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Temperature dependent effective potential method for accurate free energy calculations of solids
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We have developed a thorough and accurate method of determining anharmonic free energies, the temperature
dependent effective potential technique (TDEP). It is based on ab initio molecular dynamics followed by a
mapping onto a model Hamiltonian that describes the lattice dynamics. The formalism and the numerical aspects
of the technique are described in detail. A number of practical examples are given, and results are presented, which
confirm the usefulness of TDEP within ab initio and classical molecular dynamics frameworks. In particular,
we examine from first principles the behavior of force constants upon the dynamical stabilization of the body
centered phase of Zr, and show that they become more localized. We also calculate the phase diagram for 4He
modeled with the Aziz et al. potential and obtain results which are in favorable agreement both with respect to
experiment and established techniques.
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I. INTRODUCTION

One of the common goals for first principles calculations is
the comparison of energies, such as configurational energies,
surface energies, mixing enthalpies, or lattice stabilities.
Usually the comparison is limited to total energies. This is
appropriate when the effects of temperature can be neglected.
However, for many problems within physics, materials, and
earth sciences they are not negligible, and Gibbs free en-
ergy represents the proper thermodynamic potential when
the temperature and pressure are external parameters. The
quasiharmonic approximation can bridge the temperature gap,
but there are cases where it falls short. Strongly anharmonic
systems are not described well,1 especially dynamically
unstable systems. Traditionally the problem of dynamical
instability was addressed either by including more terms in the
Taylor expansion of the potential energy or via a self-consistent
approach.2–4

Hooton5 realized that even though the second derivatives
at the equilibrium positions are negative, the atoms in a solid
rarely occupy these positions. They move in the effective
potential of their nonstationary neighbors. By sampling the
potential energy surface not at the equilibrium positions but at
the most probable positions for a given temperature, one can
obtain a harmonic approximation that describes the system at
elevated temperatures. The self-consistent formalism employs
an iterative procedure6 by creating a harmonic potential, which
is used to describe the thermal excitations that again give a new
harmonic potential. This is then repeated until self-consistency.

The double-time Green’s functions, developed by
Choquard,7 use a cumulant expansion in the higher order
terms. Although formally exact, this formalism requires
knowledge of the higher order force constants. Obtaining these
accurately for something other than the structurally simple sys-
tems is computationally very demanding from first principles.8

A recent implementation of the self-consistent formalism
by Souvatzis et al.9,10 uses ab initio supercell calculations.
A problem with this approach is that the excitations could
only be done in the harmonic sense, which means probing
phase space with a limited basis set. Where the harmonic
approximation works well this is not a problem. When the
harmonic approximation fails it is due to a strong anharmonic

contribution. Strongly anharmonic systems are by definition
badly described with the harmonic approximation.

Several techniques use Born-Oppenheimer molecular dy-
namics to obtain anharmonic corrections to quasiharmonic
free energies.11–13 They focus on anharmonic corrections to
materials that are well described in the quasiharmonic approx-
imation, and the applicability to strongly anharmonic systems
is questionable when the phonon renormalization due to in-
creased temperature cannot be described by a linear equation.

We have developed a method14 that is similar to Hootons5

original idea, but with a foundation in (ab initio) molecular
dynamics. In this paper we present a substantial refinement
and generalization of the temperature dependent effective
potential method (TDEP), showing how it deals with a model
one-dimensional anharmonic oscillator, a strongly anharmonic
system, bcc Zr, treated from first principles, and 4He modeled
with the Aziz et al. potential.

II. TDEP FORMALISM

The starting point of our method is to introduce a model
Hamiltonian for a Bravais lattice in the harmonic form

Ĥ = U0 +
∑

i

p2
i

2mi

+ 1

2

∑
ij

ui
¯̄�ij uj , (1)

which describes the lattice dynamics. Here pi and ui are the
momentum and displacement of atom i, bold symbols indicate
vectors, and doubly overlined symbols indicate matrices,
respectively. The reference point for the displacements is the 0
K relaxed lattice (initially, in Sec. IV we will revisit this). The
interatomic force constants ¯̄� and the ground state energy U0

are yet to be determined. Given Na atoms in this model system
the forces acting on the atoms are given by⎛
⎜⎜⎜⎜⎝

f1

f2

...

fNa

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
FH

t

=

⎛
⎜⎜⎜⎜⎜⎝

¯̄�11
¯̄�12 · · · ¯̄�1Na

¯̄�21
¯̄�22 · · · ¯̄�2Na

...
...

. . .
...

¯̄�Na1
¯̄�Na2 · · · ¯̄�NaNa

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
¯̄�

⎛
⎜⎜⎜⎜⎝

u1

u2

...

uNa

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Ut

. (2)
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As detailed in our previous paper,14 we seek to determine the
force constant matrices through minimization of the difference
in forces from the model system a real system, simulated, for
instance, by means of ab initio molecular dynamics (AIMD).
An AIMD simulation will provide a set of displacements
{UMD

t }, forces {FMD
t }, and potential energies {EMD

t }. We seek
to minimize the difference in forces from AIMD and our
harmonic form (FH) at time step t , summed over all time
steps Nt :

min
¯̄�

�F = 1

Nt

Nt∑
t=1

∣∣FMD
t − FH

t

∣∣2

= 1

Nt

Nt∑
t=1

∣∣FMD
t − ¯̄�UMD

t

∣∣2

= 1

Nt

∥∥(
FMD

1 . . . FMD
Nt

) − ¯̄�
(

UMD
1 . . . UMD

Nt

)∥∥2
. (3)

This is realized with a a Moore-Penrose pseudoinverse

¯̄� = (
FMD

1 . . . FMD
Nt

)(
UMD

1 . . . UMD
Nt

)+
(4)

to obtain the linear least squares solution for ¯̄� that minimize
�F. This is then mapped to the form

¯̄� −→ �αβ
μν(Rl), (5)

where αβ are indices to atoms in a unit cell with Nuc �
Na atoms and μν Cartesian indices. The pair vectors in
the supercell Rij are mapped to stars of lattice vectors Rl

connecting atoms of type α and β. From this form the phonon
dispersion relations, free energy, and all other quantities can
be extracted. This direct implementation works well,14 but
the numerical efficiency can be improved, as is demonstrated
below.

III. SYMMETRY CONSTRAINED FORCE CONSTANT
EXTRACTION

The form of the force constant matrices depends only on
the supercell used in the AIMD and the crystal lattice. We
begin by populating the force constant matrices �αβ

μν(Rl) with
unknown variables θk ,

¯̄�
11

(R1) =

⎛
⎜⎝

θ1 θ2 θ3

θ4 θ5 θ6

θ7 θ8 θ9

⎞
⎟⎠,

(6)

¯̄�
11

(R2) =

⎛
⎜⎝

θ10 θ11 θ12

θ13 θ14 θ15

θ16 θ17 θ18

⎞
⎟⎠,

and so on, including vectors Rl up to a cutoff deter-
mined by the size of the supercell. Some of these θk

are equivalent. To find out which, we look at the sym-
metry relations the force constant matrices have to obey.

We have15 ∑
lα

¯̄�
αβ

(Rl) = 0 for each β, (7)

¯̄�
αβ

(Rl) = ¯̄�
βα

(−Rl), (8)

�αβ
μν(Rl) = �αβ

νμ(Rl), (9)

that stem, in order, from the facts that there is no net translation
of the crystal, all Bravais lattices have inversion symmetry,
and that the order of the second derivatives does not matter.
Each relation will give us a few equations for the unknowns
θk , reducing their number. In addition to these fundamental
properties of the force constant matrices, we can benefit from
the symmetry of the lattice. If symmetry relation S, belonging
to the point group of the lattice, relates two vectors Rl = SRk ,
we have the following relation:

¯̄�
αβ

(Rl) = S ¯̄�
αβ

(Rk)ST . (10)

By applying Eqs. (7)–(10) the number of unknown variables
is massively reduced. For example, a bcc lattice modeled
as a 4 × 4 × 4 supercell (128 atoms) would have 147 456
unknown variables in ¯̄�, if one does not consider symmetry
arguments. Application of Eqs. (7)–(10) reduces the problem
to 11 unknown variables. Having found the reduced problem
with Nθ unknown variables, it can be substituted back into (2).
The expression for the forces at time step t will schematically
look like this:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1

f2

...

fγ

...

f3Na

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
FH

t

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ1 0 0 . . .

0 θ1 0 . . .

0 0 θ1 . . .

θ2 θ3 −θ4 . . .

θ3 −θ2 0 . . .

−θ4 0 0 . . .

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
¯̄�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1

u2

...

uδ

...

u3Na

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Ut

. (11)

The actual distribution of the θk will depend on the problem
at hand. Carrying out the matrix product gives us a new set of
equations for the forces

fγ =
∑

k

θk

∑
δ

ck
γ δuδ, (12)

where the second sum describes the coefficients for each
θk contained in the expression for force component fγ .
These coefficients are linear combinations of the displacement
components uδ . The explicit form is determined by the lattice.
In matrix form this is written as

F = ¯̄C(U)�, C(U)kγ =
∑

δ

ck
γ δuδ. (13)

Equation (13) is equivalent to Eq. (2), and it is just rewritten
in terms of the symmetry inequivalent interactions. This im-
plementation symbolically reduces the number of unknowns,
generates the function that gives the matrix ¯̄C from a set of
displacements U, and the mapping from the set of θk back to
the force constant matrix �αβ

μν(Rl).16
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To find 
 we minimize the difference in forces between
AIMD simulations and the model Hamiltonian,

min



�F = 1

Nt

Nt∑
t=1

∣∣FMD
t − FH

t

∣∣2

= 1

Nt

Nt∑
t=1

∣∣FMD
t − ¯̄C

(
UMD

t

)
�

∣∣2

= 1

Nt

∥∥∥∥∥∥∥∥

⎛
⎜⎜⎝

FMD
1

...

FMD
Nt

⎞
⎟⎟⎠ −

⎛
⎜⎜⎝

¯̄C
(
UMD

1

)
...

¯̄C
(
UMD

Nt

)
⎞
⎟⎟⎠�

∥∥∥∥∥∥∥∥

2

. (14)

This is again realized with the least squares solution for �,

� =

⎛
⎜⎜⎝

¯̄C
(
UMD

1

)
...

¯̄C
(
UMD

Nt

)
⎞
⎟⎟⎠

+⎛
⎜⎜⎝

FMD
1

...

FMD
Nt

⎞
⎟⎟⎠. (15)

Having determined � we can substitute the components
into the force constant matrix and proceed to calculate
thermodynamic properties of the original (real) system.

The suggested scheme is a good way of using symmetry
to improve the numerical accuracy. Most schemes involving
symmetry revolve around determining the interaction in one
direction and then using the symmetry relations to translate
and rotate that interaction. Any numerical errors—which are
always present—will propagate to all interactions, whereas in
the present approach the errors will be averaged and should
cancel each other to a large degree. The advantage of this
procedure will be illustrated below.

IV. INTERNAL DEGREES OF FREEDOM

If the system has internal degrees of freedom for the
structural relaxations, such as a crystal with point defects,
an interface, or a random alloy, the atoms’ ideal positions and
equilibrium positions do not coincide. While one could find
the relaxed positions from 0 K calculations, the equilibrium
positions are by no means constant with respect to temperature.
TDEP handles this in an elegant way. Note that we find the
second order terms in (1) with a least squares fit of the slope
of force versus displacement. Originally, the displacements
could be calculated with respect to the wrong equilibrium
positions that do not correspond to the temperature of the
simulation. Still, our experience shows that slope will be the
well approximated. That allows for the following procedure:
(a) Guess equilibrium positions, usually the ideal lattice
positions. (b) Use these to calculate the displacements u from
the AIMD simulations. (c) Determine 
 and from that the
residual force

Fr =
Nt∑
t=1

1

Nt

(
FMD

t − FH
t

)
, (16)

where FMD
t are the AIMD forces and FH

t are given by Eq. (13).
Nt is the number of time steps, and subscript t denote the
corresponding forces at time step t . (d) These forces are then
used to move the atoms in a steepest descent scheme towards

equilibrium positions. The whole process is repeated until
convergence.

Our test shows that this procedure is remarkably stable.
The second order force constants � are weakly affected by
the choice of equilibrium positions. The vibrational entropy
and phonon dispersion relations are largely unaffected as well.
Eliminating the first order term, however, is formally important
and crucial when extracting higher order terms. Note that
self-consistent iterations are numerically efficient, because
the most time-consuming step for applications of TDEP is
MD simulations, while their mapping on model Hamiltonian
(1) represents postprocessing of the MD results with minimal
computational cost.

V. DETERMINING THE FREE ENERGY

We will begin by reiterating the traditional way how free
energy is determined in the quasiharmonic approximation.
Divided into parts it will be

F = U − T S

= Utot − T Sel︸ ︷︷ ︸
Fel

+〈Ek〉 + 〈Uvib〉 + Uzp − T Svib︸ ︷︷ ︸
Fvib

, (17)

where a division of the right hand side into parts makes a
clear distinction between the electronic contribution Fel and
the vibrational contribution Fvib. The electronic contribution
is divided into the total energy of the lattice, Utot, and the
electronic entropy Sel. The vibrational contribution is divided
into average kinetic Ek and potential energy Uvib of the ions,
vibrational entropy Svib, and zero point energy Uzp. The lattice
contribution is obtained from density functional theory (DFT)
calculations with the Mermin functional and the vibrational
part from the harmonic approximation via

Fvib =
∫ ∞

0
g(ω)

{
kBT ln

[
1 − exp

(
− h̄ω

kBT

)]
+ h̄ω

2

}
dω,

(18)

where g(ω) is the phonon density of states. In this approach,
all the vibrational contributions are calculated within the
harmonic approximation.

Turning to AIMD, the free energy (in the canonical
ensemble) is divided as

F = 〈UMD〉 + 〈Ek〉 − T SMD, (19)

were the potential energy UMD is temperature dependent. Since
the ions move as classical particles, the zero point energy
is missing. There is unfortunately no information about the
entropy, but through the force constant matrices obtained
using TDEP, the vibrational entropy and zero point energy
can be estimated. For TDEP to have an accurate free energy
the potential energy should, on average, be equal to that of
AIMD. This would ensure that the full anharmonic 〈UMD〉 is
included. The problem is that UMD is rapidly oscillating over
time, requiring a long simulation time to converge. If we look
at the TDEP potential energy

UTDEP(t) = U0 + 1

2

∑
ijαβ

�
αβ

ij uα
i (t)uβ

j (t) (20)

104111-3



HELLMAN, STENETEG, ABRIKOSOV, AND SIMAK PHYSICAL REVIEW B 87, 104111 (2013)

and recognize that it should model the thermal fluctuations
of the original system, we can overcome the numerical
issues. Setting the average potential energies equal, 〈UMD〉 =
〈UTDEP〉, gives us

U0 =
〈
UMD(t) −

∑
ijαβ

1

2
�

αβ

ij uα
i (t)uβ

j (t)

〉
. (21)

By removing the thermal excitations of the harmonic form, the
fluctuations can be decreased by roughly an order of magnitude
and the accuracy of U0 is thus increased to be the same amount.
Including higher order terms in the energy expansion would
further serve to minimize these fluctuations.

The potential energy that was removed will be added again
when the Helmholtz free energy is calculated:

FTDEP = U0 + Fvib, (22)

where Fvib is the phonon contribution given Eq. (18), with the
phonon density of states determined in the TDEP formalism. It
includes the kinetic and potential energy of the ions. In Fig. 1
we further illustrate the difference in methods of obtaining the
free energy.

The formally exact method of thermodynamic integration17

can be used to determine the free energy. This method will
determine the anharmonic correction to the free energy. If the
TDEP model Hamiltonian is used as the reference point, the
full free energy will be

F = U0 + Fvib +
∫ 1

0
〈UMD − UTDEP〉λdλ︸ ︷︷ ︸

�FAH

. (23)

The integral is over the Kirkwood coupling parameter λ,
and the potential energy difference is between the model
Hamiltonian and the molecular dynamics potential energy.

The model TDEP Hamiltonian is constructed to describe the
system as accurately as possible while retaining the harmonic
form. It is then easy to argue that the anharmonic correction
term �FAH should be small. While it is difficult to make

Harmonic
approximation

BOMD

Static DFT
calculations U correct at 0K

U correct at 0K Harmonic F

No explicit entropy

HTEP
U extracted from 
BOMD, correct 

temperature dependence

Model Hamiltonian
entropy contribution

Free energy F=U-TS

Anharmonic 
contributions,
no temperature 
dependence

Correct temperature 
dependent U

No vibrational contribution

H
O
T

FIG. 1. (Color online) Illustration of the different terms included
in free energy calculations using different approaches. The solid boxes
denote the terms that are included, and the striped areas what is
omitted. The main message is to point out that the internal energy has
a nontrivial temperature dependence, something that is omitted in the
quasiharmonic approximation. HOT indicate the higher order terms
that are missing in the TDEP free energy, Eqs. (22) and (18).
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FIG. 2. (Color online) Convergence of the free energy correction
from thermodynamic integration [�FAH in Eq. (23)] with respect to
system size. At system sizes smaller than ∼700 atoms the uncertainty
is about the same order as the correction. This particular case is for
fcc Cu modeled with an embedded atom potential (Ref. 20).

general statements regarding this, our experience so far is that
this correction is very small in every system we have tested.

In addition, the thermodynamic integration technique can
be numerically inefficient when high accuracy is needed.
While one can accurately control the numerical accuracy,11

the finite size effects are more difficult to control, especially
in ab initio simulations. In Fig. 2 we show that the error due
to the limited size is on the same order as the correction to the
TDEP free energy in reasonable simulation sizes.18 It makes
little use to add a correction to the TDEP free energy where the
uncertainty is of the same order of magnitude as the correction
itself.

The TDEP free energy, on the other hand, behaves well with
respect to the limited simulation cell. In Fig. 3 we see that at
the reasonable system size of 100 atoms the free energy is
converged within 1 meV/atom.19 It is also easily converged in
terms of simulation length: In Fig. 4 we illustrate the advantage
of analytically treating symmetry. In our previous work,14

we studied Zr in the bcc phase. There, we found conver-
gence within 1 meV/atom for the free energies after 25 000
time steps. With the symmetry constraints, we converged to

100 300 500 700 900

0.0

0.5
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1.5

2.0

2.5

3.0

Number of atoms

ΔF
 (

m
eV

/a
to

m
)

FIG. 3. (Color online) Convergence of the free energy from TDEP
with respect to simulation size. The system in question is fcc Cu with
a classical embedded atom potential (Ref. 20). At sizes of about 100
atoms it is converged within 1 meV/atom.
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FIG. 4. (Color online) Convergence of the free energy of bcc Zr
at 1300 K with respect to the number of time steps. In (a) symmetry is
treated numerically and in (b) it is treated in the different, analytical
way. The same input data is used in both cases, and it converges to
the same value, but we have improved the performance by several
orders of magnitude.

the same value using 50 time steps, an improvement by several
orders of magnitude.

VI. APPLICATION OF TDEP TO A ONE-DIMENSIONAL
ANHARMONIC OSCILLATOR

To illustrate TDEP we first apply it to a one-dimensional an-
harmonic oscillator. Consider the following one-dimensional
potential:

U (x) = k(x − x0)2

2
+ αe−β(x−x0)2

. (24)

Here x is the position and k, α, and β are known parameters.
The equilibrium position can depend on temperature and is
assumed to be 0 at T = 0 K. The aim is to find the second
degree polynomial fit to Eq. (24) that best describes the system.
If this polynomial only consists of a quadratic and a constant
term, it will describe a harmonic oscillator with well defined
free energy. If one applies the harmonic approximation to this
potential, it will not work well. The second derivative

d2U

dx2
= k − 2αβe−β(x−x0)2 + [4αβ(x − x0)]2e−β(x−x0)2

(25)

will determine the force constant �. The temperature depen-
dence of x0 is omitted and we will end up with

� = d2U

dx2

∣∣∣∣
x=0

= k + 2αβ(2αβx0 − 1)e−βx2
0 . (26)

This, as seen in Fig. 5, will not be a particularly good model
for the true potential. These issues arise from the fact that
the potential energy surface is only probed at x = 0, the
T = 0 equilibrium positions. To work around this problem,
let us apply TDEP and put a particle in the potential given by
Eq. (24) and perform a MD simulation. When controlled by
an appropriate thermostat, the particle will yield a set of Nt

forces, positions, and energies, {Ft ,xt ,Et }, one for each time
step. This data can now be used to fit a potential of the form

U (x) = �̃(0) + 1
2 �̃(2)(x − x ′

0)2, (27)

Displacement (a.u.)

Fo
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e 
(a

.u
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 (a

.u
.)

Displacement (a.u.)

True potential TDEP Harmonic

Α<0
x

0
=0

Α>0
x

0
=0

Α>0
x

0
>0
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(a) (b)

(d)(c)

(e) (f)

FIG. 5. (Color online) Comparison of performance of TDEP
and the harmonic Taylor expansion for the potential described
by Eq. (24). Three examples are shown when the conventional
harmonic approximation fails to describe the potential while TDEP
succeeds. (a), (c), and (e) show the potentials and (b), (d), and
(f) show the forces. α and x0 are the parameters of Eq. (24).
In (a) the harmonic approximation corresponds to a dynamically
unstable system, whereas TDEP provides a dynamically stable
solution. In (b) the harmonic approximation provides an inaccurate
potential. (c) shows how TDEP finds the high temperature equilibrium
position x0.

a harmonic potential centered at x ′
0. Let us begin by determin-

ing the second order term. As discussed in Sec. IV, we guess
a value for x ′

0, use the forces from molecular dynamics {Ft },
and minimize

�F = 1

Nt

Nt∑
t=1

|Ft − �̃(2)(xt − x ′
0)|. (28)

This is easiest realized as a least squares fit of a straight line in
forces, as demonstrated in the right panels of Fig. 5. Equation
(28) determines the second order term. The residual force at
x ′

0, �F , can be used to find the equilibrium position. It is done
in the following manner: A guess for x ′

0 gives us a �̃(2) and
�F . This residual force is used to move x ′

0 to a new position,
and the process is repeated until self-consistency is reached.
When we have found the equilibrium position we can safely
assume that any first order term in our polynomial can be set
to 0. As described in Sec. V, the constant energy term �(0) can
be determined from the energies {Et } obtained from molecular
dynamics simulations:

�(0) = 〈
Et − 1

2 �̃(2)(xt − x ′
0)2

〉
t
. (29)

This is the best possible potential of the harmonic form at a
given temperature that approximates the original potential in
Eq. (24). In Fig. 5 the true potential and the fit are illustrated
for different α, β, and x0. The anharmonism of the potential
is implicitly described by the polynomial fit. In Fig. 6 the
expansion in Eq. (27) has been extended to higher orders for
an anharmonic potential. TDEP, probing the effective potential
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FIG. 6. (Color online) Comparison of the effects of including
higher order terms between the harmonic approximation and TDEP.
When extending the Taylor expansion of an anharmonic potential
(dashed blue line) in the Born–von Karman ansatz to higher order
terms, we end up with the series of lines depicted in (b). (a) shows
the same extension for TDEP. Even limiting oneself to the second
order term (n = 2), the fit will implicitly contain anharmonism
to an arbitrary degree in the range that is thermally accessible.
Extending TDEP to a higher order converges towards the true
potential faster than when higher order terms are added to the
harmonic approximation.

at finite temperature, converges to the true potential rapidly
whereas including more terms in the Taylor expansion in
Eq. (1) by no means guarantees numerical stability at finite
temperature.

VII. PRACTICAL APPLICATIONS OF TDEP

Let us summarize this and present the scheme used to
calculate accurate Gibbs free energy surfaces in the TDEP
formalism from first principles. (a) First calculate DFT total
energy as a function of volume. This provides an equation of
state and allows us to choose the volume interval, which covers
the pressure of interest. (b) If feasible, obtain approximate
harmonic potentials for the systems at hand in this volume
interval. These potentials are used to speed up the calculations
as described in Steneteg et al.21 (c) On the grid of volumes
and temperatures, perform AIMD simulations in the canonical
ensemble. (d) From these simulations, extract internal energy
U0 (21) and interatomic force constants using Eq. (14), ensur-
ing convergence of the free energy with respect to simulation
length. (e) To increase further the accuracy of the calculation,
it is recommended to select a subset of uncorrelated samples
from the AIMD simulations and upsample these to high
accuracy, as described in Ref. 11. A new free energy is
calculated. (f) The equation of state is interpolated over the grid
of temperatures and volumes providing the Gibbs free energy
surface. This is then repeated for each structure, compound, or
composition of interest.

TDEP is a thorough and time-consuming method, but the
results are excellent. The phonon dispersion relations of a
material that is dynamically unstable at zero temperature is a
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FIG. 7. (Color online) Comparison of the TDEP and quasihar-
monic force constant matrices. We have plotted the Frobenius norm
of the force constants vs coordination shell. In the inset we show the
corresponding phonon dispersion relations. The open circles are 0 K
harmonic values and the solid circles are TDEP values extracted at
1300 K. At high temperature the interactions at close distances are
stronger, and fall off faster with increasing distance.

good example. When reevaluating the results for Zr obtained
in Ref. 14, we observe a striking difference in harmonic and
TDEP force constants. This is illustrated in Fig. 7. The effective
TDEP force constants decrease faster with distance compared
to the harmonic ones, a behavior that is expected. It is a vivid
illustration of the temperature dependence of the potential
energy landscape, and at the same time a confirmation that
the TDEP technique describes this renormalization well. From
the free energy surface we can extract the finite temperature
equation of state for bcc Zr, as illustrated in Fig. 8.

To test the performance of TDEP close to melting, we
turn to solid He modeled with the Aziz et al. potential.22,23

The melting curve and bcc-fcc transition just before melting
has been extensively studied (see Ref. 24 and references
therein). As demonstrated in Fig. 9, strongly anharmonic He
poses no problem for the presented method. The stabilization
of the bcc phase before melting is consistent with results
from phase-coexistence simulations. These are at the moment
considered the most accurate methods for determining phase
stabilities at high temperature. They do, however, require
simulation cells much larger than what is accessible to AIMD,
and can only be used with classical potentials. We show
here that with the presented method we can, with simulation
sizes of 125 atoms, accurately reproduce the same transition
temperatures. This verifies the accuracy of the method and
opens up the applicability to high pressure, high temperature
studies of phase stabilities close to melting.
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FIG. 8. (Color online) Equation of state for bcc Zr calculated
with the TDEP method at temperatures 500 K (dashed line), 1000 K
(dotted-dashed line), and 1500 K (dotted line). Equation of state
obtained by means of conventional DFT calculations at T = 0 K is
also shown with a solid line, and the zero temperature equilibrium
volume V0 = 22.83 Å3 is chosen as a reference point at all the
temperatures. Note that bcc Zr is dynamically unstable at T = 0 K
(see the bottom inset in Fig. 7).

VIII. CONCLUSIONS

We have presented a detailed description of the temperature
dependent effective potential method for the treatment of
lattice dynamics of strongly anharmonic solids, including an
extension and refinement to this accurate technique. Moreover,
we have detailed how the temperature dependence of all
components of the free energy should be taken into account,
and presented several successful examples, including a model
anharmonic potential, first principles calculations of the
equation of state for bcc Zr, and classical molecular dynamics
simulations of the bcc-to-fcc transition in 4He.
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FIG. 9. (Color online) The calculated phase diagram for 4He
modeled with the Aziz et al. potential (Ref. 22). The red line indicates
the experimental melting curve. The observation of the stabilization
of the bcc phase before the melting demonstrates that TDEP treats
this system accurately and in agreement with other approaches, even
in such a strongly anharmonic system as 4He.
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