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Phonon probe of local strains in SnSxSe2−x mixed crystals
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We present a combined Raman spectroscopy and density functional perturbation theory (DFPT) study of
phonon variation with composition x in the mixed crystals SnSxSe2−x . The experimentally observed two-mode
behavior of the A1g and Eg vibrations involving Se(S) atoms is shown to arise from the lack of overlapping of
the corresponding phonon dispersion bands in SnS2 and SnSe2. This offers a unique opportunity to assess local
distortions of the trigonal Sn3Se pyramids in SnSxSe2−x as no Se and S mode mixing is involved. The dependence
of local height and base length of Sn3Se pyramids with x is derived by a procedure that uses the measured A1g

(Se) and Eg (Se) phonons in SnSxSe2−x , those calculated by DFPT for SnSe2 at different hydrostatic pressure,
DFPT phonon dispersion, and the contribution from mass-disorder induced phonon self-energy.
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I. INTRODUCTION

The success in both basic research1,2 and nanoelectronic
applications3 of graphene, a single layer material originally
produced as a peel-off of graphite, has triggered a quest
for other layered compounds that could be exfoliated down
to a single layer. Metal dichalcogenides with the notable
representative MoS2 are among the prospective candidates
that can exist as stable single- or few-layer two-dimensional
(2D) structures. Molybdenum disulfide reveals much desired
three-dimensional (3D) to 2D transition effects as it goes from
an indirect 1.3 eV band gap in bulk (multilayered) materials to
direct 1.8 eV band gap in a single layer (1L-MoS2).4,5 Recently,
another member of the metal dichalcogenide family, tin
disulfide (SnS2), has been exfoliated to a few layer crystalline
nanomembrane and successfully implemented as a field effect
transistor (FET) that is operational at room temperature with
a high on/off ratio exceeding 2 × 106 and carrier mobility
∼1 cm2 V−1 s−1.6 This achievement has motivated us to
revamp the study of SnSxSe2−x (0 � x � 2) mixed crystals
known to exhibit a linear dependence of the energy band gap
with composition x,7,8 and a variation of carrier density 1013 <

n(x) < 1017 and mobility 1 < μ(x) < 30 cm2 V−1 s−1.6,9

The metal dichalcogenides SnX2 (X = S, Se) can be
grown in various polytype structures.10 The simplest possible
polytype, 2H-SnX2, crystalizes in a lattice that belongs to
the space group P 3̄m1-D3

3d (No. 164). The hexagonal unit
cell (D3d ) of 2H-SnX2 contains one formula unit with two X
atoms in-cell and Sn atoms at each of the eight corners of the
cell. A fragment of the unit cell confined to a single layer in
2H-SnX2 (X = S, Se) is shown in the left inset of Fig.1. Each
X atom is covalently bonded to three nearest-neighboring Sn
atoms, thus forming a trigonal pyramid Sn3X. The interaction
between the SnX2 layers in bulk material is weak, perhaps best
described by van der Waals force. Alternatively, each Sn atom
is octahedrally coordinated to six chalcogen atoms. Since all
SnSxSe2−x (0 � x � 2) crystals were of 2H polytype we omit
2H specification before composition description throughout
the text.

In this paper we present a Raman study of SnSxSe2−x

(0 � x � 2) mixed crystals complemented by density func-
tional perturbation theory (DFPT) phonon calculations. The
local distortions of Sn3Se trigonal pyramids in SnSxSe2−x

are derived using a procedure that involves the measured
Raman active modes in SnSxSe2−x , DFPT calculated phonon
density of states of SnS2 and SnSe2, and hydrostatic pressure
dependence of A1g and Eg modes in SnSe2. The mass-disorder
phonon self-energy is also taken into account.

II. MATERIAL PREPARATION, CHARACTERIZATION,
AND RAMAN EXPERIMENT

Few to a hundred micron sized SnSxSe2−x single crystals
were grown in quartz ampules by reacting stoichiometric
mixture of the pure elements via chemical vapor transport
(CVT), using iodine as the transport agent as described in
Refs. 6 and 11. Each loaded ampule was evacuated, sealed
under vacuum (<1 × 10−4 Pa), and heated in a two-zone
furnace with the reactants placed at the hot end of the
furnace Th, thus enabling the composition mixture to be
transported and grown in the cooler end of the furnace Tc.
The vapor transport reactions were kept active in the furnace
for 12 h and then air-cooled by shutting off the furnace.
The temperature settings for growing crystals of each of the
SnSxSe2−x compositions as well as the corresponding lattice
parameters measured with a x-ray diffractometer (PANalytical
XPert PRO MRD, Cu-Kα radiation) are given in Table I. The a

and c lattice constants in Table I deviate by less than 0.5% from
those reported in an earlier experimental study of structural and
vibrational properties of SnSxSe2−x .12

The Raman scattering spectra of platelike SnSxSe2−x

single crystals were measured under an optical microscope
(objective ×50 magnification) attached to a Horiba JY T64000
triple spectrometer. All spectra are recorded in backscattering
configuration with the 514.5 nm laser excitation and incident
and scattered light propagating along the c axis of the crystals.
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TABLE I. Hot (Th) and cool (Tc) end furnace temperatures for growing SnSxSe2−x crystals, the corresponding lattice parameters of the
hexagonal P 3̄m1 structure (unit cell angles: α = β = 90◦, γ = 120◦), and measured A1g and Eg phonon frequencies.

Parameters x = 0.0 x = 0.4 x = 0.8 x = 1.2 x = 1.6 x = 2.0

Th, ◦C 550 580 605 635 662 690
Tc, ◦C 510 535 565 590 618 645
a, Å 3.815(1) 3.783(1) 3.7415(6) 3.7060(7) 3.6802(7) 3.6513(7)
c, Å 6.144(2) 6.117(1) 6.076(2) 6.021(2) 5.971(2) 5.902(1)

A1g(Se), cm−1 185.9 189.9 200.0 205.1 206.5
Eg(Se), cm−1 118.9 123.1 130.8 139.4 149.5
A1g(S), cm−1 298.3 304.4 309.6 313.9
Eg(S), cm−1 178.3 189.0 191.0 205.4

III. EXPERIMENTAL RESULTS

Figure 1 shows the unpolarized Raman spectra of
SnSxSe2−x for all six available compositions. Each unpolar-
ized spectrum is an average of two spectra taken from the
same spot, one measured with parallel incident and scattered
light polarizations and the other in crossed polarizations. The
frequency of Raman lines and relative intensities are in good
agreement with those reported in literature.9,12–14

The three-atom unit cell of SnX2 (X = S, Se) gives rise
to nine vibrational modes. Sn and S(Se) atoms occupy 1a

and 2d Wyckoff positions in the P 3̄m1 crystal structure,
respectively. Group theoretical symmetry analysis15 yields the
irreducible representations of the �-point phonon modes: � =
A1g + 2A2u + Eg + 2Eu. The acoustic modes are A2u + Eu

and of the four optical modes two, A2u + Eu, are infrared

FIG. 1. (Color online) Raman spectra of SnSxSe2−x excited with
514.5 nm laser line. The left inset shows the eigenvector of the
A1g (black contour arrow) mode and one of the two eigenvectors
belonging to the Eg (red solid arrow) mode. The other Eg eigenvector
is orthogonal, out-of-plane, to that in the picture. The right inset shows
a magnified portion of x = 2.0 (SnS2) spectrum around the Eg mode.

active and the other two, A1g + Eg , Raman active modes.
Since only 2d cite symmetry, occupied by chalcogen atoms
in the cell, contributes to the Raman modes, A1g and Eg

species involve exclusively S(Se) vibrations. The A1g and Eg

symmetries are easily distinguished experimentally. The A1g

mode intensity diminishes in crossed incident and scattered
light polarizations for backscattering along the c axis of the
crystals because in its Raman tensor only the diagonal elements
are nonzero.

The large separation between experimental Raman mode
frequencies in SnS2 and SnSe2 seen in Table I comes
mostly from the big difference between S and Se atomic
masses, (mSe/mS)1/2 ≈ 1.57, through the mass dependence
ωS ∼ (mSe/mS)1/2ωSe. A brief comparison of experimental
frequencies in Table I, however, shows that the mass depen-
dence alone cannot describe the Raman frequency change in
going from SnS2 to SnSe2.

The most important piece of information that Fig. 1 conveys
is the two-mode behavior of A1g and Eg phonons in the mixed
crystals. Note that the relative intensity of the Eg mode in SnS2

is very weak as shown in the right inset in Fig. 1 and the trace
of this mode vanishes in the Raman spectrum for x = 0.4. On
the other hand, the frequencies of S and Se Raman modes shift
with composition in a direction that could be compatible with
one-mode behavior ωSe(2 − x) ∼ (mSe/m̄Se2−x

)1/2ωSe, where
m̄Se2−x

= {[(1 − 0.5x) · mSe + 0.5x · mS]}1/2. Therefore, the
evolution of Raman modes with composition x in SnSxSe2−x

can be explained either as a result of mixed-mode (combined
one- and two-mode) behavior or the mixed crystal system
exhibits two-mode behavior but the frequency change with x

is due to the local strain of Sn3Se and Sn3S pyramids.
The strain-induced shift of Raman frequencies in the

two-mode behavior GaAs0.77P0.23 and GaAs0.9P0.1 thin films
was studied in Ref. 16. The different level of residual strain in
these films was created by growing layers of fixed composition
and different thickness. Based on their Raman spectroscopy
with x-ray diffraction results, the authors of Ref. 16 obtained
a phenomenological coefficient of proportionality between
the fractional Raman frequency change and in-plane film
strain. This approach, however, has limited applicability to
the SnSxSe2−x system in which the strains of Sn3Se and Sn3S
components vary with composition.

One approach for predicting the behavior (one, two, or
mixed mode) of a phonon with given symmetry and eigenvec-
tor in mixed crystals is to compare the phonon dispersion in
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the end compositions. A clean two-phonon behavior is realized
when no overlapping of the corresponding dispersions occurs
for all phonon wave vectors. To investigate whether the lattice
dynamics calculations supported the two-mode behavior of
the Raman phonons in SnSxSe2−x , we calculated the phonon
dispersion in SnS2 and SnSe2 using a density functional
perturbation theory (DFPT) code.17

IV. DFPT CALCULATION DETAILS

The calculations were performed within the generalized-
gradient approximation (GGA) with Revised-Perdew-Burke-
Ernzerhof (RPBE) exchange-correlation functional18 using the
norm-conserved pseudopotential plane-wave method.17 The
electronic band structure, related properties, and geometry
optimization of the structures were calculated self-consistently
(SCF) with 720 eV kinetic energy cutoff for the plane waves
and SFC tolerance better than 5 × 10−7 eV/atom over 5 ×
5 × 2 Monkhorst-Pack grid in the k space. The geometry
optimization of the unit cell was done within the BFGS19

energy minimization scheme with fully relaxed structure and
varied number of plane waves to maintain fixed energy cutoff.
During minimization the maximum deviation from crystal
symmetry was constrained to 1 × 10−8 Å until completed with
convergence parameters better than 2 × 10−6 eV per atom for
energy, 8 × 10−3 eVÅ−1 for forces, 0.02 GPa for stresses,
and 5 × 10−4 Å for displacements. The calculated a lattice
constant deviates from the experiential one by −0.8% and
−0.25% for SnS2 and SnSe2 structures, respectively.

The band structure calculations of SnS2 and SnSe2 reveal
nonmetallic systems with indirect band gaps 2.1 and 1.1 eV,
respectively, in good agreement with the experiment.9 This
allowed us to use the linear response DFTP code20,21 in the
phonon calculations. The phonon dispersion was calculated
within an interpolation scheme over 32 × 32 × 16 Monkhorst-
Pack mesh with q-vector separation 0.01 Å−1 and convergence
tolerance 1 × 10−5 eV Å−2 for the electronic eigenvalues
during the phonon calculations. The response of the SnS2

and SnSe2 structures to electric field was also calculated
in order to make a nonanalytical correction to the dynamic
matrix elements and thus to calculate the LO/TO (longitudinal
to transversal) phonon splitting of infrared (IR) modes. It is
important to note that the calculated phonon frequencies for
2H-polytype of SnS2 and SnSe2 differ less than 0.5% from
the corresponding ones of single layered (1L) structures, i.e.,
interlayer interactions are very weak.

Figure 2 shows the phonon dispersion in SnS2 (blue solid
line) and SnSe2 (red solid circles) including the LO/TO
splitting of the Eu modes along the high symmetry directions
in the Brillouin zone. The double degenerate Eu mode has
two orthogonal eigenvectors, which results in LO/TO splitting
when the phonon propagates in the ab plane. The calculated
LO/TO splitting of the Eu modes at � point as well as Au(LO)
and Au(TO) frequency difference for SnS2 and SnSe2 are in
remarkable agreement with the experiment.9,13 The calculated
A1g and Eg phonon eigenvectors are displayed in the left inset
of Fig. 1. As expected, the eigenvectors are simple and involve
only the chalcogen vibrations. The A1g and Eg dispersion
bands in SnS2 and SnSe2 are well separated from each other,

FIG. 2. (Color online) DFPT-calculated phonon dispersion in
SnS2 (blue solid line) and SnSe2 (red solid circle). Note the lack
of overlapping of corresponding A1g and Eg mode dispersion in both
compounds. The LO/TO splitting of Eu modes closely reproduces
the experimentally measured one in Refs. 9 and 13.

which is indicative of two-mode behavior of the Raman active
phonons.

V. DISCUSSION

We explore the change of Raman phonon frequencies with
x in SnSxSe2−x . The Sn3S(Se) pyramid shown in Fig. 1 is
the smallest unit taking part in the A1g and Eg modes of
S(Se) vibrations. A comparison of SnSxSe2−x lattice constants
in Table I gives a gradual decrease of both a and c lattice
constants in going from SnSe2 (x = 0) to SnS2 (x = 2.0).
Therefore in the mixed crystals the Sn3Se pyramids experience
local compressive strain and Sn3S ones are subjected to tensile
strain. Since only Sn3Se is under compression, one feasible
way to assess the local strain is to find out those lattice
parameters of SnSe2 under hydrostatic pressure that yield
Raman phonon frequencies equal to the experimental ones.
At this point we note that to the best of our knowledge there
is no reported experimental or theoretical work on the SnSe2

Raman modes dependence with hydrostatic pressure.
For the purpose of understanding pressure dependence, we

used DFPT to calculate the Raman mode frequencies of SnSe2

at simulated hydrostatic pressure ranging from 0 to 10 GPa.
This type of calculations are usually successful only after a
very good optimization of the crystal structure at a given
pressure, which we achieve with the above reported calculation
accuracy. The advantage of these calculations is that for a given
set of Raman data one obtains also a detailed crystal structure
information including the base length and height of the Sn3Se
pyramids. Figure 3 compares the fractional A1g(Se) and
Eg(Se) frequency variation with the change of the average a

lattice constant (x-ray measured) in SnSxSe2−x (open symbols)
and that with calculated at different hydrostatic pressure
(closed symbols). The presented data shows that the calculated
fractional phonon frequencies under pressure increase with the
a strain (−�a/a0) faster than those experimentally obtained
for SnSxSe2−x . This result is intuitively understandable. As
sulfur content in the mixed crystal increases, the average
a lattice constant decreases but local Sn3Se pyramid base
length shortening is lagging. As a result we find that each
experimental Raman frequency corresponds to a lower strained
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FIG. 3. (Color online) Experimental and calculated fractional
phonon frequency (�ω/ω0) dependence of Se modes as a function of
fractional change of the a lattice constant driven by chemical pressure
(large open circles and rhombi) or hydrostatic pressure in DFPT
simulation (small solid blue circles and rhombi). The red arrows
guide the procedure of finding local �a/a0 for the Sn3Se pyramids
in SnSxSe2−x .

SnSe2 structure under hydrostatic pressure. The horizontal
solid arrows in Fig. 3 relate the experimental Eg frequency data
to the hydrostatic one. Remarkably, the vertical dashed arrows
cross the hydrostatic A1g data at phonon frequencies very close
to the corresponding experiential values. The significance of
these results is that based on achieved consistency of the
experimental and computed data we can derive the local strain
of the Sn3Se pyramid base at the points the dash arrows cross
the −�a/a0. Once we find the hydrostatically compressed
SnSe2 crystal structure producing the experimental Raman
mode frequencies we can obtain also the corresponding change
of the Sn3Se pyramid.

Now we discuss the apparent deviation of the experimental
fractional A1g frequency �ω/ω0 ∼ 11.1% from the calculated
14.5% at −�a/a0 ∼ 2.5% as seen in Fig. 3. The deviation
can be related to the well known disorder-induced phonon
self-energy effects.22–24 The atomic disorder can be described
by a disorder Hamiltonian that renormalizes the harmonic
excitation (phonon). Treating the disorder by perturbation
theory and under assumption that its contribution adds linearly
to to the harmonic one and thus can be calculated separately,
one can write the additional phonon self-energy �(ω) as

�dis(ω) = �dis(ω) − i�dis(ω), (1)

where �dis(ωp) is the self-energy addition to the bare phonon
frequency ωp (without disorder) in our case the one calculated
at a given hydrostatic pressure, i.e., ωexp = ωp + �dis(ωp).
The imaginary part of Eq. (1) gives the corresponding contri-
bution to the phonon linewidth �exp = �SnSe2 + �dis(ωp). Most
of the existing models treat only the isotope mass disorder in
mixed crystals.22–24 We apply here such an approach merely
to estimate the contribution from the mass disorder introduced
by chalcogen substitution in SnSxSe2−x , noting the limitations
imposed by neglecting the changes of force constants.

In second-order perturbation theory,22–24 the expression for
mass disorder-induced frequency shift and line broadening
(FWHM) of the A1g and Eg Raman lines of Se in a predominant

SnS2 lattice read

�dis(ω) = 1

12
g2ω

2P

∫ ∞

0

ω′ρ1(ω′)
ω2 − ω′2 dω′, (2)

�dis = π

24
g2ω

2ρ1(ω), (3)

and

g2 =
(

1 − x

2

)(
mSe − m̄

m̄

)2

, (4)

where ρ1(ω) is the one-phonon density of states of SnS2

normalized to the number of all modes, 3Ncell = 9, P is
the principle part of the Cauchy integral, g2 is the second
moment of the mass fluctuations, and m̄ the average mass for
composition x, m̄ = (x/2)mS + (1 − x/2)mSe. The square of
the eigenvector of A1g and Eg modes, |eA1g,Eg

|2 = 1/2, is also
accounted for in Eqs. (2) and (3).

The frequency dependence of mass-disorder induced
self-energy of Se modes in SnS1.6Se0.4 is shown in Fig. 4. The
corresponding curves were calculated using Eqs. (2)–(4) and
DFPT calculated one-phonon density of states of SnS2. The
experimental Raman frequencies and linewidths ωexp/�exp

in SnS1.6Se0.4 are 149.5/29 and 206.5/21 cm−1 (see Table I
and Fig. 1) for the Eg and A1g modes, respectively. The
corresponding calculated at hydrostatic pressure frequency
ωp of the A1g bare phonon is 213 cm−1, whereas that of Eg is
148 cm−1, i.e., close to the experimental one. In Fig. 4
one finds that �dis(A1g) = −5 cm−1, which fulfils well
the equity ωexp = ωp + �dis(ωp). Given the very narrow
lines of Se vibrations in SnSe2, �exp(Eg) = 6 cm−1 and
�exp(A1g) = 3 cm−1, the calculated �dis(A1g) = 7 cm−1 is not
sufficient to explain the experimental broadening of 18 cm−1.
The same conclusion is valid also for �dis(Eg) = 1 cm−1

versus the experimental broadening of 23 cm−1. The Eg

phonon exhibits negligible phonon self-energy effects.
These results indicate that additional disorder effects may

take place as well. For instance, the calculated �dis represents
a homogeneous Raman line broadening due to a decrease of

FIG. 4. Real (�dis, frequency shift) and imaginary (�dis, line
broadening) parts of disorder-induced phonon self-energy of Se
vibrations in SnS1.6S0.4 calculated using the one-phonon density
of states of SnS2 and g2 = 0.1633 (x = 1.6). The “bare” phonon
frequencies ωp(Eg) and ωp(A1g) are those calculated at hydrostatic
pressure that results in −�a/a0 ∼ 2.5%.
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FIG. 5. (Color online) Distortion of SnSe3 pyramids with x in
SnSxSe2−x . The solid circles and rhombi denote the fractional change
of the base length a (−�a/a0) and height h (−�h/h0), respectively,
of Sn3Se pyramids with x. Open circles traces the fractional change
of average, x-ray measured, a lattice constant with x.

phonon lifetime caused by elastic phonon scattering. On the
other hand, different size Sn3Se clusters in SnSxSe2−x expe-
rience different strain and their phonon frequencies vary. This
effect causes an inhomogeneous broadening and the phonon
line shape is an envelope of the frequency distribution. We
relate the additional broadening to inhomogeneous broadening
due to differently strained Sn3Se structures in SnSxSe2−x .
A more detailed treatment should involve fitting of the Eg

Raman line by a Voigt profile function25 representing a convo-
lution of Gaussian frequency distribution of Lorentzians with
linewidths equal to that in SnSe2. In reality, however, the Eg

line shape in SnSxSe2−x may have a more complex form due
to specific distribution of S and Se in the measured crystal, and
this part of the analysis should be done on a case-by-case basis.

Finally, based on (i) the findings in Fig. 3 that the
experimental A1g and Eg frequencies for a given x = 0.4

to x = 1.2 correspond to a close frequency pair of modes
calculated at the same hydrostatic pressure, and (ii) the
disorder-induced phonon-self energy of the Eg mode in
SnSxSe2−x is negligibly small (Fig. 4), we relate the
experimental Eg frequencies to calculated under simulated
hydrostatic pressure structures using the solid blue circle
curve in Fig. 3. Following this procedure we plot in Fig. 5
the dependence of base length (solid circles) and height (solid
rhombi) of the Sn3Se pyramids in SnSxSe2−x . The open circle
data shows the average strain of the a lattice constant in
SnSxSe2−x with respect to the a parameter in SnSe2. Therefore,
Fig. 5 can serve as a master curve that could provide an
assessment of Sn3Se pyramid distortions with x in SnSxSe2−x .

VI. CONCLUSIONS

The variation of Raman phonon frequencies and linewidths
with x in SnSxSe2−x was studied experimentally and by
DFPT first-principle calculations. A practical procedure for
measuring the strain and strain distribution of Sn3Se in
SnSxSe2−x is suggested that involves Raman spectroscopy
measurements and assessment of the local strain of Sn3Se
pyramids from the master curves plotted in Fig. 5. The strain
distribution for a given composition x can be obtained from
the Eg(Se) phonon line shape (showing negligible disorder-
induced phonon self-energy) after deconvolution with the
intrinsic Eg line measured in SnSe2.

ACKNOWLEDGMENTS

This work was supported by the State of Texas through the
Texas Center for Superconductivity (TcSUH) at the University
of Houston, NSF-ECCS (Award No. ECCS-1247874). J.M.
and A.M.G. also acknowledge support from the R. A. Welch
Foundation (E-1297).

1K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Nature (London) 438, 197 (2005).

2Y. Zhang, Y-W. Tan, H. Stormer, and P. Kim, Nature (London) 438,
201 (2005).

3K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang,
S. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666
(2004).

4A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli,
and F. Wang, Nano Lett. 10, 1271 (2010).

5K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev.
Lett. 105, 136805 (2010).

6D. De, J. Manongdo, S. See, V. Zhang, A. Guloy, and H. B. Peng,
Nanotechnology 24, 025202 (2013).

7P. A. Lee, G. Said, R. Davis, and T. H. Lim, J. Phys. Chem. Solids
30, 2719 (1969).

8F. Aymerich, F. Meloni, and G. Mula, Solid State Commun. 12, 139
(1973).

9C. Julien, M. Eddrief, I. Samaras, and M. Balkanski, Mater. Sci.
Eng. B 15, 70 (1992).

10B. Pałosz and E. Salje, J. Appl. Crystallogr. 22, 622 (1989).
11F. Al-Alamy and A. Balchin, J. Cryst. Growth. 38, 221 (1977).

12A. K. Garg, J. Mol. Struct. 247, 47 (1990).
13G. Lucovsky, J. C. Mikkelsen, W. Y. Liang, R. M. White, and R. M.

Martin, Phys. Rev. B 4, 1663 (1976).
14A. J. Smith, P. E. Meek, and W. Y. Liang, J. Phys. C 10, 1321 (1977).
15D. L. Rousseau, R. P. Bauman, and S. P. S. Porto, J. Raman

Spectrosc. 10, 253 (1981).
16G. Armelles, M. J. Sanjuán, L. González, and Y. González, Appl.
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