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We report an essential improvement of the plain Fourier Monte Carlo algorithm that promises to be a powerful
tool for investigating critical behavior in a large class of lattice models, in particular those containing microscopic
or effective long-ranged interactions. On tuning the Monte Carlo acceptance rates separately for each wave vector,
we are able to drastically reduce critical slowing down. We illustrate the resulting efficiency and unprecedented
accuracy of our algorithm with a calculation of the universal elastic properties of crystalline membranes in
the flat phase and derive a numerical estimate n = 0.795(10) for the critical exponent n that challenges those
derived from other recent simulations. The large system sizes accessible to our present algorithm also allow us
to demonstrate that insufficiently taking into account corrections to scaling may severely hamper a finite size
scaling analysis. This observation may also help to clarify the apparent disagreement of published numerical

estimates of 7 in the existing literature.
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Long-range interactions are ubiquitous in physics. Ex-
amples include Coulomb, dipolar, and higher multipole in-
teractions in traditional condensed matter physics,! Wigner
crystallization in fermionic quantum systems,’ electrostatic
interactions between cold trapped ions,’ or long-range elastic
interactions between defects in condensed matter systems,4
justtoname a few. Yet, even today many aspects related to long
interaction ranges are only poorly understood.’> Sometimes, as
for example in many ionic systems, the long-range character
is camouflaged by screening, leaving effective short-ranged
interactions (see, e.g., Ref. 6). However, in a number of cases
one is forced to deal with the full interaction range, frequently
making theoretical attempts intractable and simulations com-
putationally expensive.

Problems tighten further in simulations of critical long-
range systems’® due to the required large system sizes and
the notorious phenomenon of critical slowing down.’ In recent
years, cluster algorithms'® have been designed to overcome the
latter problem. However, they may be prohibitively difficult
to implement for complicated effective interactions arising,
e.g., in compressible spin models.'"'? Yet, by utilizing the
underlying translation invariance, the structure of these effec-
tive Hamiltonians often simplifies drastically on employing
the Fourier transform. Based on this observation, a radical
approach was developed for lattice models in Refs. 12-16
and termed Fourier Monte Carlo (FMC) algorithm. Here
we report a considerable improvement of this plain FMC
algorithm, which practically also eliminates critical slowing
down from the list of obstacles. The resulting optimized
Fourier Monte Carlo (OFMA) algorithm is applied to study
the elastic properties of solid membranes in the flat phase with
unprecedented precision.

The present article is organized as follows. We begin with
a discussion of the manifestations of critical slowing down in
plain FMC and an explanation of the optimized simulation
scheme suggested by this analysis. This is followed by a
short summary of the ideas underlying the description of the
asymptotic elastic behavior of fluctuating solid membranes
and the related observables accessible in our simulations, and
continued by a short explanation of our simulation setup.
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We present two approaches towards extracting a numerical
estimate of the main critical exponent 1 governing scaling
behavior of solid membranes at long wavelengths from the
generated data: (i) Investigation of the correlation function of
out-of-plane deformations of the membrane gives only a pre-
liminary estimate for  and reveals a peculiar finite size effect.
(i) A careful finite size scaling analysis of the membrane’s
mean squared displacement yields a presumably more reliable
numerical result and demonstrates the importance of properly
taking into account subleading finite size corrections. The pa-
per closes with a summary and short discussion of our results.

I. OPTIMIZED FOURIER MONTE CARLO

The original idea of Fourier Monte Carlo is quite simple.
In principle, any “spin” configuration {f(x)} on a direct
d-dimensional lattice I', assumed to be real for simplicity, is in
one-to-one correspondence with its set of (complex) Fourier
amplitudes {f(q)} defined on the (first) Brillouin zone T'.
In FMC we completely forget about the direct lattice spins,
treating the Fourier amplitudes f(g) as our basic Monte Carlo
(MC) variables. A MC move consists of picking a random
wave vector ¢, € [ and shifting

fo— f@+ €8g,q, + € 8q,—g,,

where € is randomly picked from a circle of fixed radius r¢
centered around zero in the complex plane. The tricky part
is, of course, how to compute the resulting energy change
AE accompanying the move (1) in an efficient way. Here
we content ourselves with the following brief description.
Harmonic terms in a lattice Hamiltionian are diagonal under
Fourier transform, and therefore it is straightforward to
calculate the harmonic contribution to AE. In contrast, an
anharmonic contribution of type > f 4(x) turns into a sum
Y rea, J@D) - F@DAR(g) + -+ q4), where the lattice
8 function Ar(q) is defined to be 1 if g is a reciprocal
lattice vector and zero otherwise. To avoid the resulting
formidable combinatorial complexity, one trivially reorganizes
Yo fHx) =Y (FAx)% Ehich becomes diagonal in terms

of the Fourier amplitudes f2(g) of the squared field f2(x).

el < re, (1)
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For a detailed account on how to efficiently calculate the
anharmonic contribution to the energy change AE' in terms
of the amplitudes f(g) and f2(g) and the nuts and bolts of
FMC we refer to Refs. 14-16.

With FMC, the number of relevant degrees of freedom
can be drastically reduced in calculating universal properties
if an effective Hamiltonian defined at wave vector cutoff A is
available. Consider, e.g., a simple cubic lattice in d dimensions
with lattice constant a. Then |g;| < Ag = /a forany q € T.
In this case the effort of an FMC simulation at cutoff A < Ay
equals that of a direct lattice one with (Ag/ A)? times more unit
cells. Furthermore, as mentioned above, translation-invariant
pair interactions are diagonal under a Fourier transform and
thus pose no problem at all, regardless of their range—even
Ewald summation is available (see Ref. 17).

Let us now turn to explain the announced optimization of
our algorithm. In the original version of FMC the radius r, for
shifting the Fourier amplitudes in (1) is iteratively optimized
for an average acceptance rate (AR) of, say, 30%—-50% during
the startup of the simulation. Yet, even though the moves
(1) are collective in nature, we observe a dramatic growth of
the integrated autocorrelation times i, (¢)'®!'? of the squared
amplitudes | f(q)|? for modes close to the critical wave vector
(taken to be g, = 0 for simplicity). The sharp rise of tiy(g) for
q = |q| — 0, which is the crucial quantity that determines the
statistical efficiency of measuring | f (@) (Refs. 18 and 19)
is the hallmark of critical slowing down. How can that be?
The average amplitudes |f(g)| for ¢ — O are much larger
than those for g > 0, but the algorithm attempts to move
them all at the same maximum pace r.. Thus the modes close
to criticality simply make no headway in comparison to the
noncritical ones, and one finds individual ARs close to 100%
for the relatively few “small” ¢ vectors, while for larger wave
vectors, the numbers of which roughly increase as ~g?~!,
ARs drop to quite low values. However, nothing can prevent
us from optimizing r. = r.(q) individually for each ¢ in such
a way that all modes f(q) separately enjoy the same uniform
AR. In practice, since changing r.(q) for one single g will
influence all other individual ARs in a nonlinear way, we resort
to a simple iterative procedure, aiming for a fixed collective
rule-of-thumb target AR of, say, 50% with a tolerance of 5%
during the warm-up stage of the simulation. Excitingly, as
soon as this initialization step is implemented, one observes
an approximately uniform common value of tj,(¢) with only
weak g dependence. Together with the collective nature of
the move set (1), the dramatic suppression of critical slowing
down makes this “optimized FMC” (OFMC) algorithm an
interesting alternative in cases where cluster algorithms are
difficult to apply.

II. SOLID MEMBRANES

We illustrate the benefits of the abstract strategy outlined
above by considering the numerical determination of the
exponent n governing the universal elastic properties of solid
membranes, a topic of high interest in its own right in molecular
biology, medicine and pharmacy, chemical synthesis, and soft
matter physics, just to name a few scientific disciplines. Owing
to the recent meteoric rise of graphene,? this list has become
even longer, including solid state physics, nanotechnology, and

PHYSICAL REVIEW B 87, 104112 (2013)

electronics. Due to space limitations, we make no attempt to
do justice to all the sophisticated theoretical and computational
approaches that have been developed to asses membrane
elasticity and merely refer to the authoritative references.?'~>*
Instead, we concentrate on the fact that for a crystalline
membrane, which by definition supports a nonzero static shear
modulus p # 0, an effective long-range interaction between
its out-of-plane deformations (OPDs) emerges as follows.
Consider the so-called class of “phantom” membrane
models for which self-avoidance effects are ignored. Liquid
phantom membranes for which p = 0 are known to collapse
to a rotationally invariant “crumpled” phase characterized
by an exponential decay of the membrane unit normal
correlations,’* and since only short-range interactions are at
work, a transition to a “flat” phase via spontaneous breaking
of this continuous symmetry is ruled out by the Mermin-
Wagner-Hohenberg theorem.? For a crystalline membrane,
however, elimination of in-plane deformations (IPDs) from
the partition function by functional integration results in
a shear-mediated effective long-range interaction between
the OPDs which Mermin-Wagner-Hohenberg has nothing to
say about.”® And indeed, at sufficiently low temperatures
crystalline membranes are found to be in a flat phase, in which
the spatial correlations of the unit normals of the membrane
tend towards a nonzero constant at long distances. In Refs. 27
and 28 an effective Hamiltonian was formulated along these
lines of thinking. In the so-called Monge parametrization,?’
deformations with respect to a given two-dimensional ref-
erence plane with coordinates x = (x;,x) are encoded in
a height function f(x) parametrizing the OPDs and a two-
dimensional vector u(x) of IPDs. Variations in f(x) give rise
to a bending energy & [ d?x(Af)*(x) which is also present
in liquid membranes, but for crystalline membranes f(x)
also couples to the IPD’s u(x) through an additional elastic
stretching energy %Zij fdzx[Z,uAuizj(x) + Aauii(0)uj;(x)]
involving the Lagrangian strain tensor u;;(x) = [d;u;(x) +
dju;(x) + 9; f(x)d; f(x)]/2. Transforming to reciprocal space
and eliminating u from the partition function by Gaussian

integration,''>27:2% one obtains an effective Hamiltonian
kan [ d*q 4 = ., Ka [ d*Q - 5
Halfl="2 [ L9 p oA F
Alf] > /(2n)2q | f(q)l 3 (27T)2| €9)]
()

for the surviving OPD amplitudes f(g # 0), where K, =
4ua(pen +2a)/2ua + Ap) is the effective 2D Young mod-
ulus at cutoff A. The amplitudes f (@), which play a part
similar to that of the amplitudes f2(q) of the squared field
f2(x) in the basic FMC algorithm outlined above, are defined
via the nonlocal generalized convolution in (2)

2
Fo = [ T4 o xrfwfe-o G
(2m)
whose wave vector dependence encodes the specific long-
ranged interaction character [in (3) we have formally embed-
ded the vectors Q and ¢ in 3D]. The basic observable for
analyzing the thermodynamics resulting from (2) and (3) is
certainly the correlation function of OPDs G(p)8%(p + q) =
(f(p)f(g)). If anharmonic contributions in (2) could be
neglected, the equipartition theorem applied to the remaining
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harmonic bending contribution would yield G~'(q) = kxq*.
In reality, the anharmonicity of (2) causes the bare bending
rigidity to be renormalized, and «, picks up a nontrivial ¢
dependence, such that to leading order

G (@) =rkalg)q*, Kkal@)~q7" )

The exponent 7 is the central quantity governing the universal
long distance elastic behavior of the flat phase. For instance, the
mean square height fluctuations ((Af)?) diverge for L — oo
like

d*qg .
(AfY) = GO) = / St~

with the roughness exponent®® ¢ = 1 — /2, as can be seen
from explicitly calculating the integral (5) using an infrared
cutoff |g;| > 2 /L and (4).

III. SIMULATION SETUP

In order to numerically determine 7, we performed OFMC
simulations on a d = 2 square lattice and we monitored the set
of squared moduli | f(g)|? for wave vectors q inside a suitably
chosen cutoff A, together with (Af)* ~ 3", | f(g)]> and the
total energy E of the system. From the corresponding raw data
series of these observables, which we also analyzed to ensure
the complete equilibration of our simulations before MC
measurements, we calculated estimates of the corresponding
statistical errors and the resulting integrated autocorrelation
times 7in(q), T(asy, and T using the jackknife approach.g’19
These estimates were cross checked for consistency by
directly determining Tin(q), Tcasp, and 7 from the raw
data autocorrelation functions'®!” and double cross checked
using the blocking method.”3! The choice of renormalized
parameters k5, = 0.1, K, = 1.0, in which a factor (kgT)!
has been absorbed, was motivated by the heuristic principle
to have an approximate balance of harmonic and anharmonic
contributions to total average energy changes. Compared to
plain FMC, one indeed observes the expected tremendous
reduction of autocorrelation times tiy(q) (cf. Fig. 1), tasy,
and 7z (not shown). After completing this work we realized
that an optimization similar to ours had also been attempted
in Ref. 32, but was only implemented in the trivial case of a
simple quasiharmonic model, and their collective “wave vector
moves” were carried out at a frequency of one MC sweep
on average, merely complementing a localized real-space
MC move set. Suppression of critical slowing down with
an efficiency comparable to that of our present method was
therefore clearly out of reach.

IV. OUT-OF-PLANE DEFORMATION CORRELATIONS

Unfortunately, trying to numerically extract n from the
correlation function G (g) of the OOP deformations via (4) with
sufficient precision suffers from several caveats. First of all,
for G(q) no systematic FSS machinery seems to be available.
Thus, even for a very large system size, simulation results
may be contaminated by a residual finite size dependence and
effects of lattice anisotropy. Also, the quality of results may
hinge crucially on the particular functional form of ansatz
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FIG. 1. Main plot: Dramatic reduction of integrated autocorrela-
tion times T, (¢q) for moduli | f (g)|* for our new OFMC algorithm
in comparison to plain FMC for system size L = 640 and cutoff
A = 7 /8. Deviations from linearity are due to the finite MC run time
of 220 MC steps (plain FMC) and finite tolerance +5% for a 50%
target acceptance (OFMC). Inset: g-dependent acceptance rates as
measured for plain FMC.

for the effective exponent function required for interpolating
between the mean field (MF) value n = 0 and the critical value
of n (cf., e.g., Ref. 33). Integration of our ansatz

_n
14+ ag°’
with two parameters o and « besides 1 to allow adjusting
both position and width of the crossover, yields the fit function

G’l(q) = ';(’;q; [1+ ((xq")’l]”/". Derived from a parallel ver-
sion of our FMC code which will be described elsewhere, Fig. 2
shows the typical results of a corresponding fit obtained for
a large system of linear size L = 1800 and cutoff A = /15,
effectively resembling a direct lattice system of linear size
Lo = 1800 x 15 = 27000. At first glance, the fit looks quite
acceptable, producing a value of n = 0.751(17). However,
comparing the relative statistical errors of the individual data
to their relative deviations from the fit, our high statistical
accuracy allows us to resolve that most of the deviations remain

Netr(q) = (6)

20 . T
19 F = data —— ]
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FIG. 2. (Color online) Top: Fit of simulation results for G(q) at
linear system size L = 1800 and cutoff A = /15. Error bars are
smaller than symbol size. Bottom: Relative deviations of simulation
data from the fit. Red lines are a guide to the eye. Gray lines indicate
the relative statistical errors of the simulation data in percent.
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FIG. 3. (Color online) Comparison of relative deviations of
simulation data for G(q) for various values of L and cubic cutoff
A =m/8.

within the range of the statistical noise of the data except for
the smallest nonzero ¢ vectors (1,0) - 2z /L and (0,1) - 27 /L
on the cubic lattice, which exceed 10%. Following next in
size are the vectors (1,1)-2x/L and (1, —1)- 2% /L, who
also show a noticeable deviation, albeit much smaller and
opposite in tendency. To study the finite size dependence of
these deviations, we decided to investigate a collection of
systems with sizes L = 32n, n = 1,2,...,20,22,...,28 and
cubic cutoff A = 7/8. Indeed, for growing system size L, the
observed irregularities are qualitatively completely similar but
are shifted systematically in parallel towards lim; ., o, 271/L =
0 (see Fig. 3). Having ruled out trivial explanations for the
observed behavior by various consistency checks, we conclude
that what see is a finite size effect related to the anisotropic
structure of the convolution (3). To extract a numerical estimate
of n from G(q), we thus decided to discard most deviatoric
data, i.e., those for ¢ || (1,0),(0,1),(1,1),(1, — 1). As Fig. 4
shows, the resulting fit is excellent and produces n = 0.761(8).
In view of the encountered difficulties, however, this estimate

e v v v v
fit 1.5 T TT
17 \\ A ﬂu‘LHIW +
=N §
= 0.5 : .
16 <, 56 g i ]
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— - e JLL 1
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FIG. 4. (Color online) Main plot: Same as top of Fig. 2, but
with all contributions for ¢ vectors of symmetry type (1,0) and (1,1)
omitted. Right upper inset: relative deviations of simulation data from
the fit. Red lines are a guide to the eye. Gray lines indicate the relative
statistical errors of the simulation data in percent. Left lower inset:
crossover function (6).
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may be contaminated by residual systematic errors beyond
the pure statistical error of the fit we report here, as we
shall argue below. Nevertheless, to appreciate the quality of
our present data, note that the crossover (6) of G(g) from
MF to critical behavior roughly occurs at a “Ginzburg wave

vector’? g ~ v/3kpT K /873 analytically defined by the
breakdown of the harmonic approximation. The ability of
a simulation to efficiently sample the scaling region thus
depends on the ratio p = qg/(27/L) of g to the smallest
accessible wave vector component 27/ L. For instance, in the
case of the atomistic MC simulations presented in Ref. 32
p turns out to be only approximately 9. In contrast, for
our largest systems we obtain p = gg/(2w/L) ~ 66, thus
providing p & (66/9)* ~ 54 times more data that actually
explore the scaling region.

V. OUT-OF-PLANE MEAN SQUARED DEFORMATIONS

In contrast to G(q), analysis of ((Af )2) allows us to employ
finite size scaling (FSS) techniques. On our discrete lattice, the
integral in (5) is replaced by a sum, whose asymptotic scaling
behavior should comply to the general form (5). By definition,
an asymptotic scaling law of type (5) allows for various
subleading algebraic and logarithmic corrections at finite L,
we should therefore be included in a fit to the data in order to
obtain precise estimates for both 1 and the corresponding error
o, (see, e.g., Ref. 9). Unfortunately, however, to the author’s
best knowledge the structure of these corrections has not been
worked out analytically up to date. We therefore have to allow
for a priori unknown subleading corrections of logarithmic as
well as power law type. In addition, analytical and numerical
tests based on our crossover ansatz (6) suggest the inclusion
of a constant § > 0, such that we arrive at a FSS ansatz for

(AfY ~ 3, | (@) of type
(AfY? ~8+aL®>"(1+BInL+yL™) (7)

in which we limit ourselves to including a single positive
algebraic correction with exponent w. However, since the
trade-off between logarithmic and algebraic corrections for
small w makes it numerically difficult to obtain meaningful fits,
we content ourselves to studying both corrections separately.
A purely logarithmic correction yields the value n = 0.793,
but unfortunately this result does not inspire much confidence
since the corresponding statistical fitting error is of the order
of 10°. Turning to algebraic corrections, we fix b =0 and
attempt to fit (7) to the data with a variable correction
exponent w, which yields the vague result n ~ 0.781(100)
for 1, accompanied by the much too imprecise estimate
o = 0.372 2.4 for w. A fit based on fixing w to this value
produces n = 0.784(5), but the dependence on the choice of w
remains unclear. To investigate this problem further, we thus
decided to fit the data using the ansatz (7) for a range of values
of w. We observe that only for roughly w € [0.2,1.0] these
fits produced meaningful values for the parameters «,y, and
6 within equally meaningful uncertainties. The results, which
are gathered in Fig. 5, illustrate the unpleasant fact that the
indeterminacy of @ not only affects the quality of the error
estimates for the sought-after exponent n but indeed has a
non-negligible effect on the estimated value of 7 itself. Indeed,
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FIG. 5. Estimates and accompanying statistical errors obtained
for the target exponent 7 and the fit parameters «, y,§ as obtained from
fits of the FSS ansatz (7) for § = 0 at various values of w € [0.1,1.2].

Fig. 5 makes it obvious that without precise knowledge of the
exponent w, FSS based on the ansatz (7) does not allow us to
extract a reliable result for . Moreover, the lower part of Fig. 6
demonstrates that, regardless of which value of w € [0.1,1.2]
is chosen, residual deviations between fits based on Eq. (7) and
the actual data at smaller L are found to persist. In combination
with the pronounced @ dependence of the obtained values for
n, this provides compelling evidence that an ansatz of type
(7) does not properly account for the finite size corrections to
scaling.

In contrast, an alternative fit based on the somewhat simple-
minded ad hoc ansatz

(Af)* ~8+aL*> (14 B/L +y /L% (8)

not only yields a comparably good agreement at large L
[where any reasonable ansatz for (Af)*> with the correct
built-in asymptotics will works equally well] but apparently
also captures the behavior at small L with an accuracy that
seems very hard to improve any further (cf. again the lower part
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of Fig. 6). With this surprisingly good numerical agreement
at both large and small L, it therefore appears to be of
little relevance that the assumed representation of the scaling
corrections as mere inverse integer powers of L lacks a strict
theoretical justification. Numerically, a fit using (8) produces
the value = 0.795(5). Including a conservative safety margin
of a factor of 2 in the error bar to this result, we are finally led
to report the fair estimate

n = 0.795(10). C))

VI. SUMMARY AND DISCUSSION

In summary, we have explained how to optimize the
plain Fourier MC algorithm and effectively eliminate critical
slowing down. As an application, we obtain high precision
simulation results for the universal elastic behavior of a
crystalline membrane in the flat phase. For this problem, a
considerable dispersion of previous estimates of 1 has been
published in the existing literature (cf. Table I for comparison
with our present estimates), and even a complete violation of
scaling has been claimed.*® While our present simulations
fully support the conventional universal scaling theory of
solid membranes, our high precision and the accessibility
of unprecedented effective system sizes allow us to gain
some new insight into the reason for the remaining numerical
discrepancies in the published results for 1. Indeed, we find that
the analysis of both G(k) and ((Af)?) requires an extremely
careful analysis of finite size corrections. In the case of G(k),
finite size effects are serious enough to cast any attempt to
extract n from a naive scaling fit into doubt, but a finite
size scaling analysis of ((Af)?) may also be severely biased
by ignoring or incompletely taking into account subleading
corrections. Our analysis reveals that such corrections clearly
do affect the numerics of our present work even though the
effective system sizes that we are able to access are much larger
than those of previous studies. We believe that these finding
may also serve to explain the mentioned disagreement on the
published numerical values for 7 in the existing literature that

5 g i P T g— — is immediately apparent from a glance at Table I.

51 wel01,1.2] —— x/"’ The presented strategy for suppressing critical slowing is
= 4-2 i rEﬁ”érﬁgi - it expected to work equally well for a large class of other lattice
4 35 e models at or near criticality. As to elastic membranes, the
El 2_2 specific approach of the present paper should also be equally

2| applicable to the hexatic case, for which we hope to obtain

0112 first results in the near future.
= o . , .
5 005 | * TABLE 1. Selection of numerical results for 1. Question marks
5 0 % indicate unreported error bars or possible systematic errors.
©-0.05 }
-0.1 n Method Ref.
3.5 4 4.5 5 5.5 6 6.5
InL 0.750(5) MC, Gaussian spring pot., IPDs 34
0.72(4) MC, Gaussian spring pot., OPDs 34
FIG. 6. (Color online) Top: Fits of Eq. (7) for various fixed values 0.849(?) Nonperturbative RG 35
o taken from the interval [0.1,1.2] and Eq. (8) to simulation results 0.85(7) Nonperturbative RG 36,37
for ((Af)?) obtained for L = 32n, n =1,2,...,20,22,...,28, and 0.821(?) Self-consistent field approx. 38
A = /8. Data error bars are smaller than symbol size. All fits are 0.85(2) MC, atomistic carbon potential 39
practically indistinguishable at this scale. Bottom: Relative deviations 0.85(?) MC, MD, quasiharmonic model 32
of simulation data from the fits. Lines are a guide to the eye. Gray 0.761(?) OFMC, G(q) This work
lines indicate the relative statistical errors of the simulation data in 0.795(10) OFMC, ((Af)?) This work

percent.
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