead, we believe the correct prescription, following Ref. 47,
is to require that ω(g1,g2) be a measurable function on G

(that is, to classify extensions by Borel cohomology). For
practical purposes, when dealing with continuous groups it
is often possible to work out the fractionalization classes by
simple elementary arguments, as illustrated by the discussion
of Sec. III A for G = U(1) and G = SO(3).

C. General structure and physical manifestations
in excited states

We are now in a position to state the result that fraction-
alization classes for each superselection sector are given by
elements of H 2(G,Z2), where G is the symmetry group.
We focus on the e sector only to simplify the notation; all
statements also hold for m and ε sectors. To connect with the
discussion of the previous two sections, we can say that the
action of symmetry operations on the e-sector states in a region
Re is given by the projective representation �e, satisfying

�e(g1)�e(g2) = ωe(g1,g2)�e(g1g2), (35)

where ωe(g1,g2) ∈ Z2 is a Z2-factor set.
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If a state |ψ〉 decomposes into e-sector regions Re
1, . . . ,R

e
k ,

then symmetry localization holds,

U (g)|ψ〉 = �e(g,1) · · · �e(g,k)|ψ〉, (36)

where U (g) is the unitary operator representing g, and �e(g,i)
is an e operator on Re

i . (For a discussion of antiunitary
time reversal, see Sec. III A.) The notion of e operator was
introduced in Sec. II A, and is important when the Re

i are not
connected, which will be the case for point group operations as
discussed in Sec. III D. Physical properties are invariant under

�e(g) → λ(g)�e(g), (37)

where λ(g) ∈ Z2. This invariance, and the fact that ωe(g1,g2) ∈
Z2, is a consequence of the fusion rule e × e = 1, which
also implies k must be even. Due to this invariance, the
fractionalization class is given by the Z2 cohomology class
of the factor set ωe.

The fractionalization class is a universal property of a Z2

spin liquid phase, so long as symmetry is preserved. To see
this, suppose that somehow two e particles have different factor
sets ωe1 and ωe2, in different classes. Then we can fuse them
to obtain a 1-particle with factor set ωe1ωe2. But since ωe1 and
ωe2 are assumed to be in different classes, c(ωe1ωe2) 
= c(1);
that is, we have found a 1-particle that does not transform
in the class of linear representations. This is a contradiction,
so all e particles must have the same cohomology class.
Since cohomology classes are discrete, they are then a robust
property of a phase, so long as symmetry is preserved.

At this point it is important to ask what type of physical
information is encoded the fractionalization class, and how
this information can be extracted. First, mathematically, the
classification by H 2(G,Z2) can be coarsened to classification
by H̄ 2(G,Z2), if we allow for U(1) transformations of �e(g)
[i.e., λ(g) ∈ U(1)]. We say that elements of H̄ 2(G,Z2) specify
the UT (1) fractionalization class, to distinguish it from the
Z2 class specified by elements of H 2(G,Z2). Physically,
U(1) transformations leave measurable properties invariant
in a process during which e particles do not fuse (and are
not created in pairs), except for overall phases (and hence
eigenvalues) of symmetry operators. This can occur, for
instance, if we have several e particles that are very far
apart and remain far apart on some timescale of interest.
During such a process the number n̂e of e particles is a
well defined integer conserved quantity. The transformation
�e(g) → eiφ�e(g) modifies U (g) → eiφn̂eU (g). (The same
holds for antiunitary time reversal.) In general, the transformed
U (g) is not a symmetry operation, but it is during the process
of interest (by assumption). Therefore we can think of the
UT (1) fractionalization class as capturing some properties of
individual anyons, while the additional information in the Z2

class can only obtained when we consider fusion of anyons or
eigenvalues of symmetry operators.

The attentive reader may notice an apparent conflict be-
tween the roles of symmetry localization and fusion processes
in our classification. Indeed, symmetry localization requires
a set of e particles to be well separated on the scale of the
correlation length (i.e., the characteristic size of an e particle).
On the other hand, fusion of two e particles requires them to
come close together. Is it possible for two well-separated e

particles, to which symmetry localization can be applied, to

fuse? The answer is yes, and this is important for the validity
of the Z2 [as compared to UT (1)] classification. To see this,
consider two e particles, well separated on the scale of the
correlation length. Now suppose an infinitesimal finite-range
perturbation is added to the Hamiltonian, which has a nonzero
matrix element fusing the two e particles into the vacuum (or
into a local excitation in the 1-sector). It is certainly possible
to find such a perturbation, which changes the total number
of e particles by two and thus transforms nontrivially under
general U(1) transformations of �e(g). Therefore only Z2

transformations leave all physical properties invariant.
We now illustrate the relationship between Z2 and UT (1)

classes with the example of G = Z2 × Z2 unitary internal
symmetry, which also gives some sense of how fractional-
ization class information may be extracted physically. We
take generators a and b for Z2 × Z2, satisfying the relations
given in Eqs. (27)–(29). As discussed in Sec. III B, there are
two UT (1) classes, depending on whether a and b commute
(σab = 1) or anticommute (σab = −1). Suppose we consider
energy eigenstates with two localized e particles that are held
fixed in space, far enough apart so they do not interact with
one another. Also suppose that we consider such states on the
sphere, so we do not have to worry about the global topological
degeneracy. When σab = 1, there are four one-dimensional
projective irreducible representations. Because the irreducible
representations are one-dimensional, in the absence of other
symmetries, the states we consider will be nondegenerate.
However, for σab = −1, there is a single two-dimensional
irreducible representation. This implies that the states we
consider are fourfold degenerate, because each e particle has
internal degrees of freedom described by a two-dimensional
Hilbert space.

Using degeneracy of levels works to distinguish the two
UT (1) classes, but it does not distinguish the Z2 classes
within a given UT (1) class. This makes sense in light of the
physical interpretation we gave of UT (1) versus Z2 classes;
degeneracy of levels has to do with the projective irreducible
representations associated with individual e particles, but does
not involve fusion or eigenvalues of symmetry operators.
Moreover, given one of the four Z2 classes within a given
UT (1) class, the other three can be realized by making
transformations �e(a) → i�e(a) and �e(b) → i�e(b); this
does not affect the dimensions and multiplicities of irreducible
representations.

Extracting the additional Z2 class information is more
subtle. Suppose we consider the two classes with σb = σab =
1, and suppose we make the assumption that the two e

particles are identical. In the class σa = 1, in any irreducible
representation �(a) = ±1, so acting on a state with two
identical particles we have U (a) = 1. On the other hand,
in the class with σa = −1, �(a) = ±i in any irreducible
representation, so U (a) = −1 on a state of two identical e

particles. Subtle information of this kind is not captured in
the UT (1) class, as the eigenvalues of symmetry operators are
involved. Somewhat less obviously, fusion is also involved via
the implicit assumption that the ground state (no e particles)
satisfies U (a) = 1; in fact, what we are doing is comparing
eigenvalues of U (a) for the ground state and a state of two
identical e particles. This comparison is not well defined if
fusion processes are suppressed, because in that case, the
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phase of U (a) can be adjusted separately for the two states
being compared.

D. Space group symmetry

Much of the discussion above carries over for general space
group symmetry, but the notion of symmetry localization needs
to be modified. This is so because space group operations such
as reflection and rotation move some points by large distances
and can thus move an anyon out of the region in which it is
localized. We again focus on e particles for concreteness, but
all statements also hold for m and ε particles.

It is simplest to illustrate the differences from the case of
translation and internal symmetries by focusing on a concrete
example. We consider the reflection symmetry Px sending
x → −x, y → y, and satisfying the relation P 2

x = 1. As in
Sec. III A, we consider states |ψα〉 decomposed into two
e-sector regions Re

i , i = 1,2 (see Fig. 8). Reflection maps
these regions to image regions, Px : Re

i → Re
i ′ . Symmetry

localization can again be expressed by writing

Px |ψα〉 = P e
x (1)P e

x (2)|ψα〉, (38)

but now P e
x (i) is an e operator on R̃

e

i , defined as the union
of Re

i and Re
i ′ . P e

x (i) has a single e string connecting Re
i and

Re
i ′ (see Fig. 8). Again, the physical interpretation is that P e

x (i)
is a “one-particle” symmetry operator. This operation can no
longer be accomplished entirely locally, because the e particle
must be moved from Re

i to Re
i ′ , hence the presence of the string

operator. However, once the e particle is moved, any remaining
operations can be accomplished locally in Re

i and Re
i ′ .

Just as for the case of translation and internal symmetries,
we should also consider the effect of any phase factor obtained
by transforming the string connecting the two e particles. Here,
one can follow essentially the same argument, illustrated in
Fig. 8(b), to show that this phase factors into a product of
phases associated with the individual particles.

Now consider the relation P 2
x = 1. Arguing as before, we

have P e
x (1′)P e

x (1) = P e
x (2′)P e

x (2) = ±1, where P e
x (i ′) is the

operator giving the action of Px on the transformed e particle
in region Re

i ′ . P e
x (i ′)P e

x (i) is an e operator on R̃
e

i .
More generally, suppose we consider a group relation

S1 · · · Sk = 1. For the e particle in Re
1 in |ψα〉, we then

have Se
1 · · · Se

k = ±1, where for simplicity we have suppressed
region labels for the Se

i operators. Each of the Se
i , and thus the

product Se
1 · · · Se

k , is an e operator on R̃
e

1, defined as the union of
Re

1, Sk(Re
1), Sk−1Sk(Re

1), and so on. Note that we are assuming
that the symmetry operators for one particle commute with
those for the other. This will be the case if R̃

e

1 and R̃
e

2 do not
overlap, which we assume. This amounts to assuming that the
different particles occupy generic, i.e., not symmetry related,
positions. It would be interesting to consider the implications
of relaxing this assumption, but we leave this for future work.

Note that R̃
e

i depends on the group relation considered.
This is unappealing, because these regions serve to define the
e-sector states associated with each particle, in which the Se

symmetry operators act. A solution to this is instead to define
Re

i to be the union of all regions that can be obtained as images
of Re

i under all point group operations with some arbitrary
fixed center of symmetry. We can choose the generators of
the symmetry group to leave the chosen center of symmetry

string

e
1

R

P (1)x
e

string

αO stringαO’

e
1’R

e
2R

e
2’

string
x

e
P (2)

(a)

(b)

R

FIG. 8. (a) Illustration of the initial state |ψα〉 and the action of Px

on |ψα〉. The vertical dashed line is the reflection axis, and the regions
Re

i and Re
i′ are defined in the main text. The e strings connecting

regions for operators Oα and P e
x (i) are shown. The dashed-line O′

α

string is the image of the Oα string under Px . (b) By acting with
a closed e-string loop as shown, the Oα and P e

x (i) strings can be
eliminated in favor of the O′

α string. Following the argument depicted
in Figs. 7(b) and 7(c), the closed loop can be decomposed into smaller
regions with unit eigenvalue acting on the ground state, and the effect
of transforming the string can be absorbed into the definition of P e

x (i).
In the ε-particle case, depending on the orientations of the strings in
(a), the loop in (b) may need to be twisted in some of the regions, to
ensure the correct orientation of the O′

α string.

fixed (or nearly fixed). Then, for any relation involving a small
number of generators, Re

i includes R̃
e

i as a subset.
With these modifications, the general structure described

in Sec. III C continues to hold. In particular, fractionalization
classes are again given by elements of H 2(G,Z2), where G is
the full symmetry group including space group operations.

E. Example: square lattice space group, time reversal,
and spin rotation

Because it is important for discussing the toric code model,
and also to make contact with projective symmetry group
classification, we discuss the example of square lattice space
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group symmetry, combined also with time reversal and SO(3)
spin rotation. For clarity of notation, we focus on the e sector.

The symmetry group G is generated by (1) Px , reflection
x → −x, y → y; (2) Pxy , reflection x ↔ y; (3) Tx , translation
by one lattice constant along the x axis; (4) time reversal T ;
and (5) Rs(θ n̂), spin rotation about axis n̂ through angle θ . It
is convenient to use Ty = PxyTxP

−1
xy in some of the relations,

which is a translation by one lattice constant along the y axis.
In the e sector, including factors of ±1 to specify a nontrivial
factor set, the relations are (

P e
x

)2 = σ e
px, (39a)(

P e
xy

)2 = σ e
pxy, (39b)(

P e
x P e

xy

)4 = σ e
pxpxy, (39c)

T e
x T e

y

(
T e

x

)−1(
T e

y

)−1 = σ e
txty, (39d)

T e
x P e

x T e
x

(
P e

x

)−1 = σ e
txpx, (39e)

T e
y P e

x

(
T e

y

)−1(
P e

x

)−1 = σ e
typx, (39f)

(T e)2 = σ e
T , (39g)

T eT e
x T e−1(

T e
x

)−1 = σ e
T tx, (39h)

T eP e
x (T e)−1P e

x = σ e
Tpx, (39i)

T eP e
xy(T e)−1P e

xy = σ e
Tpxy, (39j)

Re
s (2π ) = σ e

R , (39k)

where the σ ’s are Z2-valued parameters. We also have

Re
s (θ n̂)Ge = GeRe

s (θ n̂), (40)

where we can substitute Ge = P e
x ,P e

xy,T
e
x ,T e. In the second

set of relations, one might worry that the right-hand side can
be multiplied by a measurable (but not continuous) ±1-valued
function f (θ ) where we must have f (0) = 1, since Re

s (0) = 1.
However, it can be shown that f (θ ) = 1 for all θ by assuming
Re

s (θn̂) = eiθXn̂ and solving for

f (θ ) = eiθXn̂Gee−iθXn̂Ge−1. (41)

This is manifestly continuous in θ , and therefore f (θ ) = 1.
The relation (39k) simply tells us whether e particles

carry integer (σ e
R = 1) or half-odd-integer (σ e

R = −1) spin.
The other relations are all clearly invariant under Z2-valued
redefinitions of any of the e-sector generators, as in Eq. (37).
Moreover, it is shown in Appendix B that all choices of the
σ ’s are consistent. Therefore we have shown that H 2(G,Z2) =
Z11

2 , and there are 211 fractionalization classes. If we remove
spin rotation symmetry, then H 2(G,Z2) = Z10

2 , and there are
210 fractionalization classes.

It is also interesting to work out the UT (1) fractionalization
classes, that is, to compute H̄ 2(G,Z2). Allowing U(1) phase
redefinitions of the symmetry generators, we can choose
the phase of P e

x , P e
xy and T e

x so that σ e
px,σ

e
pxy,σ

e
txpx → 1.

Upon fixing these parameters, the residual phase freedom
does not affect any of the other relations. The antiunitary
nature of T implies that adjusting the phase of T does not
affect any of the relations. Finally, σ e

R is clearly unaffected.
Therefore we have H̄ 2(G,Z2) = Z8

2, or, without spin rotation
symmetry, H̄ 2(G,Z2) = Z7

2. The latter result can be extracted

from Ref. 49, which is a check on the validity of the above
calculations.

IV. SYMMETRY CLASSES

A. General results

Due to the fusion rule ε = e × m, fractionalization classes
for the three nontrivial anyons cannot be specified inde-
pendently. Instead, knowledge of e and m fractionalization
classes determines the ε class. Therefore specifying e and m

fractionalization classes specifies a symmetry class for a Z2

spin liquid phase. The crucial issue, addressed in this section,
is to understand how the ε fractionalization class is determined
by the e and m classes.

We now state our results, which we establish in Secs. IV B
and IV C, where we also provide examples. Let the Z2 factor
sets associated with the e, m, and ε fractionalization classes be
ωe, ωm, and ωε , respectively. With only translation and internal
symmetries, ωε = ωeωm. That is, ωε is given in terms of ωe

and ωm by the H 2(G,Z2) group product. In the general case
where G includes point group operations, then ωε = ωtωeωm,
where ωt is another Z2 factor set depending on the group in
a manner specified below. We refer to the presence of ωt as
a “twisting” of the H 2(G,Z2) group product. Physically, this
twisting is a consequence of the nontrivial braiding statistics of
e and m and occurs because products of point group operations
can braid an e and m bound together to form an ε, in contrast
to translation and internal symmetries.

Whether or not point group symmetry is present, the
symmetry class can be specified by two elements of H 2(G,Z2),
one for the e sector and one for the m sector. Equivalently,
we can specify a single element of H 2(G,Z2 × Z2). We now
discuss the number of distinct symmetry classes. The number
of fractionalization classes is 
f = |H 2(G,Z2)|. Naively, we
might say that the number of symmetry classes is simply 
2

f ,
but this is not correct, because two classes related by relabeling
e ↔ m are not in fact distinct. This means that elements of
H 2(G,Z2 × Z2) are not actually in one-to-one correspondence
with symmetry classes. Taking this into account, the number
of symmetry classes is


c = 1
2

(

2

f − 
f

) + 
f . (42)

We apply this result to the case of square lattice space
group, time-reversal, and spin rotation symmetries, where

f = 211, and so 
c = 2 098 176 ≈ 221, or, removing spin
rotation, 
f = 210, so 
c = 524 800 ≈ 219.

B. Translation and internal symmetries

To relate the ε fractionalization class to the e and m classes,
we consider ε particles formed as e-m bound states and
compute the fractionalization class of the bound state in terms
of the classes of its constituents. We do this first for the simpler
case of translation and internal symmetries.

We consider states |ψα〉 that can be decomposed into two
fixed ε-sector regions Rε

i (i = 1,2). Each of these regions is
further decomposed into an e-sector (Re

i ) and an m-sector (Rm
i )

region. We assume that

|ψα〉 = Oe
αOm

α |ψ0〉, (43)

104406-13



ANDREW M. ESSIN AND MICHAEL HERMELE PHYSICAL REVIEW B 87, 104406 (2013)

where |ψ0〉 is a ground state. Oe
α is an e operator on the union

of Re
1 and Re

2, with an e string connecting the two regions.
Similarly, Om

α is an m operator on the union of Rm
1 and Rm

2 .
Again, for simplicity but not by necessity, we assume |ψ0〉 is
a singlet under all symmetry operations.

Now let Sa (a = 1,2,3) be translations or unitary internal
symmetry operations, satisfying S1S2 = S3. Symmetry local-
ization for the ε-sector regions is expressed by writing

Sa|ψα〉 = Sε
a (1)Sε

a (2)|ψα〉, (44)

where Sε
a (i) is supported on Rε

i . The symmetry can be further
localized to the e and m subregions, that is,

Sε
a (i) = Se

a(i)Sm
a (i), (45)

where Se
a(i) and Sm

a (i) are supported respectively on Re
i

and Rm
i . The Se

a(i) are the same operators appearing in the
localization of Sa if the m particles are not present, and
correspondingly for the Sm

a (i).
Now, suppose

Se
1(i)Se

2(i) = ωe(1,2)Se
3(i), (46)

Sm
1 (i)Sm

2 (i) = ωm(1,2)Sm
3 (i). (47)

Then it follows immediately that

Sε
1 (i)Sε

2 (i) = ωe(1,2)ωm(1,2)Sε
3 (i) = ωε(1,2)Sε

3 (i), (48)

and therefore

ωε = ωeωm, (49)

which is the desired result. The same statement holds when
we consider antiunitary time-reversal symmetry, this is easily
seen following the discussion of Sec. III A.

We now apply these results to the simple case of translation
as the sole symmetry. In Sec. III A, we found that there
are two fractionalization classes in this case, parametrized
for the e sector by T e

x T e
y (T e

x )−1(T e
y )−1 = σ e

txty = ±1, with
corresponding relations for m and ε sectors. Equation (49)
implies σ ε

txty = σ e
txtyσ

m
txty . At this point, we might naively

conclude there are four symmetry classes labeled by ordered
pairs (σ e

txty,σ
m
txty). However, the (+1,−1) and (−1,+1) classes

are related by relabeling e ↔ m, and thus are not actually
distinct. Therefore there are three symmetry classes in the
case of translation symmetry alone.

We note that there are similarly three symmetry classes in
the case of SO(3) spin rotation symmetry alone. Upon sub-
stituting Re

s (2π n̂) = σ e
R for the translation symmetry relation,

and similarly for m and ε sectors, the discussion above holds
unchanged.

C. Space group symmetry

When the symmetry group includes point group operations,
the result in Eq. (49) is modified due to the mutual statistics of
e and m particles. This leads to a twisting of the group product
giving the ε fractionalization class in terms of the e and m

classes; in particular, ωε = ωtωeωm, where ωt is another Z2

factor set encoding a twisting of the H 2(G,Z2) group product.
We are interested in determining the cohomology class of ωt ,
and thus the ε fractionalization class.

We proceed by considering symmetry operations Sa (a =
1, . . . ,k), satisfying the group relation S1 · · · Sk = 1. We

suppose that Se
1 · · · Se

k = σe and Sm
1 · · · Sm

k = σm and would
like to compute Sε

1 · · · Sε
k = σε . We consider states |ψα〉 as

described above in Sec. IV B. Following Sec. III D, we let
Re

i be the union of images of Re
i under arbitrary point group

operations (with fixed center of symmetry), and similarly for
Rm

i and Rm
i . We will see that σε = σtσeσm, where σt enters as

a product over three different types of statistical phase factors.
Knowledge of σt for enough group relations determines the
factor set ωt .

First, we consider a single operation Sa and examine the
statement of symmetry localization. We again have

Sa|ψα〉 = Sε
a (1)Sε

a (2)|ψα〉. (50)

However, Eq. (45) no longer holds and is instead modified to

Sε
a (i) = Wa(i)Se

a(i)Sm
a (i), (51)

where Wa(i) = ±1 is a statistical phase factor originat-
ing from anticommutation of e and m strings. The factor
Wa(i) can be computed, simply by comparing Sa|ψα〉 with
Se

a(1)Sm
a (1)Se

a(2)Sm
a (2)|ψα〉. We give an example of such a

computation in Fig. 9.

(b)

εR 1

εR 2

εR 1’

εR 2’

(a)

FIG. 9. (Color online) Computation of W (i) phase factor for Px

reflection symmetry. (a) The initial state |ψα〉 is depicted on the
right-hand side, while the vertical dotted line is the reflection axis,
and the final state Px |ψα〉 lies to the left of the axis. Regions Rε

i and
their images under Px are indicated with dotted lines. All particles
and strings are shown in black in the initial states and in gray (blue
online) in the final states. e particles are filled circles, m particles
are crosses, e strings are solid lines, and m strings are dashed lines.
(b) Depiction of the state P e

x (1)P m
x (1)P e

x (2)P m
x (2)|ψα〉. To compute

W (i), we simply bring the strings into the final-state configuration
shown in the left-hand side of (a). We find W (1) = −1, where the
minus sign arises from crossing the m string beneath the e string in
Rε

1 . We also find W (2) = −1, where in this case, the sign arises from
sliding the e string over the final-state m particle in Rε

2′ .

104406-14



CLASSIFYING FRACTIONALIZATION: SYMMETRY . . . PHYSICAL REVIEW B 87, 104406 (2013)

So we have

σε |ψα〉 = Sε
1 (i) · · · Sε

k (i)|ψα〉

=
[ ∏

a=1,...,k

Wa(i)

]
Se

1(i)Sm
1 (i) · · · Se

k (i)Sm
k (i)|ψα〉 (52)

= �(i)

[ ∏
a=1,...,k

Wa(i)

] [
Se

1(i) · · · Se
k (i)

]
× [

Sm
1 (i) · · · Sm

k (i)
]|ψα〉. (53)

Here, �(i) = ±1 arises from the fact that some of the Se
a(i)

and Sm
a (i) may anticommute due to crossings of strings. In

more detail, we observe that
∏

a Se
a(i) and

∏
a Sm

a (j ) define
closed loops of e and m strings, respectively, with pieces of
string running among the components of Re

i and Rm
i . These

two loops are assembled “piece-by-piece,” reading from right-
to-left in the product of symmetry operations in Eq. (52);
graphically, strings further to the left in the product can be
drawn on top of strings further to the right. The factor �(i)
simply measures the Z2 linking number of these two loops;
that is �(i) = (−1)nc , where nc is the number of times m strings
need to be crossed below e strings so that the m-string loop
lies entirely underneath the e-string loop.

To compute σε , now we need only act on |ψα〉 with the
products of symmetry operations in Eq. (53). We have

Se
1(i) · · · Se

k (i)|ψα〉 = Zem(i)σe, (54)

Sm
1 (i) · · · Sm

k (i)|ψα〉 = Zme(i)σm, (55)

where Zem(i) = +1 (−1) if an even (odd) number of m

particles in |ψα〉 are enclosed in the e-string loop defined
by Se

1(i) · · · Se
k (i), with corresponding definition for Zme(i),

reversing the roles of e and m. Therefore we have found

σt = Zem(i)Zme(i)�(i)

[ ∏
a=1,...,k

Wa(i)

]
. (56)

To illustrate this discussion, we compute ωt for the case of
square lattice space group symmetry (plus time reversal). First,
we consider the relation P 2

x = 1. In Fig. 10, by considering a
convenient state |ψα〉, we show that(

P ε
x

)2 = σ ε
px = σ e

pxσ
m
px , (57)

that is, σ t
px = 1. In more detail, Fig. 10(a) illustrates the

symmetry localization of Px |ψα〉, showing that W (i) = −1 for
i = 1,2. The same is easily seen to be true for the symmetry
localization of Px(Px |ψα〉), so these factors cancel in the
computation of σ t

px . Figure 10(b) illustrates the closed e and m

string loops obtained when computing P 2
x = 1 in terms of the

one-particle operators P e
x (i), P e

x (i ′), and so on. These loops do
not link, so �(i) = 1. Moreover, the e loops do not enclose
any m particles, and vice versa, so Zme(i) = Zem(i) = 1.
Therefore, by Eq. (56), σ t

px = 1. It is important to emphasize
that we are free to choose the e and m strings of the one-particle
operators P e

x (i), P m
x (i), and so on, to run horizontally as shown

in Fig. 10. The result should not be affected by this choice; we
have not proved this in general, but have experimented with
other conventions and always find σ t

px to be unaffected.

(b)

εR 1’

εR 2’

εR 1

εR 2

(a)

FIG. 10. (Color online) Computation of σ t
px , for the group relation

P 2
x = 1. The graphical notation used here is introduced in Fig. 9.

(a) The reflection axis is the vertical dotted line. The state |ψα〉
is depicted to the right of the axis, with e and m particles
and (vertical) strings drawn in black. This is almost the same
state considered in Fig. 9, but with a simpler arrangement of
strings. The state Px |ψα〉 is shown to the left of the axis in
gray (blue online). The horizontal strings depict the operators
P e

x (i) and P m
x (i). From this figure, it can be seen that W (i) =

−1 in the symmetry localization of Px |ψα〉, and the same is
easily seen to hold in the symmetry localization of Px(Px |ψα〉).
(b) Closed loops of string obtained from P e

x (i ′)P e
x (i) and P m

x (i ′)P m
x (i).

Positions of e and m particles in |ψα〉 are shown. Since these loops
do not link, and, for instance, each e loop encloses no m particles, we
have �(i) = Zem(i) = Zme(i) = 1.

Proceeding along the same lines, we find σt = 1 for all
other relations, except the relation (PxPxy)4 = 1, which we
now consider. Noting that Rπ/2 = PxPxy is a π/2 rotation, for
simplicity, we instead consider the equivalent relation R4

π/2 =
1. (We find the same result without making this simplification.)
Figure 11 illustrates the state |ψα〉, and the e and m strings in
Re

π/2(i) and Rm
π/2(i) are chosen to run as shown. For subsequent

applications of Rπ/2, the corresponding strings are obtained
simply by rotation of Fig. 11. Again, we emphasize that we
are always free to choose the one-particle symmetry operator
strings to run in this fashion. We find W (i) = 1 for all four
rotation operators in the group relation.

Evaluating R4
π/2|ψα〉, we find the four closed e and m string

loops shown and labeled in Fig. 12, obtained as products of the
one-particle symmetry operators. These loops do not link, so
�(i) = 1. We define closed ε loops, Lε

i = Le
i L

m
i . Lε

2 encloses a
single ε particle, but this does not affect evaluation of Lε

2|ψα〉.
Therefore, in determining the Zem(i) and Zme(i) phase factors
arising from loops enclosing particles, we can consider the
i = 1 e and m particles separately from the i = 2 particles. For
i = 1, Le

1 does not enclose any particles, so Zem(1) = 1. On the

104406-15



ANDREW M. ESSIN AND MICHAEL HERMELE PHYSICAL REVIEW B 87, 104406 (2013)

εR 1’
εR 2’

εR 1

εR 2

FIG. 11. (Color online) Symmetry localization of π/2-rotation
Rπ/2 on a state |ψα〉. The center of rotation symmetry is the solid
square. The initial state |ψα〉 has e and m particles arranged along
a line extending below the center of symmetry, and ε-sector regions
Rε

i as shown. The particles and strings of the final state are shown
in gray (blue online). The angled e and m strings are the strings of
the Re

π/2(i) and Rm
π/2(i) operators. Inspection of this figure shows that

W (i) = 1 for i = 1,2.

other hand, Lm
1 encloses the i = 1 e particle, so Zme(1) = −1.

Similarly, Zme(2) = 1, because Lm
2 does not enclose the i = 2

e particle. Finally, we find Zem(2) = −1. Combining all the
statistical phase factors, we find σ t

pxpxy = −1, that is,

(
P ε

x P ε
xy

)4 = σ ε
pxpxy = −σ e

pxpxyσ
m
pxpxy . (58)

We have thus found ωt and shown it is a nontrivial factor set.

L
e
2

L
m
2

L
m
1

L
e
1

R
e
1

R
e
2

FIG. 12. Closed e and m string operators obtained upon express-
ing R4

π/2|ψα〉 in terms of products of one-particle symmetry operators
acting on |ψα〉. The locations of e and m particles in |ψα〉 are shown,
and the closed strings are labeled as shown.

It should not be surprising that the ωt twisting appears in
the R4

π/2 = 1 group relation, because during the course of this
relation the constituent e and m particles in each ε particle
are braided around one another. It is interesting, and perhaps
surprising, that this twisting seems to be unavoidable for a
discrete rotation symmetry. It could thus be valuable to obtain
a deeper understanding of the ωt twisting. Finally, we note
that the lack of twisting in the other group relations is to be
expected. For these relations, given an appropriate choice of
|ψα〉, there is no relative motion of the constituent e and m

particles, and thus no way for braiding statistics to enter.

V. GENERAL ABELIAN TOPOLOGICAL ORDERS

Here, we briefly discuss the extension of our symmetry
classification to general Abelian topological orders, with
the restriction that the symmetry group G consists only
of translations and internal symmetries. For simplicity, we
restrict to unitary internal symmetries, and discuss inclusion
of antiunitary time reversal at the end of this section.

We find that the symmetry classes are labeled by elements
of H 2(G,�2), where �2 is the group of fusion rules. This
agrees with a result asserted by Kitaev.36,37 Not all elements
of H 2(G,�2) describe distinct symmetry classes; elements
related to others by a relabeling of anyons leaving the
topological structure invariant (e.g., e ↔ m for Z2 topological
order) correspond to the same symmetry class.

The fusion group �2 is a finite Abelian group, and is
thus isomorphic to a product of cyclic groups. Suppose
there are p cyclic factors and �2 = Zk1 × Zk2 × · · · × Zkp

.
Let ei (i = 1, . . . ,p) be the generators for these factors.
Physically, the ei form an elementary set of anyons, from
which any other type of anyon can be obtained by fusion.
(In the case of Z2 topological order, k1 = k2 = 2, e1 = e, and
e2 = m.) Therefore the symmetry class should be determined
by specifying the fractionalization class for each of the ei

anyons.
Since (ei)ki = 1, in physical states, anyons of ei type appear

in multiples of ki . For translation and internal symmetries,
the property of symmetry localization is expected to hold
as above. Therefore, in a straightforward extension of the
discussion given above for Z2 topological order, the action of
symmetry on ei anyons is a Zki

-central extension of G, and the
fractionalization classes are given by elements of H 2(G,Zki

).
Then, because

H 2(G,�2) = H 2(G,Zk1

) × · · · × H 2(G,Zkp

)
, (59)

symmetry classes are labeled by elements of H 2(G,�2).
In the future, it would be interesting to generalize this

result to the case of full space group symmetry. The simplest
possibility is that the only modification needed for space group
symmetry is a twisting of the H 2 group product giving the
fractionalization classes of arbitrary anyons in terms of the ei

classes. However, unlike for Z2 topological order, in general,
ei strings do not commute with themselves at crossing points,
and this may lead to new features in the classification.

Finally, we discuss inclusion of antiunitary time reversal.
First, if all ei anyons have ki = 2, then no modification of
the above discussion is needed to incorporate time reversal,
because antiunitary complex conjugation acts trivially on
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elements of Z2 ∈ U(1). On the other hand, if some ki > 2,
we might imagine that we need to account for nontrivial
action of complex conjugation on elements of Zki

∈ U(1).
This is true, but is not sufficient; all such cases are beyond the
scope of our classification because the assumption that time
reversal does not permute different types of anyons is actually
inconsistent with the topological order. Observe that, if ki > 2,
the e2

i anyon must have either nontrivial self-statistics or
nontrivial mutual statistics with some other anyon. Otherwise,
e2
i = 1, a contradiction. Letting the θs2 be the self-statistics

angle of e2
i , and θs1 the same for ei , we have, employing

the K-matrix Chern-Simons approach, θs2 = 4θs1.50 Similarly,
letting θm2 be the mutual statistics angle of e2

i and some other
fixed type of anyon, and θm1 the same for ei and the same
other fixed anyon, we have θm2 = 2θm1.50 Therefore, in order
for e2

i to have nontrivial statistics, we must have θm1 
= 0,π

or θs1 
= 0,π/2,π,3π/2. Suppose θs1 
= 0,π/2,π,3π/2. Then
acting with time reversal on a pair of ei anyons gives a
pair of anyons with new self-statistics angle θ ′

s = −θs1 
=
θs1 mod 2π , which is only consistent if time reversal transforms
ei into a different type of anyon. If instead θm1 
= 0,π , the
same argument shows that time reversal must transform ei

or the other fixed anyon into a different type of anyon.
Therefore, if time-reversal symmetry is present and some ki >

2, time reversal must permute the different types of anyons.
This is an additional motivation to develop a full symmetry
classification for Abelian topological orders in future work,
including symmetry classes “beyond fractionalization” where
anyons are permuted by symmetry.

VI. EXPLICIT REALIZATION: TORIC CODE

In this section, we show how these ideas work out explicitly
in the example of the toric code.19 Some related prior results
were obtained in Ref. 21. In particular, we will work out
fractionalization and symmetry classes for the case of square
lattice space group symmetry alone. It is straightforward to
include time reversal in the same discussion, but we omit this
for brevity. We can understand the possible fractionalization
and symmetry classes this case simply by omitting the relations
of Sec. III E containing time reversal or spin rotation, and
keeping the remaining six relations. The 
f = 26 fractional-
ization classes are elements of H 2(G,Z2) = Z6

2, and there are

c = 2080 ≈ 211 symmetry classes. Of these, the toric code
model realizes three, using two tunable parameters.

Guided by the general discussion of Sec. IV, it is also
possible to explicitly work out the ωt twisting involved in
relating the ε fractionalization class to the e and m classes.
We have done this, but do not present the results here; this
essentially amounts to a more cumbersome repetition of the
general constructions of Sec. IV C.

The toric code model was introduced in Sec. II B. We
assume that |Ke| 
= |Km|, to avoid extra symmetry present
in that case. When it is necessary to know the size of the
system, we take an L × L torus with L divisible by 4. For
explicit calculations, we will take the coordinates of vertices
s of the form r = (x,y) = (m,n) with m,n integers, and the
coordinates of faces p will take values (x,y) = (m + 1/2,n +
1/2). Throughout this section, using language from the Z2

gauge theory description of Z2 topological order, we shall
often refer to e particles as charges and m particles as fluxes.

When Ke > 0, the ground state has As = 1, and a vertex
s with As = −1 is an e particle (a charge excitation). When
Ke < 0, the ground state has As = −1. Viewed in terms of
the Ke > 0 ground state, this is a background charge of e

particles. This situation often arises in theories of Z2 spin
liquids and, when it appears for a gauge theory Hamiltonian,
is referred to as odd Z2 gauge theory.17 With Ke < 0, the
excited e particles now correspond to As = +1 vertices.
Identical considerations relate m particles (flux excitations) to
the value of Bp. The three different symmetry classes that this
Hamiltonian accesses are realized for Ke,Km > 0; Ke,Km <

0; and sign Ke = − sign Km. The last case corresponds to two
different choices for the signs of Ke and Km; these are not
distinct symmetry classes as they are related by relabeling
e ↔ m.

A. Wave functions

It will be helpful to have explicit forms for the wave
functions. We build the ground state off of a reference state that
minimizes the flux term of the Hamiltonian. Let se = sign Ke

and sm = sign Km. For sm = 1, the reference state |ref(1)〉
will have σ z

r,r′ = 1 on all bonds, as discussed earlier [see
Eq. (8)]. For sm = −1, the reference |ref(−1)〉 has σ z

r,r′ = 1
on horizontal links and σ z

r,r′ = ±1 on alternating columns of
links; that is, σ z

r,r′ = −1 for x = x ′ = odd. This puts one link
with σ z

r,r′ = −1 on each plaquette p (see Fig. 13). The full
ground state is then

|ψ0(se,sm)〉 =
∏

s

1√
2

(1 + seAs)|ref (sm)〉, (60)

with

Asψ0 = se|ψ0〉, Bpψ0 = sm|ψ0〉 (61)

for all s,p. We require these states to be invariant under
space group symmetry. This is manifest for sm = 1 since the
reference state has full symmetry. For sm = −1, we can use
the identity

∏
s

(1 + seAs) =
[∏

s

(1 + seAs)

] ∏
s∈G

(seAs), (62)

for any set of vertices G. The second product will implement
a space group operation (via spin flips) on the reference state
for an appropriate choice of G. We require G to contain an
even number of vertices so that the sign factors se cancel; in
particular, this forces us to take L divisible by 4, because the

FIG. 13. The state |ref(−1)〉. Dark links carry σ z = −1, others
have σ z = 1. The square at the center of all figures identifies the
origin of coordinates and of point group operations.
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(a) (b)

FIG. 14. (a) Electric string. (b) Magnetic string.

appropriate G for the reflection Pxy contains (L/2)2 vertices,
which can be chosen as the vertices r = (odd,odd).

With the ground states in hand, we can work out the
excited states. Excitations come in pairs, connected by strings:
m strings, connecting two fluxes, consist of spin flips σx ;
e strings, connecting charges, consist of σ z. We choose
conventional contours for strings in initial states (i.e., those
states on which we will act with some symmetry operation).
For simplicity, we take each contour C(r,r′) to consist of two
straight segments at most; starting from the leftmost particle,
the contour first goes right, then up or down as needed. The
initial-state string operators are

I e
(
re

1,r
e
2

) =
∏
C(r,r′)

σ z
rr′ , Im

(
rm

1 ,rm
2

) =
∏
C(r,r′)

σx
rr′ , (63)

which define corresponding two-particle states∣∣re
1,r

e
2

〉 = I e
(
re

1,r
e
2

)|ψ0〉,
∣∣rm

1 ,rm
2

〉 = Im
(
rm

1 ,rm
2

)|ψ0〉, (64)

depicted in Figs. 14(a) and 14(b).

B. Single-particle symmetry operators

Now consider how translation acts on a pair of charges, say.
We have

Tx

∣∣re
1,r

e
2〉 = |re

1 + x̂,re
2 + x̂

〉
= sy2−y1

m σ z
r1,r1+x̂σ

z
r2,r2+x̂

∣∣re
1,r

e
2

〉
= (

sy1
m σ z

r1,r1+x̂

)(
sy2
m σ z

r2,r2+x̂

)∣∣re
1,r

e
2

〉
, (65)

where we have dropped the superscript e in many places to
ease the notation. The crucial second equality comes from
sliding the vertical segment of the string Le over the possible
background flux (see Fig. 15). The result factors into single-
particle operators, as we argued it should on general grounds.

(a) (b) (c)

FIG. 15. The action of translation Tx by one lattice spacing along
x̂ on the two-charge state in (a). (b) Result of moving the quasiparticles
with single spin flips, and the shaded area in (c) is swept out by sliding
the strings to their final position. In (b), the thicker string is doubled;
this convention will be used in subsequent figures, except where
noted.

Parallel arguments apply for fluxes, and for Ty , so we have
identified single-particle operators that act on single sites r,

T e
x (r) = sy

mσ z
r,r+x̂, T m

x (r) = s�y�
e σ x

r,r+x̂,
(66)

T e
y (r) = sx

mσ z
r,r+ŷ, T m

y (r) = s�x�
e σ x

r,r+ŷ.

Here we use the floor function �·� so that all the phases are
real. As shorthand we write

T e
x (r) : sy

m, T m
x (r) : s�y�

e , T e
y (r) : sx

m, T m
y (r) : s�x�

e , (67)

when we only need the single-particle phases, since the
necessary factors of σx and σ z just lie on the contours we
choose to represent the operators.

In fact, since we prefer to work with Tx , Px , and Pxy as
generators, we will want to verify that these expressions for Ty

agree with the relation Ty = PxyTxP
−1
xy , which is done below.

Note that for fluxes, r takes values in the dual lattice, i.e., at
the centers of faces, and the links indicated by the subscripts
on σx in these formulas should be thought of as links of the
dual lattice. Also note that the toric code is special in that a
quasiparticle is localized to a single vertex or plaquette. To
connect to the general formalism developed earlier, we should
write quasiparticle symmetry operators that act on regions. For
the purposes of the present discussion, though, we shall just
take the region R to consist of a single vertex or plaquette.

The point group operations Px and Pxy move the quasi-
particles over greater distances, and so we need to choose
conventional contours Ce

Px
(r,Pxr) and so on. We depict our

choices in Fig. 16. The strings always run along the boundary
of a square centered at the origin; the direction is set by the
initial position of the particle, which separates into two regions,
so that the string never covers more than 180◦ of angle. This
choice of contour is less than obvious for Px—we have chosen
it to simplify computations of the product (PxPxy)4, which is
a product of four π/2 rotations.

We define the action of a symmetry on states to transform
the string operators in the natural way, by transforming the
coordinates of the spin operators in the string. Note that
under point group operations, this will not always carry a
conventional string to a conventional string.

Now we can work out the phases that accompany our
choices of strings for point group operations. The guiding
principle is that a point group operation moves a quasiparticle
along the boundary of a square centered at the origin. The

(a) (b)

FIG. 16. (a) Under Px , charges and fluxes in the • region follow
contours above the origin, those in the ◦ region go below. (b) The
conventions for Pxy are analogous.
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(a) (b) (c)

FIG. 17. The action of Px on a two-e state.

relevant distance is captured by the function

d(r) = max(|x|,|y|) (68)

in terms of the coordinates x,y of the particle. The strategy
is just as for translations: (1) act on a two-particle state with
the one-particle strings, and (2) identify the region over which
the strings need to slide in order to arrive at the transformed
state. The calculation can be done graphically, although we
show a more analytic approach as well. The distance d(r) takes
half-integer values for fluxes; suitable integer-valued functions
are

dx(r) = �d(r)� + θx
◦ (r), dxy(r) = �d(r)� + θxy

◦ (r), (69)

where θx
◦ (r) [θxy

◦ (r)] takes the value 1 on the region marked ◦
in Fig. 16(a) [Fig. 16(b)] and 0 otherwise.

Consider first the action of Px on a state with two charges,
connected by a conventional string, as in Fig. 17(a). Adding the
strings of spin flips to move the quasiparticles to their reflected
positions produces Fig. 17(b). Then sliding all the strings to
their final positions sweeps out an area, shown in Fig. 17(c).
If the area were odd, the wave function would pick up a sign.
However, the relevant area will always contain an even number
of background fluxes, since it will be symmetric about the axis
x = 0. Therefore P e

x needs no extra phase beyond the string
of spin flips:

P e
x (r) : 1. (70)

Next, consider Px acting on a pair of fluxes (see Fig. 18). Again,
the swept-out area has reflection symmetry, but may contain an
odd number of background charges, leading to a phase factor.
All background charges contained in the swept-out area are
doubled (i.e., come in pairs), except those lying on the axis of
reflection. Therefore one merely needs to count the number
of charges along the reflection axis inside the swept-out area.
This is |dx(r1) − dx(r2)| if both fluxes are in the same half
plane y ≷ 0, and dx(r1) + dx(r2) if one particle is at y > 0
and one is at y < 0, as in Fig. 18. The resulting sign therefore

(a) (b) (c)

FIG. 18. The action of Px on a two-m state.

(a) (b) (c)

FIG. 19. The action of Pxy on a two-e state.

factors as

P m
x (r) : sdx (r)

e . (71)

The calculation of signs for Pxy is analogous. In Fig. 19, we
see that we need only count the number of background fluxes
within the swept-out area along the line x = y; all the other
fluxes are doubled and do not contribute a sign. The sign is
therefore set by d(r1) + d(r2) mod 2, and factors as

P e
xy(r) : sd(r)

m . (72)

For fluxes, the result is similar, see Fig. 20, and we find

P m
xy(r) : s

dxy (r)
e . (73)

Recall that we only want to deal with three generators,
so we demand that Ty = PxyTxP

−1
xy on each sector. Consider

this sequence of operations, for example, Fig. 21. Because
(P e

xy)2 = (P m
xy)2 = 1, we can use Pxy rather than P −1

xy for the
first operation. The phases from the single-particle operators
are

P e
xy(y + 1,x)T e

x (y,x)P e
xy(x,y) :

sd(y+1,x)
m sx

msd(x,y)
m =

{
sx+1
m |y| > |x|

sx
m |y| < |x| . (74)

We can see from Fig. 21(b) that there is an extra factor of sm

from sliding the string when |y| > |x|, so that the appropriate
phase is

T e
y : sx

m, (75)

as expected. The marginal case |y| = |x| gives the same result.
The same calculation gives the same result on the m sector.

C. Symmetry group relations and symmetry classes

1. Direct computations

Let us work out some of the symmetry relations. Consider
the relation P 2

xy = 1 as it acts on a single flux. In most cases,
this involves putting down a pair of identical string operators,

(a) (b) (c)

FIG. 20. The action of Pxy on a two-m state.
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(a) (b)

FIG. 21. (a) The action of PxyTxP
−1
xy on a single charge e. (b)

Sliding the string of (a) to obtain a contribution to the single-particle
phase of Ty .

which square to 1 trivially, as in Fig. 22(a). However, our
conventions imply that sometimes the symmetry operators
involved in the relation may enclose some background charge,
as in Fig. 22(b). The relation must be constant on a given
superselection sector, and this example provides a test of this
claim. The flux in question is located at r = (−2 1

2 ,2 1
2 ) in units

of the lattice spacing. Then we compute

P m
xy

(
2 1

2 , − 2 1
2

)
P m

xy

( − 2 1
2 ,2 1

2

) = s
�2 1

2 �
e s

�2 1
2 �+1

e C = seC, (76)

where C is the box drawn. This expression must be evaluated
on the ground state. Since C contains an odd number of
background charges it evaluates to se, so that we find(

P m
xy

)2 = 1 (77)

in all cases, as expected. Note that the background charge
appears twice in this calculation, once explicitly and once in
the construction of the single particle sign factor, and both are
important in order to arrive at a consistent answer.

The calculation is essentially identical for both P 2
x and P 2

xy

in both the charge and flux sectors. The other point group
relation, (PxPxy)4 = 1, which describes fourfold rotations, is
the most complicated. We have arranged our definitions of
the quasiparticle symmetry operators so as to simplify the
computation of this relation. Our definitions are such that the
relation always gives a square contour that encircles the origin
once, see Fig. 23 (some sections of the contour are traversed
three times in general). In the case of a charge, this square
encloses an even number of fluxes, while for a flux it encloses
an odd number of charges. One can work out that the single-
particle signs always cancel and contribute nothing. Therefore
one finds that(

P e
x P e

xy

)4 = 1,
(
P m

x P m
xy

)4 = se. (78)

(a) (b)

FIG. 22. The strings for the group relation P m2
xy . In (a), recall that

the thicker strings are doubled; that is, they represent two strings
acting in the same position.

(a) (b)

FIG. 23. The strings for the group relation (PxPxy)4. In (a), the
darker curves are triple strings. In (b), all segments are drawn with
the same weight.

The other relations involve translations. Consider first the
translation relation TxTyT

−1
x T −1

y = 1. On both charges and
fluxes, the single-particle signs do not contribute,

Tx(x − 1,y)Ty(x − 1,y − 1)T −1
x (x,y − 1)T −1

y (x,y) :

s�y�s�x−1�s�y−1�s�x� = 1, (79)

so the relation just measures the background charge or flux
enclosed in the elementary loop around which the group
relation transports the particle in question. That is,

T e
x T e

y T e−1
x T e−1

y = sm, T m
x T m

y T m−1
x T m−1

y = se. (80)

Next, consider the relation TyPxT
−1
y P −1

x = 1 on the flux
sector, for example. There are cases where the corresponding
strings do not enclose any vertices, see Fig. 24(a), and others
in which they do, see Fig. 24(b). For the case with no vertices
enclosed, the Px segments contribute no net sign (they cancel),
so one is left with the product of the Ty phases, s

�x�+�−x�
e = se

since x = n + 1/2 for a flux, for some integer n. In the case
where vertices are enclosed, the Px contributions do not cancel
each other, but rather cancel the enclosed flux, so that the result
is always

T m
y P m

x T m−1
y P m−1

x = se. (81)

In the case of a charge, the signs from Ty give unity because
the charges lie at integer positions, and

T e
y P e

x T e−1
y P e−1

x = 1. (82)

Finally, the relation TxPxTxP
−1
x = 1 is sufficiently simple to

work through that we do not discuss it here.
In the end, we arrive at the result(

P e
x

)2 = 1,
(
P m

x

)2 = 1,(
P e

xy

)2 = 1,
(
P m

xy

)2 = 1,(
P e

x P e
xy

)4 = 1,
(
P m

x P m
xy

)4 = se,

(a) (b)

FIG. 24. The strings for the group relation T m
y P m

x T m−1
y P m−1

x .

104406-20



CLASSIFYING FRACTIONALIZATION: SYMMETRY . . . PHYSICAL REVIEW B 87, 104406 (2013)

T e
x T e

y T e−1
x T e−1

y = sm, T m
x T m

y T m−1
x T m−1

y = se,

T e
x P e

x T e
x P e−1

x = 1, T m
x P m

x T m
x P m−1

x = 1,

T e
y P e

x T e−1
y P e−1

x = 1, T m
y P m

x T m−1
y P m−1

x = se. (83)

We have thus shown that, depending on se and sm, the toric
code model realizes three symmetry classes. (Recall again that
se = −1,sm = 1 is related to se = 1,sm = −1 by relabeling
e ↔ m, so these are not distinct classes.)

One interesting feature of this result is the modification of
the rotation relation (PxPxy)4 in the m sector. The difference is
essentially geometrical: a square with vertices (charges) at the
boundary contains an even number of plaquettes (fluxes), but
a square with faces at the boundary contains an odd number
of vertices.

2. Alternate approach to relations in the flux sector

The computations above are all simpler in the charge
sector because we have chosen the point group generators
to leave a vertex invariant. We could also have centered the
point group on a face of the lattice. Indeed, there is a simple
group automorphism that swaps the two: we can replace Px

by P̃x = TxPx . This observation provides a simple way to
use the e sector results of the previous section to obtain the
relations for the m sector. First, using the known relations for
generators Px,Pxy,Tx , we simply compute the relations for the
new generators P̃x,Pxy,Tx . We find

P 2
x = σpx, P̃ 2

x = σpxσtxpx,

P 2
xy = σpxy, P 2

xy = σpxy,

(PxPxy)4 = σpxpxy, (P̃xPxy)4 = σpxpxyσtxty,
(84)

TxTyT
−1
x T −1

y = σtxty, TxTyT
−1
x T −1

y = σtxty,

TxPxTxP
−1
x = σtxpx, TxP̃xTxP̃

−1
x = σtxpx,

TyPxT
−1
y P −1

x = σtypx, TyP̃xT
−1
y P̃ −1

x = σtypxσtxty .

To use this to find the m-sector fractionalization class, we
view Px and Pxy as point group operations centered on a
plaquette rather than a site. Then, P̃x and Pxy are site-centered
point group generators. In terms of the plaquette-centered
generators, calculation of the m-sector relations is identical
to the calculation of the e-sector generators in the previous
section, and we find σtxty = se, with all other parameters equal
to unity. Passing from plaquette to site centered generators
using the relations above, we recover the results of the previous
section.

VII. QUANTUM NUMBERS OF DEGENERATE
GROUND STATES

In Z2 topologically ordered phases, it is well known
that the fourfold-degenerate ground states on a torus can
have different symmetry quantum numbers. As long as the
symmetry is preserved, any discrete information contained in
these quantum numbers is a robust, universal property of a Z2

spin liquid phase. Even though the ground states belong to the
1-sector, their quantum numbers can be partially determined
given the symmetry class. Here, we do this for the simple
case of translation symmetry alone. The analysis here can be

generalized to other symmetry groups; it may be useful to do
this in future work.

Consider a finite-size system with periodic boundary
conditions, and translation symmetry generated by Tx and Ty .
We do not assume any particular Bravais lattice, and x and y

are just labels for two primitive lattice translations. We suppose
the system has linear dimensions (Nx,Ny), where for instance
Nx is the number of primitive cells in the x direction.

The crucial observation is that the generators of the loop
algebra can be viewed as translation of an anyon around a loop.
That is, we make the associations

Le
μ = (

T e
μ

)Nμ
, (85)

Lm
μ = (

T m
μ

)Nμ , (86)

where μ = x,y. This suggests that, for instance,

TxLe
μT −1

x = T e
x

(
T e

μ

)Nμ
(
T e

x

)−1
, (87)

and so on.
At this point, we can proceed to consider the three distinct

symmetry classes. In each case, we determine the relative
crystal momenta of the four ground states from the above
relations. We have also checked these results in the toric
code model by direct calculation of the ground state quantum
numbers.

In the class σ e
txty = σm

txty = 1, we have

TμLe
νT

−1
μ = Le

ν, (88)

TμLm
ν T −1

μ = Lm
ν , (89)

independent of (Nx,Ny). Suppose |ψ0〉 is the ground state
satisfying Le

μ|ψ0〉 = |ψ0〉. This state must have a defi-
nite crystal momentum since translations commute with
Le

μ. A basis for the ground-state subspace is given by
{|ψ0〉,Lm

x |ψ0〉,Lm
y |ψ0〉,Lm

x Lm
y |ψ0〉}, and clearly all these states

have the same crystal momentum as |ψ0〉. So we have deter-
mined that in this symmetry class, all four ground states have
the same crystal momentum. While this crystal momentum is
not determined from the present considerations, the relative
crystal momenta of the ground states are determined (and are
zero). This symmetry class is realized in the toric code for
Ke,Km > 0, where it is straightforward to find that all four
ground states have crystal momentum k = 0.

Next, we consider the class σ e
txty = 1, σm

txty = −1. This
class is realized in the toric code when Ke < 0, Km > 0. If
(Nx,Ny) = (even,even), then everything proceeds as above
and the ground states all have the same crystal momentum. In
the toric code, all four ground states have crystal momentum
k = 0.

In the case (Nx,Ny) = (odd,even), we have

TxLm
x T −1

x = Lm
x , (90)

TyLm
x T −1

y = −Lm
x , (91)

while both Tx and Ty commute withLm
y andLe

μ. We can choose
|ψ0〉 as above, but now we see that |ψ0〉 and Lm

y |ψ0〉 have the
same crystal momentum k, while Lm

x |ψ0〉 and Lm
x Lm

y |ψ0〉 have
crystal momentum k + (0,π ). In the toric code, we find two
ground states with crystal momentum zero and two with (0,π ).
The results are the same when (Nx,Ny) = (even,odd), except
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of course that the relative crystal momentum between pairs of
ground states becomes (π,0).

For (Nx,Ny) = (odd,odd), Eq. (86) actually implies(
T m

x

)Nx
(
T m

y

)Ny
(
T m

x

)−Nx
(
T m

y

)−Ny = −1, (92)

that is, an m particle translated around the “boundary” of the
system feels a net π flux inside. This is not a consistent state
of affairs on a periodic torus, but it can be repaired if a single
e particle is forced into the system. Since this e particle has no
preferred spatial position, we expect the excitation spectrum
to be gapless for (Nx,Ny) = (odd,odd). This is precisely what
occurs in the toric code model.

Finally, we consider the class σ e
txty = σm

txty = −1. This
class is realized in the toric code when Ke,Km < 0. To
analyze this case, we note that σ ε

txty = 1. Therefore we
can simply repeat the analysis above for the σ e

txty = −σm
txty

class, but substituting Lε
μ for Le

μ. In particular, we choose
|ψ0〉 so that Lε

μ|ψ0〉 = |ψ0〉, and |ψ0〉 has a definite crystal
momentum since Lε

μ commutes with translations. Depending
on (Nx,Ny), the ground states thus have precisely the same
relative momenta as in the σ e

txty = −σm
txty class. Moreover, we

also obtain the same results from the toric code model.
The above analysis points out that ground-state quantum

numbers do not completely determine the symmetry class,
even in the simple case of only translation symmetry. A very
interesting problem for future work is to devise a means to
completely determine the symmetry class entirely from the
ground-state wave functions.

VIII. COMPARISON TO PROJECTIVE SYMMETRY
GROUP CLASSIFICATION

Here, we compare our symmetry classification with the
projective symmetry group (PSG) classification of parton
mean-field theories for spin liquids.20 First, we very briefly
review PSG classification in the setting where it was in-
troduced, namely the fermionic parton approach to square
lattice S = 1/2 Heisenberg models. (See also Ref. 27 for a
more extended discussion.) We consider a system of S = 1/2
spins on the sites of the square lattice, and assume square
lattice space group, time-reversal, and SO(3) spin rotation
symmetries. The spin operator at site r is written as a bilinear
of S = 1/2 fermionic partons,

Sr = 1

2
f †

r σfr, fr =
(

fr↑
fr↓

)
, (93)

with the local constraint of one fermion per site. Defining

ψr =
(

fr↑
f

†
r↓

)
, (94)

it is straightforward to show that Sr is invariant under local
SU(2) gauge transformations

ψr → Grψr, (95)

with Gr ∈ SU(2).
To proceed, one writes down a mean-field Hamiltonian

HMFT quadratic in the partons. To describe a spin liquid,
the mean-field theory should respect the full symmetry
group. In order to leave HMFT invariant, symmetries are in

general accompanied by nontrivial gauge transformations. For
instance, if S : r → S(r) is a space group operation, then, in
general,

S : ψr → GS
r ψS(r), (96)

where GS
r ∈ SU(2). This is permitted because the physical spin

operators retain the correct transformation law S : Sr → SS(r).
Such action of symmetry on the partons is a projective
representation of the symmetry group, and this projective
representation is referred to as a PSG.

To fully specify a PSG, it is not enough merely to specify the
action of the symmetry group on the fermions. One must also
specify the subgroup of gauge transformations leaving HMFT

invariant. This subgroup is referred to as the invariant gauge
group (IGG). We restrict attention to the case of IGG = Z2,
since in this case, one obtains a Z2 spin liquid upon going
beyond mean-field theory (see below). Such PSGs are referred
to as Z2 PSGs. The nontrivial IGG transformation is ψr →
−ψr, which clearly commutes with all symmetry operations.

PSGs can be classified up to unitary equivalence under
SU(2) gauge transformations, Eq. (95); this provides a sym-
metry classification of mean-field parton Hamiltonians with
fixed IGG. This is so because the PSG (and IGG) can be de-
termined from any HMFT invariant under the symmetry group.
Then, keeping the IGG fixed but otherwise adding arbitrary
symmetry-preserving perturbations at the mean-field level, the
PSG, which is discrete, remains unchanged. In Ref. 20, Wen
found 272 distinct Z2 PSGs on the square lattice. Actually,
there are a total of 280 distinct Z2 PSGs.27 Wen assumed that
spin rotations are not accompanied by any gauge transforma-
tions. In Ref. 27, together with G. Chen, we showed that this
assumption can be relaxed, leading to eight more PSGs.

We note that many of these 280 PSGs do not lead to effective
low-energy theories for gapped Z2 spin liquids.20 Some PSGs
do not actually admit a mean-field Hamiltonian with IGG =
Z2; such PSGs are said to be only “algebraic PSGs” and not
“invariant PSGs.”20 For example, we found eight new algebraic
PSGs with Chen in Ref. 27, but only four of these are invariant
PSGs admitting a mean-field Hamiltonian. Moreover, even
among invariant PSGs with IGG = Z2, the PSG may require
the fermions to be gapless at one or more points in the Brillouin
zone. For instance, this happens for all four invariant PSGs of
Ref. 27. In such cases one obtains gapless Z2 spin liquids, to
which our classification does not apply.

The above discussion does not address the question of
symmetry classification beyond the mean-field level. Indeed,
to connect to our classification, we need to go beyond parton
mean-field theory. For a mean-field Hamiltonian with IGG =
Z2, this can be done by minimally coupling the fermions
to a dynamical Z2 gauge field (see, e.g., Ref. 27 for an
example of this procedure). If HMFT endows the fermions
with a gapped excitation spectrum, and if the Z2 gauge field is
in its deconfined phase, then we obtain a low-energy effective
theory for a gapped Z2 spin liquid. The mean-field fermions
are promoted to ε particles, and the m particles are the gapped
fluxes of the Z2 gauge field.

We are now in a position to compare PSG classification
with our classification. First, as already discussed in Sec. I A,
PSG classification is tied to parton formalism, and we feel that
parton formalism is the wrong language with which to classify
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Z2 spin liquids. Moreover, we know of no argument that PSG
classification continues to hold beyond the mean-field level.
Next, it is already clear that PSG classification does not provide
any information about the fractionalization class of the m sec-
tor and thus does not give a complete symmetry classification
for that reason alone. However, it is interesting to discuss the
relationship between the two classifications for the ε sector.

From the discussion above, we see that a Z2 PSGs is a
Z2 central extension of the symmetry group; the group A is
A = Z2 = IGG. The ε fractionalization class is simply the co-
homology class of the PSG. The cohomology classification is
coarser than PSG classification, because two unitarily inequiv-
alent PSGs may belong to the same cohomology class. Indeed,
we have found instances on the square lattice where two uni-
tarily inequivalent PSGs belong to the same cohomology class.
However, in all cases we have found, one of the PSGs in such a
pair requires the fermions to be gapless, and our considerations
do not apply. While we have not found a case where two in-
equivalent PSGs for gapped Z2 spin liquids are equivalent un-
der cohomology classification, we have not searched system-
atically for such examples, and it could be interesting to do so.

The statement that cohomology classification is coarser
than PSG classification might seem somewhat puzzling, since
there are 211 = 2048 distinct ε fractionalization classes, while
there are only 280 distinct PSGs. This occurs because S = 1/2
fermionic partons are not capable of realizing every cohomol-
ogy class. For instance, restricting to point group and time-
reversal symmetries (i.e., symmetries leaving a lattice point
fixed), there are cohomology classes where the smallest irre-
ducible representation has dimension 4, but the S = 1/2 par-
tons only provide a two-dimensional on-site Hilbert space.51

In discussing PSG classification, we have focused on one
particular parton representation of S = 1/2 spin models. Other
parton representations also exist; for instance, we could have
just as well considered S = 1/2 bosonic partons, and discussed
the PSG classification in that case.22 For every distinct parton
representation, the PSG classification needs to be redone.
Within the framework of PSG classification, it is not obvious
how to compare PSGs obtained using different parton repre-
sentations. On the other hand, our classification can be applied
to effective theories for gapped Z2 spin liquids obtained from
any parton construction. If two such effective theories belong
to different symmetry classes, then they describe different
Z2 spin liquid phases. On the other hand, if two apparently
different such effective theories belong to the same symmetry
class, they may describe the same Z2 spin liquid phase.

IX. DISCUSSION

We conclude with a discussion of open issues and future
directions. Our approach to symmetry classification can
likely be extended to arbitrary Abelian topological orders,
including space group symmetry. It would also be interesting
to consider extension to non-Abelian topological order. For
two-dimensionalZ2 spin liquids, the problem of full symmetry
classification, where some symmetry operations may exchange
e and m particles, is still open. There is also, of course, the
problem of full classification of symmetric Z2 spin liquids
(i.e., beyond symmetry classification). Here, K-matrix Chern-
Simons approaches may prove useful.28,52

Extending symmetry classification to three-dimensional
(d = 3) Z2 spin liquids could be particularly interesting. First,
we point out a connection between our d = 2 classification
and the classification of d = 1 symmetry-protected topological
(SPT) phases.46,53–55 The d = 1 SPT phases are essentially
classified in terms of projective transformations of point
objects bound to the ends of the d = 1 system (i.e., end
states). Quite similarly, our d = 2 symmetry classification
for Z2 spin liquids is based on projective transformations of
point objects tied to the ends of fluctuating one-dimensional
strings, namely the anyons. The mathematical consequence of
this connection is the appearance of the second cohomology
group in both classifications. Now, in deconfined Z2 gauge
theory in three dimensions, the topological excitations are
pointlike Z2 electric charges and extended vison loops. A
vison loop can be viewed as the boundary of a highly fluc-
tuating two-dimensional membrane (with vanishing surface
tension). By analogy, we then speculate that there is a close
connection between the “fractionalization class” of a vison
loop—assuming it can be defined—and the classification of
d = 2 SPT phases.

Returning to the present classification, we give an argument
that some of our symmetry classes cannot be realized strictly in
two dimensions. The argument follows Ref. 56, which studied
surface theories for three-dimensional SPT phases. Suppose G

is an internal symmetry, and suppose both the e and m particles
have a fractionalization class admitting no one-dimensional
irreducible (projective) representations. An example is time-
reversal symmetry with (T e)2 = (T m)2 = −1. Strictly in two
dimensions, with only internal symmetries, one expects there
to be a trivial phase with no topological order or spontaneously
broken symmetry (e.g., a dimerized phase). To destroy the
topological order, one can condense either the e or m particle
(ε is a fermion and thus cannot be condensed), but in this
situation this must be accompanied by spontaneous breaking
of G symmetry. Therefore there seems to be no way to leave
the Z2 spin liquid and enter a trivial phase, so we expect this
situation cannot be realized strictly in two dimensions. On
the other hand, Ref. 56 showed that such situations can be
realized on the surface of a d = 3 SPT phase. This discussion
establishes a connection between our classification and the
classification of d = 3 SPT phases, which could be interesting
to pursue in future work.

Along similar lines, there is another constraint on symmetry
classes among certain (strictly two-dimensional) models.
Consider a model with translation and SO(3) spin rotation
symmetries, with an odd number of S = 1/2 moments per unit
cell. For such a model, a trivial gapped quantum paramagnet
with no spontaneous symmetry breaking and no topological
order is impossible.57 This implies, for instance, that both e

and m particles must have nontrivial fractionalization classes.
If one of these particles had the trivial fractionalization class,
upon condensing it, one would obtain a trivial quantum
paramagnet in contradiction to the theorem of Ref. 57. All
this discussion points out that it is desirable to obtain a better
understanding of which symmetry classes can occur in various
settings.

Eventually, we hope our results may lead to the devel-
opment of tests to distinguish different types of Z2 spin
liquids in numerical studies. There is, of course, the connection
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between symmetry classes and ground state quantum numbers
discussed in Sec. VII. In cases where one has numerical
access to the excitation spectrum, one could potentially obtain
information about the “coarsened” UT (1) fractionalization
classes from multiplicities (or, more generally, decomposition
into irreducible representations) of nearly degenerate energy
levels, as discussed in Sec. III C for the simple example
G = Z2 × Z2. More ambitiously, it would be interesting and
potentially useful to understand how to fully determine the
symmetry class given only the ground-state wave function(s).

While we know of no current candidate materials for a
gapped Z2 spin liquid, it would nonetheless be interesting
to devise experimental measurements of symmetry class
information. Thinking along these lines could lead to new
experimental tests for fractionalization, which could poten-
tially be applicable more broadly, for instance to gapless spin
liquids.

Finally, we note that Mesaros and Ran have very recently
proposed a classification of topologically ordered phases with
on-site symmetry.58 We also note very recent related results
of Hung and Wen.59 It will be interesting to understand the
relationship between our classification and these results.
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APPENDIX A: NONSINGLET GROUND STATES

When discussing symmetry localization [see, e.g., Eq. (9)],
we assumed we can find a ground state |ψ0〉 that is a singlet
under all symmetry operations. Here, we describe how this
assumption can be relaxed; this enables us to consider the full
four-dimensional ground state subspace on the torus.

We consider states |ψα〉 where all excitations, and all
strings separating anyons, are confined to a large box-shaped
region R as shown in Fig. 25. We take R to cover almost
the entire area of the system. For such states, we choose the
noncontractible loops of Le

x , Lm
x , and so on, to run in the space

outside R. Restricting to such states allows us to break the
Hilbert space into “global sectors” associated with the four
degenerate ground states in a well-defined fashion. Formally,
we decompose the Hilbert space as a tensor productHR ⊗ HG,
where HR is the Hilbert space of excitations contained in R,
and HG is the four-dimensional Hilbert space of degenerate
ground states. If O is supported on R, then in the above Hilbert
space decomposition we write O = OR ⊗ 1G. On the other
hand, if O is a loop algebra operator, then O = 1R ⊗ OG.
This means that acting on |ψα〉 with any operator supported
on R does not affect the global sector degrees of freedom.

R

FIG. 25. Illustration of states used for symmetry localization to
account for nonsinglet ground states. The thick solid line is the
“boundary” of the periodic system—opposite edges are identified.
The region R is shaded. Noncontractible strings of the loop algebra
act along the dashed lines, outside the region R.

Conversely, acting with any loop algebra operator leaves local
properties in R unaffected.

This discussion motivates a generalized version of the
symmetry localization assumption. Namely, given a symmetry
operation Sa , we assume

Sa|ψα〉 = Sa(R)SG
a |ψα〉. (A1)

Here, Sa(R) is a unitary operator supported on R. The
operator SG

a is a unitary linear combination of products of
loop algebra generators. Any unitary transformation on the
four-dimensional ground state subspace can be written as such
a linear combination, so SG

a can be thought of as a general
unitary transformation among the global sectors. Clearly we
have [Sa(R),SG

b ] = 0.
At this point, we apply symmetry localization as discussed

previously to the operator Sa(R). To illustrate this with a
concrete example, suppose that two localized, isolated e

particles are contained within R, in regions Re
i (i = 1,2). Then,

we write

Sa|ψα〉 = Sa(R)SG
a

∣∣ψα = Sa(1)Sa(2)SG
a |ψα〉. (A2)

Considering a group relation S1 · · · Sk = 1, we note that we
must have

SG
1 · · · SG

k = 1, (A3)

because Sa = SG
a on the ground-state subspace, and the ground

states, of course, do not transform projectively. Therefore the
SG

a operators drop out in the group relations, and discussion
of fractionalization classes proceeds exactly as in Sec. III.

APPENDIX B: GENERATING SET OF PROJECTIVE
REPRESENTATIONS FOR SQUARE LATTICE SPACE

GROUP PLUS TIME-REVERSAL SYMMETRY

In Eqs. (39a)–(39k), the Z2 factor sets for square lattice
space group, time-reversal, and spin rotation symmetries are
defined in terms of 11 Z2-valued σ parameters. Here, we show
that all 211 choices of the σ parameters give consistent factor
sets. That is, it is possible to find a projective representation
with any choice of the σ ’s.

We proceed by constructing a “generating set” of 11
projective representations. By taking tensor products of these
11 representations, one can obtain a projective representation
with any of the 211 possible choices of σ ’s. The cohomology
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TABLE I. Set of 11 generating representations for square lattice space group, time-reversal, and spin rotation symmetries. The first column
numbers the representations, 1 through 11. The middle five columns specify generators of the group in the corresponding representation (time
reversal is T = UT K , where K is complex conjugation). All representations in this table are one- or two-dimensional. Generators of the
two-dimensional representations are specified in terms of the Pauli matrices μx,y,z and the 2 × 2 identity matrix μ0. (We use μ rather than
σ for these matrices here, to avoid confusion with the Z2-valued σ parameters.) The last column lists those σ ’s that are equal to −1 for the
corresponding representation.

Rep. number Px Pxy Tx UT Rs(θ n̂) σ ’s that are −1

1 i 1 1 1 1 σpx

2 1 i 1 1 1 σpxy

3 μ0 μ0 μ0 iμy μ0 σT

4 μx μ0 μ0 μz μ0 σTpx

5 μ0 μx μ0 μz μ0 σTpxy

6 μx (μx + μz)/
√

2 μ0 μ0 μ0 σpxpxy

7 μ0 μ0 μx μz μ0 σT tx

8 μ0 (μx + μz)/
√

2 μx μ0 μ0 σtxty

9 μz μ0 μx μ0 μ0 σtxpx, σtypx

10 μx (μx + μz)/
√

2 μx μ0 μ0 σpxpxy, σtxty , σtypx

11 μ0 μ0 μ0 iμy exp(iθ n̂iμi/2) σT , σR

classes of the generating set form a generating set for the group
H 2(G,Z2) = Z11

2 .
First, suppose we have two projective representations A and

B, each with its own set of σ ’s. That is, for representation A

we have (σA
px,σ

A
pxy, . . . ) and similarly for representation B. It

is straightforward to show that the σ ’s of the tensor product
representation A ⊗ B are given by(

σA⊗B
px ,σA⊗B

pxy , . . .
) = (

σA
pxσ

B
px,σ

A
pxyσ

B
pxy, . . .

)
. (B1)

Each choice of σ ’s can thus be viewed as an element of Z11
2 ,

and if we find 11 representations whose σ ’s generate Z11
2 , then

a representation with any desired choice of σ ’s can be obtained
by taking tensor products.

Before proceeding, we note that if T A = UA
T K and

T B = UB
T K are the antiunitary time-reversal operations in

representations A and B, where K is the complex conjugation
operator, the tensor product operation is defined as usual to be

T A⊗B = (
UA

T ⊗ UB
T

)
K . (B2)

At this point, we need only exhibit a generating set of
11 projective representations. This is done in Table I. It is
straightforward to show that the corresponding 11 sets of σ ’s
exhibited there form a generating set for Z11

2 .
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