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Resistive transition in frustrated Josephson-junction arrays on a honeycomb lattice
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(Received 20 November 2012; revised manuscript received 14 February 2013; published 21 March 2013)

We use driven Monte Carlo dynamics to study the resistive behavior of superconducting Josephson-junction
arrays on a honeycomb lattice in a magnetic field corresponding to f flux quantum per plaquette. While for
f = 1/3 the onset of zero resistance is found at nonzero temperature; for f = 1/2 the results are consistent with
a transition scenario where the critical temperature vanishes and the linear resistivity shows thermally activated
behavior. We determine the thermal critical exponent of the zero-temperature transition for f = 1/2 from a
dynamic scaling analysis of the nonlinear resistivity. The resistive behavior agrees with recent results obtained
for the phase-coherence transition from correlation-length calculations and with experimental observations on
ultrathin superconducting films with a triangular pattern of nanoholes.
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I. INTRODUCTION

Josephson-junction (JJ) arrays have remarkable properties
in a magnetic field that are strongly dependent on the
geometry of the structure. In addition to being realized as
two-dimensional arrays of weakly coupled superconducting
grains,1–3 they provide important models for superconduct-
ing wire networks4–7 and other inhomogeneous superconduct-
ing systems, when phase fluctuations of the superconducting
order parameter play a major role.8 An idealized JJ array is
equivalent to the frustrated XY model,9 where frustration
can be tuned by the applied external magnetic field. The
frustration parameter f , corresponding to the number of
flux quantum per plaquette of the array, sets the average
density of vortices in the lattice of pinning sites formed
by the plaquette centers. Depending on the topology of the
lattice of pinning sites and the value of f , a commensurate
vortex lattice is favored in the ground state, allowing for a
phase-coherence transition at finite temperature. In this case,
the equilibrium phase transitions and resistive behavior of
the superconducting array are reasonably well understood for
simple, low-order commensurate phases such as f = 1/2 on
a square array9 and f = 1/3 on a honeycomb array.10 The
magnetoresistance for a square JJ array, for example, oscillates
with the applied magnetic field,1,2,6 displaying minima at
integer values of f and secondary minima at f = 1/2 for
decreasing temperatures, corresponding to resistive transitions
at different temperatures.9 The onset of zero resistance for
decreasing temperatures marks the phase-coherence transition
in the JJ array, which for integer f is expected to be in
the Koterlitz-Thouless (KT) universality class. Dynamical
transitions under an external driving current have also been
studied for f = 1/2 on a square lattice, leading to interesting
nonequilibrium phase diagrams.11 However, when the vortex
lattice is incommensurate with the pinning sites, as for
irrational f on a square JJ array3,5,6,12–16 or f = 1/2 on a
honeycomb JJ array,7,10,17–19 the possible phase transitions are
much less understood, showing some features of a vortex glass
without disorder and dynamical freezing at low temperatures.
In particular, a JJ array on a honeycomb lattice with f = 1/2
should display interesting resistive behavior. As a model of
phase fluctuations, it should be relevant to ultrathin supercon-
ducting films with a periodic pattern of nanoholes,20,21 which

can be regarded as a lattice of pinning centers. While for a
square lattice of nanoholes, the magnetoresistance oscillates
with the applied field, displaying secondary minima at f =
1/2 as for a square JJ array,20 for a triangular lattice21 it shows
only minima at integer flux quantum per lattice unit cell.

In early Monte Carlo (MC) simulations of the fully frus-
trated XY model on a honeycomb lattice,10 a phase-coherence
transition at a nonzero temperature in the KT universality class
was suggested and therefore a resistive transition would be
expected for a JJ array in the same lattice with f = 1/2. On the
other hand, a different calculation17 suggested a spin-glass-like
transition. It was also suggested22 that only a crossover region
rather than an equilibrium phase transition should occur at any
nonzero temperature. Recently,18 it was argued that vortex-
ordered phases could be possible at nonzero temperatures but
for very large systems, beyond the ones currently studied
numerically or even experimentally. However, the question
of the resistive transition was not investigated. In a recent
MC study of phase coherence in the fully frustrated XY

model, a zero-temperature transition scenario19 was proposed,
where Tc = 0 but the divergent correlation length, ξ ∝ T −ν ,
should lead to measurable effects at finite temperatures in
the linear and nonlinear resistivity, determined by the thermal
critical exponent ν. So far, a direct calculation of the resistive
behavior of JJ arrays on a honeycomb lattice and comparison
to experiments have not been presented.

In this work, we present results for the resistive behavior
obtained by driven Monte Carlo dynamics. While for f = 1/3
a resistive transition is found at nonzero temperature, for f =
1/2 the results are consistent with a transition scenario where
the critical temperature vanishes and the linear resistivity
shows thermally activated behavior. We determine the thermal
critical exponent ν of the zero-temperature transition for
f = 1/2 from a dynamic scaling analysis of the nonlinear
resistivity. Its value is in fair agreement with recent calculations
for the frustrated XY model from finite-size correlation length
scaling.19 A dynamical freezing at lower temperatures is
also identified from deviations of the fluctuation-dissipation
relation between linear resistivity and voltage autocorrelations.
The resistive behavior is consistent with some experimental
observations in ultrathin superconducting films with a trian-
gular lattice of nanoholes,21 taking into account the effects of
weak Josephson-coupling disorder.
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FIG. 1. (Color online) JJ array on a honeycomb lattice. Filled
circles represent superconducting grains and the lines the Josephson
junctions between them.

II. MODEL AND DRIVEN MONTE CARLO SIMULATION

We consider a JJ array in a uniform transverse magnetic
field described by the Hamiltonian

H = −
∑
〈ij〉

Jij cos(θi − θj − Aij ) − J
∑

i

(θi − θi+x̂), (1)

where θi is the phase of the local superconducting order
parameter of the grains located on the sites of a two-
dimensional honeycomb lattice with lattice spacing a, as
illustrated in Fig. 1. The first term is the contribution from the
Josephson-coupling energy between nearest-neighbor grains.
For uniform coupling we set Jij = Jo, a constant independent
of the magnetic field. The line integral of the vector potential
Aij due to the external field �B = ∇ × �A is constrained to∑

ij Aij = 2πf around each hexagonal plaquette, where f is
the number of flux quantum φo = hc/2e per plaquette. This
model is periodic in f with period f = 1. In the calculations
we choose a gauge where Aij = 2πf ni/2 on the (tilted)
bonds along the horizontal rows numbered by the integer
ni and Aij = 0 on the vertical bonds of the lattice. The
second term in Eq. (1) represents the effects of an external
driving current density (2e/h̄)J applied in the x̂ (horizontal)
direction, coupling to the phase difference, θi − θi+x̂ , between
nearest-neighbor sites in this direction. When J �= 0, the total
energy is unbounded and the system is out of equilibrium.
The lower-energy minima occur at phase differences θi − θi+x̂ ,
which increases with time t , leading to a net phase slippage
rate proportional to < d(θi − θi+x̂)/dt >, corresponding to the
voltage Vi,i+x̂ . For convenience, we use units where 2e/h̄ = 1,
Jo = 1, and a = 1.

To study the current-voltage behavior, we use a driven
MC dynamics method.23 The time dependence is obtained
by identifying the MC time as the real time t and we set the
unit of time dt = 1, corresponding to a complete MC pass
through the lattice. For convenience, the honeycomb lattice is
defined on a rectangular geometry (Fig. 1), with linear size
given by a dimensionless length L. In terms of L, the linear
size in the x̂ and ŷ directions can be written as Lx = L

√
3a and

Ly = 3
2a, respectively. This corresponds to 2L junctions along

the horizontal rows. The usual periodic boundary conditions
are used in the ŷ direction and periodic (fluctuating twist)
boundary conditions24 in the x̂ direction. The twist boundary
condition adds new dynamical variables ux , corresponding to
a uniform phase twist between nearest-neighbor sites along the

x̂ direction. An MC step consists of an attempt to change the
local phases θi and the phase twist ux using the Metropolis
algorithm. If the change in energy is �H , the trial move
is accepted with probability min{1, exp(−�H/kT )}. The
external current density J in Eq. (1) biases these changes,
leading to a net voltage (phase slippage rate) across the system
in the x̂ direction given by

V = 2L
d

dt
ux, (2)

in arbitrary units. Compared to the usual Langevin dynamics,15

this MC method allows access to much longer time scales,
which is required to obtain reliable data at lower temperatures
and current densities. We have determined the electric field
E = V/(2L) and nonlinear resistivity ρ = E/J as a function
of the driving current density J , in the x̂ direction, for different
temperatures T and different system sizes L. We used typically
5 × 106 MC steps to reach the nonequilibrium steady state and
equal time steps to perform time averages, with additional
averages over 6–12 independent runs. In an MC step, the
maximum changes in the local phases θi and the phase twist
ux were fixed to ±π and ±π/(2L), respectively.

The linear resistivity, ρL = limJ−>0 E/J , can be deter-
mined from the nonlinear behavior ρ(J ) obtained from the
driven MC simulations by extrapolating the numerical results
to vanishing currents. It can also be obtained, independently,
from equilibrium voltage fluctuations and therefore can be
calculated in the absence of an imposing driving current
(J = 0). From the Kubo formula, the linear resistance is given
in terms of the equilibrium voltage autocorrelation as

RL = 1

2T

∫
dt〈V (t)V (0)〉. (3)

Since the total voltage V is related to the phase difference
across the system �θ (t) by V = d�θ (t)/dt , we find it more
convenient to determine RL from the long-time equilibrium
fluctuations25 of �θ (t) as

RL = 1

2T t
〈[�θ (t) − �θ (0)]2〉, (4)

which is valid for sufficiently long times t .

III. RESULTS AND DISCUSSION

First, we consider the resistive behavior when f = 1/3.
For this value of the frustration, it is known that a hexagonal
vortex lattice commensurate with the honeycomb lattice is the
ground state10 and therefore a resistive transition would be
expected at a temperature smaller than or equal to the vortex
lattice melting. Figure 2 shows the nonlinear resistivity E/J as
a function of temperature, for the largest system size L = 60,
where finite-size effects are small. For decreasing current
densities J , the nonlinear resistivity E/J tends to a finite value
at high temperatures, corresponding to the linear resistivity ρL,
but extrapolates to very low values at lower temperatures. This
behavior is consistent with a resistive transition occurring at a
critical temperature in the range Tc(f = 1/3) = 0.224–0.225.
In fact, it is slightly smaller than the vortex lattice melting
transition estimated from recent equilibrium MC simulations
of the frustrated XY model on a honeycomb lattice,19
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FIG. 2. (Color online) Nonlinear resistivity E/J as a function of
current density J at different temperatures T for f = 1/3. System
size L = 60. The dashed line indicates power-law behavior E ∝ J 3.

Tm = 0.226(1). At the resistive transition, a power-law relation
E ∝ J z+1 is expected at sufficiently small currents from the
scaling theory,26 where z is the dynamical critical exponent.
For the usual KT transition it is known2,26 that z = 2. In the
present case, as shown by the dashed line in Fig. 2, a power law
separating the T > Tc from T < Tc behavior at small currents
is compatible with z = 2. However, further work taking into
account finite-size effects is required to investigate the critical
behavior in detail. In any case, the above results show clear
evidence of a resistive transition at finite temperature for
f = 1/3.

In contrast to the resistive behavior in Fig. 2, when f = 1/2
the nonlinear resistivity E/J tends to a finite value for
decreasing currents even at low temperatures, as shown in
Fig. 3. Although we cannot exclude a transition at much lower
temperatures, where reliable data could not be obtained as
discussed below, this behavior is consistent with a resistive
transition occurring only at zero temperature. Recent equi-
librium MC simulations suggested such a zero-temperature
transition scenario,19 where Tc = 0 for the phase-coherence
transition but the finite correlation length for T > 0 leads
to measurable effects in the nonlinear resistivity. In fact,
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FIG. 3. (Color online) Nonlinear resistivity E/J as a function of
current density J at different temperatures T for f = 1/2. System
size L = 60.
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FIG. 4. (Color online) Temperature dependence of the linear
resistivity ρL for f = 1/2 obtained from nonlinear resistivity (J → 0)
and from voltage fluctuations (J ≡ 0). System size L = 60. The
separation of the curves gives an estimate of the dynamical freezing
temperature Tf . The dashed line is an Arrhenius fit for T > Tf .

the behavior in Fig. 3 has the main features expected for a
zero-temperature resistive transition. The linear resistivity ρL,
corresponding to a zero current limit of E/J , decreases rapidly
with decreasing temperature and for increasing J , E/J crosses
over to a nonlinear behavior at a characteristic current density
Jnl , which also decreases with decreasing temperature.

To verify in which temperature range the values ap-
proached at low currents in Fig. 3 correspond indeed to
the linear resistivity ρL, we show in Fig. 4 the temperature
dependence of ρL obtained from the nonlinear resistivity as
ρL = limJ−>0 E/J and, without current bias, from Eq. (3).
These values obtained from nonequilibrium and equilibrium
calculations agree with each other above a temperature Tf ∼
0.11 and deviate significantly at lower temperatures. Since this
agreement is only expected when the voltage autocorrelation
in Eq. (3) is obtained in true equilibrium, one can regard
Tf as a signature of a dynamical freezing transition below
which equilibrium is not achieved due to very large relaxation
time. Interestingly, a dynamical freezing transition near the
same temperature was also identified in recent equilibrium MC
simulations by other methods and different dynamics.19 The
apparent KT transition10 and spin-glass transition17 observed
in earlier MC simulations could be attributed to slow dynamics
effects of such dynamical freezing.

The straight-line behavior of ρL(T ) for T > Tf in the log-
linear plot of Fig. 4 indicates an activated Arrhenius behavior,
where the linear resistivity decreases exponentially with
the inverse of temperature with a temperature-independent
energy barrier, estimated as Eb = 1.16(4)Jo. If such behavior
extrapolates to lower temperatures, it suggests that the linear
resistivity can be very small but nevertheless remains finite
for decreasing temperatures, and therefore there is no resistive
transition at finite temperatures. However, as will be described
below, the system behaves as if a resistive transition occurs
at zero temperature, corresponding to a phase-coherence
transition where the critical temperature vanishes, Tc = 0.

A detailed scaling theory26 of the resistive transition with
Tc = 0 has been described in the context of the current-voltage
characteristics of vortex-glass models25–27 of disordered
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two-dimensional superconductors, but the arguments should
also apply to the present case. The basic assumption is the
existence of a second-order phase transition. The correlation
length ξ is finite for T > 0 but it increases with decreasing
temperature as ξ ∝ T −ν , with ν a critical exponent. The
divergent correlation length and relaxation time τ near the
transition determine both the linear and nonlinear resistivity
behavior leading to current-voltage scaling sufficiently close to
the critical temperature and sufficiently small driving current.
If the data satisfy such scaling behavior for different driving
currents and temperatures, the critical temperature and critical
exponents of the underlying equilibrium transition at J = 0
can then be determined from the best data collapse. The
dimensionless ratio E/JρL should satisfy the scaling form26

E

JρL

= g

(
J

T 1+ν

)
, (5)

where g is a scaling function with g(0) = 1. A crossover from
linear behavior, when g(x) ∼ 1, to nonlinear behavior, when
g(x) � 1, occurs when x ∼ 1, which leads to a crossover
current density at which nonlinear behavior sets in, decreasing
with temperature as a power law, Jnl ∝ T/ξ ∝ T 1+ν . The
scaling form in Eq. (5) contains a single critical exponent ν and
does not depend on the particular form assumed for the diver-
gence of the relaxation time τ . However, for sufficiently low
temperatures, the relaxation process is expected to be thermally
activated,26 with τ ∝ exp(Eb/kT ). This corresponds formally
to a dynamic exponent z → ∞, if power-law behavior is
assumed for the relaxation time τ ∝ ξz. The linear resistivity
should scale as26 ρL ∝ 1/τ and therefore it is also expected to
have an activated behavior, ρL ∝ exp(−Eb/kT ). In general,
the energy barrier Eb also scales with the correlation length
as Eb ∝ ξψ , which leads to a temperature-dependent barrier
Eb ∝ T −ψν . A pure Arrhenius behavior corresponds to ψ = 0.

The behavior of the nonlinear and linear resistivity in
Figs. 3 and 4 above the dynamical freezing temperature Tf are
quite consistent with the predictions from the scaling theory.
Figure 5 shows the temperature dependence of the crossover
current Jnl , defined as the value of J where E/JρL starts to
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FIG. 5. (Color online) Temperature dependence of the crossover
current Jnl for f = 1/2 and f = 1/3. System size L = 60. The
dashed line is a power-law fit to Jnl ∝ T 1+ν , giving the estimate
ν = 1.17(14). The arrow indicates the estimated critical temperature
for f = 1/3.
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FIG. 6. (Color online) Scaling plot of the nonlinear resistivity
E/J from Fig. 3, system size L = 60, for different temperatures
above Tf and current range J < 0.03, giving the estimate ν = 1.40(9).
Inset: Finite-size scaling plot of the crossover current Jnl for different
temperatures T and system sizes L, giving the estimate ν = 1.15(9).
The dashed line is the fit used in the data collapse procedure.

deviate from a fixed value, chosen to be c = 1.2. For the lowest
temperature range above Tf , the linear behavior in the log-log
plot is consistent with the expected power law Jnl ∝ T 1+ν for a
zero-temperature transition. From the power-law fit we obtain
a first estimate of the exponent ν = 1.17(14). In contrast, for
f = 1/3, the behavior in the lowest temperature range does not
allow a similar power-law fit; Jnl curves down for decreasing
temperatures and extrapolates to zero at a finite temperature,
consistent with a resistive transition at a nonzero critical
temperature found for f = 1/3. The nonlinear resistivity data
also satisfies the scaling form for different driving currents and
temperatures. Figure 6 shows a scaling plot of the nonlinear
resistivity above Tf according to Eq. (5) for a large system
size L = 60 where the finite-size dependence is small. The
best data collapse provides an estimate of the critical exponent
ν = 1.40(9). The data collapse is achieved quantitatively by
means of a least-squares fit method,19,28 varying the parameter
ν. The scaling function g(x) is approximated by a Taylor series
expansion for small x, truncated beyond fourth order, which is
used to fit the data and provide the least-squares residuals. The
error estimate here corresponds to the statistical error from the
least-squares method and does not include systematic effects.
To check for systematic errors from finite-size effects, which
were assumed negligible in the scaling form of Eq. (5), the
same data collapse procedure was repeated for larger system
sizes, as shown in Fig. 7. The results of these estimates,
ν = 1.36(8) for L = 72 and 1.33(8) for L = 90, agree within
the statistical errors but indicate that the central estimate of
ν decreases slowly with system size. The nonlinear resistivity
should also satisfy the expected finite-size behavior in smaller
system sizes when the correlation length ξ approaches the
system size L. According to finite-size scaling, the scaling
function in Eq. (5) should also depend on the dimensionless
ratio L/ξ and so, to account for finite-size effects, the nonlinear
resistivity should satisfy the scaling form

E

JρL

= ḡ

(
J

T 1+ν
,L1/νT

)
. (6)
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FIG. 7. (Color online) Scaling plot of the nonlinear resistivity
E/J as in Fig. 6, for a larger system size L = 72, giving the estimate
ν = 1.36(8). Inset: Same scaling plot for L = 90, giving the estimate
ν = 1.33(8).

The scaling analysis of the whole nonlinear resistivity data
is rather complicated in this case since the scaling function
depends on two variables. To simplify the analysis,27 we
first estimate the temperature and finite-size behavior of the
crossover current density Jnl where nonlinear behavior sets in,
as the value of J where E/JρL = c, a constant. Then, from
Eq. (6) the finite-size behavior of Jnl can be expressed in the
scaling form

JnlL
(1+ν)/ν = ¯̄g(L1/νT ). (7)

The best data collapse according to the scaling in Eq. (7)
provides an independent estimate of the critical exponent ν.
The inset in Fig. 6 shows that indeed the values of Jnl for
different system sizes and temperatures satisfy this scaling
form with ν = 1.15(9). To check for systematic errors due
to corrections to finite-size scaling, the data collapse was
repeated dropping the smaller system sizes. Dropping system
size L = 24 gives ν = 1.17(7) and L = 24 to L = 36 gives
ν = 1.16(7). Since the resulting changes are small compared
with the error bars, systematic errors of this kind are not
significant for this range of system sizes. The two independent
estimates of ν obtained above, 1.33(8) from the largest system
size and 1.15(9) from finite-size scaling, are not compatible
within the estimated errors. However, the former value could
still be affected by finite-size effects. The latter value should
be more accurate since it is based on finite-size scaling.
This value is in reasonable agreement, within the estimated
errors, with the critical exponent for the zero-temperature
phase-coherence transition, νph = 1.29(15), of the frustrated
XY model obtained recently by correlation length calculations
using equilibrium MC simulations.19 The Arrhenius behavior
for the linear resistivity ρL in Fig. 4 is also consistent with the
exponential divergence of the relaxation time τ found in the
equilibrium MC simulations.

Some experimental observations on ultrathin supercon-
ducting films with a triangular pattern of nanoholes21 are
consistent with the zero-temperature resistive transition for
f = 1/2. In the regime where phase fluctuations of the
superconducting order parameter are more important than
amplitude fluctuations,4,8 this system can be described by

an array of superconducting “grains” coupled by Josephson
junctions in a suitable geometry. The simplest model consists
of a Josephson-junction array on a honeycomb lattice, with the
triangular lattice of nanoholes corresponding to the lattice of
pinning sites (plaquette centers in Fig. 1) and the number of
flux quantum per unit cell of the nanohole lattice corresponding
to the frustration parameter f of the array. In fact, the measured
resistance of samples which are superconducting at low
temperatures and low magnetic fields oscillates as a function of
the magnetic field, displaying minima at integer values of f but
no secondary minima atf = 1/2, as expected from the present
results for the honeycomb JJ array. Moreover, for f = 1/2, the
temperature dependence of the resistance shows the expected
Arrhenius behavior, consistent with a vanishing critical tem-
perature. However, the measured magnetoresistance does not
display minima at f = 1/3, which would be expected from
the above calculations for temperatures near Tc(f = 1/3).
Although the available temperatures in the experiments may
not be sufficiently small to observe this feature, it could also
be the effect of quenched disorder in the Josephson couplings.
In fact, it was recently suggested that inhomogeneities in the
film thickness could lead to significant variations in the weak
links between superconducting islands.21

We have performed additional calculations to verify the
qualitative effect of weak disorder of the Josephson couplings
on the magnetoresistive behavior. We consider a simple
random-coupling model, where Jij in Eq. (1) is defined as
Jij = Jo(1 ± D), with equal probability, and disorder strength
parameter D. The JJ array is still assumed to be on a perfect
honeycomb lattice. The resistivity as a function of temperature
was calculated by averaging over different realizations of the
disorder. Figure 8 compares the temperature dependence of
ρL obtained without current bias, from Eq. (3), for f = 0,f =
1/3, and f = 1/2, and different disorder strengths D. While
the behavior characteristic of a finite-temperature transition for
f = 0 and zero-temperature transition for f = 1/2 remains
for increasing disorder, the resistive behavior for f = 1/3
changes to an Arrhenius form above a disorder strength D ∼
0.35. In this case, the magnetoresistance should only display
minima at integer values of f , as observed experimentally,21

which in turn suggests that coupling disorder should also
play an important role in modeling other phase-coherence
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FIG. 8. (Color online) Temperature dependence of the linear
resistivity ρL for different frustration parameters f and coupling
disorder strengths D. System size L = 60.
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properties of this system. When comparing the disorder
strength D in the model with the thickness variations in the ex-
perimental system, geometrical disorder in the JJ array due to
spatial irregularities of the system should also be taken into ac-
count. Weak positional disorder of the grains, for example, has
significant effects both on phase-coherence and vortex order
at nonzero values of frustration,29–32 even when the Josephson
coupling is uniform (D = 0). One then would expect that the
combined effect of geometrical and Josephson-coupling disor-
der in the model will result in an Arrhenius behavior for f =
1/3 occurring at much lower values of D. These interesting
effects and a more quantitative comparison of such a disorder
model with the experimental system deserves further work.

IV. CONCLUSIONS

We have investigated the resistive behavior of Josephson-
junction arrays on a honeycomb lattice using driven MC
dynamics, focusing mainly on the f = 1/2 frustration and its
relation to experiments on ultrathin superconducting films.21

For f = 1/3, a resistive transition is found at nonzero
temperature, as expected from early results of equilibrium MC
simulations.10 The estimated critical temperature is slightly be-
low the melting transition of the commensurate vortex lattice,19

suggesting two separated transitions. However, further work is
required to obtain a more accurate estimate and to investigate
the critical behavior in detail. For f = 1/2, the results
are consistent with a transition scenario where the critical

temperature vanishes and the linear resistivity shows thermally
activated behavior. The thermal critical exponent ν of the zero-
temperature transition estimated from a dynamical scaling
analysis is in fair agreement with recent calculations from
finite-size correlation length scaling.19 A dynamical freezing
at a lower temperature Tf was identified from deviations of the
fluctuation-dissipation relation between linear resistivity and
voltage autocorrelations. It should be pointed out that, since
equilibrium data could not be obtained below Tf , a resistive
transition at much lower temperatures cannot be ruled out.
Moreover, since the scaling analysis assumes a second-order
phase transition, a first-order resistive transition near or below
Tf is also not excluded. The resistive behavior is qualitatively
consistent with experimental observations in ultrathin super-
conducting films with a triangular lattice of nanoholes,21 taking
into account the effects of weak Josephson-coupling disorder.
A more quantitative comparison to the experimental system,
including geometrical disorder,29–32 and the relation between
the resistive behavior and the vortex structure18 for f = 1/2,
as well as f = 1/3, require further work.
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