
PHYSICAL REVIEW B 87, 094515 (2013)

Magnetic penetration depth in single crystals of SrPd2Ge2 superconductor
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The in-plane magnetic penetration depth λm(T ) was measured in a single crystal of SrPd2Ge2 superconductor
in a dilution refrigerator down to T = 60 mK and in magnetic fields up to Hdc = 1 T by using a tunnel diode
resonator. The London penetration depth λ saturates exponentially approaching T → 0 indicating fully gapped
superconductivity. The thermodynamic Rutgers formula was used to estimate λ(0) = 426 ± 60 nm which was
used to calculate the superfluid density, ρs(T ) = λ2(0)/λ2(T ). Analysis of ρs(T ) in the full temperature range
shows that it is best described by a single-gap behavior, perhaps with somewhat stronger coupling. In a magnetic
field, the measured penetration depth is given by the Campbell penetration depth which was used to calculate
the theoretical critical current density jc. For H � 0.45 T, the strongest pinning is achieved not at the lowest, but
at some intermediate temperature, probably due to matching effect between temperature-dependent coherence
length and relevant pinning length scale. Finally, we find compelling evidence for surface superconductivity.
Combining all measurements, the entire H -T phase diagram of SrPd2Ge2 is constructed with an estimated
Hc2(0) = 0.4817 T.
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I. INTRODUCTION

Superconductivity in the tetragonal ThCr2Si2-type
SrPd2Ge2 was discovered first in polycrystalline samples1

and later in single crystals2 with the superconducting phase
transition temperature (Tc) at 3.0 and 2.7 K, respectively.
The upper critical field (Hc2) was estimated to be 4920 Oe
at T = 0 by using Helfand-Werthamer (HW) theory3 based on
the experimental data obtained only down to T = 0.7Tc.2 It has
been found that Tc and Hc2 can be slightly increased by chem-
ical doping.4 The London penetration depth and coherence
length were reported to be λ(0) = 566 nm and ξ (0) = 21 nm
(Ref. 5) and λ(0) = 345 ± 30 nm ξ (0) = 25.6 ± 0.5 nm.6

These values give the Ginzburg-Landau parameter of κ = 27
(Ref. 5) and κ = 13.5 (Ref. 6), which makes SrPd2Ge2 a
strong type-II superconductor. Furthermore, thermodynamic2

and tunneling spectroscopy measurements are consistent with
a strong-coupling s-wave Bardeen-Cooper-Schrieffer (BCS)
superconductor with the zero-temperature value of the super-
conducting gap of �0 ≈ 2kBTc,5,6—slightly higher but not far
from the weak-coupling value of 1.76.

This superconductor is interesting particularly because
of compositional similarity to the isostructural Fe-and
Ni-pnictide superconductors with comparable Tc such as
KFe2As2, BaNi2As2, and SrNi2P2. Although there is strong
experimental evidence for nodal superconductivity in KFe2As2

(Refs. 7 and 8), the Ni-based compounds have been shown
to be fully gapped by thermodynamic and thermal transport
measurements.9,10 This naturally prompts the question: what is
the structure of a superconducting gap in SrPd2Ge2? So far, not
much work has been done on SrPd2Ge2 in this direction. Tun-
neling spectroscopy between 0.17Tc and Tc is consistent with a
single, isotropic gap superconductor.5 However, the thermody-
namic, thermal transport, and penetration depth measurements
down to much lower temperatures are necessary to provide ob-
jective conclusions regarding the gap symmetry in SrPd2Ge2.

The magnetic penetration depth is among the most useful
probes to explore the superconducting state.11 In zero external

magnetic field, this represents the London penetration depth.
If measured with sufficient accuracy and down to low enough
temperatures, it can be used to understand the angular variation
of the superconducting gap on the Fermi surface.11,12 In the
presence of vortices, the magnetic field penetration includes
contribution of the Campbell penetration depth which depends
on the elastic properties of vortex lattice and is linked directly
to the critical current density.13 There has been only limited
work performed in the mixed state of SrPd2Ge2

6,14 and no
studies of the critical current density over the full temperature
and field range.

In this article we report precision tunnel diode resonator
measurements of the magnetic penetration depth λm(T ) in a
single crystal of SrPd2Ge2 (Tc = 2.7 K) performed in a dilution
refrigerator with temperatures down to T ≈ 0.02Tc and in
magnetic fields up to 1 T ≈ 2Hc2(0). The low-temperature
variation of the London penetration depth, �λ(T ), clearly
shows exponential saturation. The thermodynamic Rutgers
formula was used to estimate λ(0) = 426 ± 60 nm which was
used to calculate the superfluid density, ρs(T ) = λ2(0)/λ2(T ).
Analysis of ρs(T ) in the full temperature range shows that
it is best described by a single-gap behavior, perhaps with
somewhat strong coupling. The upper critical field, Hc2(0) =
0.4817 T was determined by the HW theory from the
field sweeps at different temperatures down to 0.02Tc. In
finite magnetic fields, H < Hc2(0), the Campbell penetra-
tion depth λC(T ,H ) shows a minimum at an intermediate
temperature (rather than at the lowest temperature) which
indicates nonmonotonic variation of the theoretical critical
current (jc) calculated from λC(T ,H ). Additional diamagnetic
response detected above Hc2(T ) is consistent with surface
superconductivity with Hc3(T ) = 1.695Hc2(T ).15

II. EXPERIMENT

Single crystals of SrPd2Ge2 were grown using a self-flux
method as described in Ref. 2. The magnetic penetration depth
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was measured in a dilution refrigerator by using a tunnel
diode resonator (TDR) technique (for review, see Ref. 11).
The sample with dimensions (0.51 × 0.70 × 0.04) mm3 with
the shortest direction being along the c axis was mounted on a
sapphire rod and inserted into a 2-mm-inner-diameter copper
coil that produces rf excitation field with empty-resonator
frequency of 17 MHz with amplitude Hac ∼ 20 mOe, much
smaller than Hc1 of typical conventional superconductors.
Measurements of the in-plane magnetic penetration depth were
done with both Hdc and Hac‖c axis. The shift of the resonant
frequency (in cgs units), �f (T ) = −G4πχ (T ), where χ (T )
is the differential magnetic susceptibility, G = f0Vs/2Vc(1 −
N ) is a constant, N is the demagnetization factor, Vs is the
sample volume, and Vc is the coil volume. The constant G

was determined from the full frequency change by physically
pulling the sample out of the coil. With the characteristic
sample size R, 4πχ = (λ/R) tanh(R/λ) − 1, from which �λ

can be obtained.11,16

III. RESULTS AND DISCUSSION

A. London penetration depth

Figure 1 shows temperature variation of the in-plane
London penetration depth, �λ(T ), measured in a single crystal
of SrPd2Ge2 superconductor which exhibits a very sharp
superconducting phase transition at Tc = 2.7 K as shown in
the inset, indicating a high quality, homogeneous sample. In
the main panel, �λ(T ) is shown with temperatures up to
about 0.67Tc. The saturation in T → 0 limit and almost flat
temperature dependence, �λ(Tc/3) < 10 nm, indicate fully
gapped superconductivity. Experimental �λ(T ) is best fit to
a power-law function, �λ(T ) = AT n, with the exponent of
n = 2.7 ± 0.1 and prefactor of A = 12.2 ± 0.4 nm/K.2.7 The
fitting curve is shown by the red solid line. A power-law
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FIG. 1. (Color online) In-plane London penetration depth in a
single crystal of SrPd2Ge2. Main panel: Open circles represent
experimental data. Solid and dashed lines show power-law and
BCS (single-gap s-wave) low-temperature fits. Dotted line shows
the data for KFe2As2 taken from Ref. 7 for comparison. Inset:
London penetration depth for temperatures between 1.5 K and 3.3 K
demonstrating a sharp transition at Tc = 2.7 K.

function with such a high exponent has very weak variation
at low temperatures, indistinguishable from the exponen-
tial behavior which is predicted for a full superconduct-
ing gap. In fact, the BCS low-temperature form, �λ(T ) =
λ(0)

√
π�0/2kBT exp (−�0/kBT ), where �0 is the maximum

gap value at T = 0, fits the data equally well for T < Tc/3
where it is expected to be valid. However, the best fitting is
achieved with λ(0) = 50 nm and �0 = 0.74kBTc. The latter is
impossible in the single-gap clean limit where �0 ≈ 1.76kBTc

is expected. The value of λ(0) is also much smaller than the
reported value of 566 nm.5 Similar low-temperature features
can be seen in two-band superconductors such as MgB2,17 2H-
NbSe2,18 Lu2Fe3Si5,19 and more recently LiFeAs.20 However,
as we show below, analysis of the superfluid density in the full
temperature range is inconsistent with a two-gap clean limit
behavior. Instead, it is more likely that we are dealing with
moderate pair-breaking scattering (maybe due to well-known
magnetic impurities in Pd) which results in a finite density of
states inside the gap. We also point out that total temperature
variation of London penetration depth up to Tc/3 in SrPd2Ge2

is much smaller than in a known nodal superconductor with
similar Tc, KFe2As2,7 see Fig. 1. This difference indicates a
difference in the density of quasi-particle excitations due to a
difference in the nodal gap structure.

For a metallic sample, the measured penetration depth
above Tc is determined either by the skin depth δ or sample size.
In the case of skin depth limiting, the value of λ(T > Tc) shown
in the inset of Fig. 1 is one-half of the actual skin depth.21

Therefore, we can estimate normal-state resistivity from the
measurements using ρ = (2πω/c2)δ2.20 For SrPd2Ge2 with
ω/2π = f0 = 17 MHz and δ/2 ≈ 20 μm, the calculated
resistivity is approximately 12 μ� cm which is much less
than the experimental value of 68 μ� cm.2 Therefore, we
conclude that our measurements are taken in a sample-size
limited regime. Using the same equation, the estimated skin
depth is 0.10 mm which means the rf field penetration is
comparable to the dimensions of the sample.

Finally, we note that the data exhibit a smooth transition
from superconducting penetration depth to the normal state
between T = Tc and T ∗ ≈ 3.0 K, which has also been
seen in transport measurement.2 Interestingly, T ∗ = 3 K is
the onset of superconductivity observed in polycrystalline
samples.1 A similar feature has also been observed in a related
superconductor BaNi2As2.22 Perhaps this feature requires
further study.

B. Superfluid density

While the low-temperature behavior is important for char-
acterization of the gap minima, the superconducting gap can be
probed at all energies by the analysis of the superfluid density,
ρs(T ) = λ2(0)/λ2(T ), in the entire temperature range.12 How-
ever, determination of ρs requires knowledge of the absolute
value of λ(0) which does not come from our measurements.
In SrPd2Ge2, λ(0) = 40 nm was suggested from measured
band structure parameters in the clean limit,5 which leads
to λ(0) = 566 nm in the dirty limit. Also, λ(0) ≈ 390 nm
was estimated from the upper critical field measurements,2

and λ(0) = 345 ± 5 nm from first field penetration value.6

The variation of the literature values is quite significant and
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FIG. 2. (Color online) Main panel: Calculated superfluid density
ρs with various λ(0)’s. The slope of dashed lines was determined
with �Cp and |dHc2/dT |Tc

using the Rutgers formula as described
in the text. Inset: Variation of |∂ρs/∂t |Tc

/λ2(0) with varying λ(0).
Here ρ ′

s was determined from the experimental data. The gray band
is a theoretical estimate with 5% hypothetical error in �Cp and
|dHc2/dT |Tc

.

below we use, thermodynamic approach based on the Rutgers
formula,23 relating various superconducting state parameters
at Tc. This formula was adapted for the use with the superfluid
density by Kogan24 as briefly described here. In the Ginzburg-
Landau regime, i.e. near Tc, it is straightforward to show that

∣
∣
∣
∣

∂ρs

∂t

∣
∣
∣
∣
Tc

= 16π2λ2(0)

φ0|∂Hc2/∂T |Tc

�Cp, (1)

where φ0 = 2.07 × 10−7 G cm2 is a flux quantum and
|∂Hc2/∂T |Tc

= 0.26 T/K is determined experimentally (see
Fig. 8 below). Specific-heat jump �Cp = 7381 erg/cm3 K
is taken from Ref. 4. Applying these thermodynamic values
suggests |∂ρ/∂t |Tc

/λ2(0) = 21.7 μm−2 where t = T/Tc is the
reduced temperature. This quantity can be compared with
the actual slope of calculated ρs(t) with various λ(0) at Tc

as shown in Fig. 2. In the main panel of Fig. 2, the open
symbols represent the superfluid density calculated using
λ(0) = 300, 400, and 700 nm for triangles, circles, and squares,
respectively. The dashed lines are determined with the slope
calculated by Eq. (1) for the three values of λ(0) quoted above.
The line for λ(0) = 400 nm shows very good agreement with
calculated ρs while the line for λ(0) = 300 nm significantly
underestimates, and the one for λ(0) = 700 nm overestimates
ρs(T ). This procedure can be repeated with various values
of λ(0). The results are summarized in the inset where
the solid triangles represent experimental slopes obtained
by fitting experimental data near Tc to a linear function.
The gray horizontal band represents the theoretical value of
|∂ρ/∂t |Tc

/λ2(0) = 21.7 ± 2.2 μm−2 determined with a 5%
hypothetical error in |∂Hc2/∂T |Tc

and �Cp. In this way, λ(0)
can be determined at the intersection of the theoretical line and
experimental results, which provides that λ(0) = 426 ± 60 nm
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FIG. 3. (Color online) Calculated superfluid density, ρs(T ) =
λ2(0)/λ2(T ) using λ(0) = 426 nm. Open circles represent the exper-
imental data. The dash-dotted and dashed lines represent single-gap
weak-coupling s-wave BCS superconductor in clean and dirty limit,
respectively.

that lies between the literature values. With this value, the slope
of ρs at Tc is determined to be −3.9.

The superfluid density calculated with λ(0) = 426 nm is
shown in Fig. 3. The dash-dotted and dashed lines show
the expectation for the clean and dirty limits of a single-gap
BCS superconductor in the weak-coupling limit, respectively.
An attempt to use a two-gap (clean) γ model25 in the
full-temperature range converges to a single-gap limit with
�(0)/kBTc = 2.2. Therefore, the superconducting gap of
SrPd2Ge2 is best represented by a single-gap s-wave function,
perhaps with somewhat enhanced coupling strength. It was
noted previously that the shape of ρs(T ) is close to a nonlocal-
limiting case, expected in type-I superconductors such as
aluminum and cadmium.26 A similar argument was made in
the work by Kim et al. in which SrPd2Ge2 appeared to be
type I according to the intrinsic electronic structure despite the
fact that experimental ξ (0) and λ(0) values put it in a strong
type-II regime.5 In any case, our study confirms that simple
analysis with an isotropic Fermi surface is not sufficient and,
perhaps, the results could be explained by taking into account
a realistic band structure. We can, however, conclude that the
superconducting gap of SrPd2As2 does not have nodes.

C. Campbell penetration depth

Figure 4(a) shows magnetic penetration depth �λm(T ,H )
as a function of temperature and magnetic field measured
after cooling without magnetic field to target low temperature
and then applying a dc magnetic field of indicated amplitude
[zero-field cooled (ZFC): solid lines] and upon cooling in field
(FC: dashed lines). Increasing dc magnetic field not only sup-
presses the superconducting phase transition and diamagnetic
shielding, but also induces another diamagnetic phase between
the normal state and apparent bulk superconductivity. This
feature appears much clearer above H = 0.2 T and persists at
least up to H = 0.6 T which is far greater than the upper critical
field of the bulk superconductivity. This feature can hardly
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FIG. 4. (Color online) (a) Zero-field-cooled (ZFC) and field-
cooled (FC) in-plane magnetic penetration depth measured in a single
crystal of SrPd2Ge2 shown by solid and dashed lines, respectively.
Open circles mark the minimum in λm(T ) in each magnetic field.
(b) Magnetic field sweeps at fixed temperatures.

be understood with sample inhomogeneity or second phases
since they both should affect the measurements in zero field.
Systematic tracking of this feature reveals its possible con-
nection to surface superconductivity, which will be discussed
later together with the general H -T phase diagram. In addition
to temperature sweeps at fixed dc magnetic fields, magnetic
field sweeps at different fixed temperatures were performed,
and superconducting transitions are clearly detected as shown
in Fig. 4(b). The determined bulk Hc2(T ) is consistent with
Tc(H ) determined from the temperature scans. We note that
the anomaly above Hc2(T ) was not detected in the field sweep
measurements.

Another unusual experimental observation is apparently
the nonmonotonic temperature variation of �λm(T ,H ) for
0.02 T � H � 0.4 T in both ZFC and FC data. The minima of
�λm(T ,H ) are marked by open circles for clarity in Fig. 4(a),
and the locations of these minima are nearly the same for
both ZFC and FC data. This feature is too shallow to be
due to paramagnetic impurities (in which case it should be
most pronounced at H = 0).27 We suggest that this behavior
is caused by the size matching of the temperature-dependent
coherence length and relevant pinning centers. Furthermore,
we observed the inversion of diamagnetic screening between
ZFC and FC runs at about H = 0.2 T. The only way to
obtain a difference between FC and ZFC experiments in
ac response is to assume a nonparabolic pinning potential28

and our results would indicate that the effective pinning
potential shape is strongly field and temperature dependent.
Conventional superconductors, like YbSb2 (Ref. 29) do not
exhibit such upturns in a magnetic field.
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FIG. 5. (Color online) Isothermal Campbell penetration depth as
function of a dc magnetic field calculated from the data of Fig. 4(a).
Inset: �λC(T ,H ) = λC(0.06 K,H ) − λC(T ,H ) is displayed to show
nonmonotonic behavior.

In the approximation of a linear elastic response of a vortex
lattice to a small-amplitude ac perturbation (which is the case
here), the total magnetic penetration depth can be expressed
as a sum of Meissner and vortex contributions, which are
represented by the London and Campbell penetration depths,
respectively, λ2

m = λ2 + λ2
C .13,30,31 Since we know λ from the

measurements in zero field, we can readily calculate λC . At
first glance, the field dependence of the Campbell penetration
depth, shown in Fig. 5, appears sublinear,

√
H , as expected

in conventional superconductors. However, nonmonotonic
behavior is revealed upon closer inspection as shown in the
inset. This nonmonotonic behavior at low fields originates
from nonmonotonic temperature dependence of λm discussed
above.

D. Theoretical critical current

We distinguish theoretical critical current, which is a
parameter entering the simple expression for the Campbell
penetration depth, 4π

c
jc = rpφ0/λ

2
C from the actual critical

current that is affected by intervortex interactions and from the
measured critical (persistent) current that is further affected
by magnetic relaxation. Here rp is a characteristic radius
of the pinning potential. We assume the rp to be equal
to the coherence length ξ (T ) = √

φ0/2πHc2(T ). Obtained
theoretical critical current density is shown in Fig. 6(a) as
function of temperature at different fields and in Fig. 6(b)
as a function of applied fields at different temperatures. The
critical current is nonmonotonic as a function of temperature,
showing maximum at the intermediate temperatures. We
attribute this to the matching between temperature-dependent
coherence length and pinning landscape. This assertion is
plausible given monotonic behavior of the critical current
versus field where the variation of the coherence length is
much weaker.32 Comparison with the previous works also
reaffirms that we are dealing with the upper theoretical estimate
of the critical current, approximately four times larger than
evaluated from the magnetic measurements.14 On the other
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FIG. 6. (Color online) Calculated theoretical critical current (a)
as a function of temperature in different magnetic fields and (b) as a
function of magnetic field at fixed temperatures. Inset in (b) displays
�jc(T ,H ) = jc(T ,H ) − jc(0.06K,H ) to show the maximum jc being
at a intermediate temperature.

hand, direct comparison with our data, Fig. 8, shows that the
line of the maximum current density found in this work is
not an extension of the irreversibility line found in Ref. 14
and probably represents a crossover in the pinning mechanism
reflected in the change of the effective pinning potential.

Unfortunately literature data are only available for higher
temperatures, above T = 2 K, and for weak fields less than
H = 0.1 T, so we do not know whether the nonmonotonic
behavior of jc(T ) propagates to the relaxed persistent current
density. Furthermore, our evaluation of the coherence length,
ξ (T ) (right axis in Fig. 7), allows experimental determination
of the temperature-dependent Ginzburg-Landau parameter,
κ(T ) = λ(T )/ξ (T ), shown in Fig. 7 (left axis). The result
is compared with the Gor’kov theory33 where temperature
correction is introduced as AG(T ) = κ(T )/κ(Tc). The trend is
correct, but the magnitude of the variation is smaller then the
observed. If we attempt to rescale the Gor’kov’s result, the best
agreement at the intermediate temperatures is achieved with
κ (T ) = κ (Tc) [2.6AG (T ) − 1.6]. Perhaps a better agreement
could be achieved with a realistic band structure.

E. H-T phase diagram

Finally, a H -T phase diagram is established based on
the measured �λm(T ,H ) as shown in Fig. 8. Open and
solid circles represent bulk superconducting phase transitions
determined from temperature- and field-sweep measurements,
respectively. The upper critical field was determined at the
maximum of d�λ/dT and d�f/dH in temperature- and field-
sweep experiments in Fig. 4, respectively. The red solid line
through the symbols is the HW fit3 with Hc2(0) = 0.4817 T.
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FIG. 7. (Color online) Calculated Ginzburg-Landau parameter,
κ(T ) = λ(T )/ξ (T ) (symbols, left axis) compared to the Gor’kov
prediction, κ (T ) = κ (Tc) AG (T ) (solid line) and to modified to
best fit the data expression, κ (T ) = κ (Tc) (2.6AG (T ) − 1.6) (dashed
line). Right axis shows estimated coherence length.

This value was determined with the experimental data down to
0.02Tc in our study, and it is very close to the estimated value
Hc2(0) = 0.4920 T in Ref. 2 only with the the slope at Tc by
using the same theory. This is a good indication that Hc2(T )
of SrPd2Ge2 is orbital limited.

The additional diamagnetic phase between bulk Tc and
normal state detected in temperature sweeps is marked by
open squares. This phase transition is clearest in magnetic
fields between 0.2 and 0.6 T. A linear fit through these squares
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FIG. 8. (Color online) H -T phase diagram of SrPd2Ge2. Open
and solid circles represent bulk superconducting transition, Hc2(T ),
determined by temperature and field sweeps, respectively. Red solid
line is fitting over experimental Hc2(T ) using the HW theory.
Open squares indicate the temperatures where diamagnetic response
was detected above bulk Tc. Red dashed line represents Hc3 =
1.695Hc2(T ). Open triangles with black dash-dotted linear fit line
show maximum of the pinning. For comparison, we include the data
for Hc2 (green stars) and a crossover from vortex liquid to vortex
glass phase (violet solid line) from Ref. 14.
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extrapolates down to almost Hc2(Tc) and up to 1 T where
the diamagnetic phase was not seen. It is well known that
surface superconductivity boundary is given by Hc3(T ) =
1.695Hc2(T ).15 This curve fits well the diamagnetic feature
observed in our experiments, so it makes sense to assign it to
surface superconductivity.

The region of the strongest pinning, where the theoretical
critical current is maximum, is marked in Fig. 8 with solid
traingles with linear fit dashed-dotted line. This region lies
deep inside the superconducting state and is probably due to
the matching effect. For comparison, we include the data for
Hc2 (green stars) and for a crossover from vortex liquid to
vortex glass phase (violet solid line), both estimated from the
magnetization measurements.14 The upper critical field is in
a good agreement with our data. The liquid-glass crossover
line, on the other hand, does not extrapolate to the line of the
strong pinning found in our measurements (although there is
no overlapping temperature interval). This indicates that the
maximum theoretical critical current line is not an extension
of the irreversibility line and represents a different crossover in
the pinning mechanism reflected in the nonmonotonic change
in the shape of the pinning potential.

IV. SUMMARY

Temperature- and magnetic-field-dependent penetration
depth was measured in single crystals of SrPd2Ge2 su-
perconductor by using a tunnel diode resonator technique.
For H = 0, the London penetration depth saturates at low

temperatures indicating a fully gapped superconductivity in
SrPd2Ge2. The calculated superfluid density is best described
by a single-gap s-wave superconductor, perhaps slightly on
the stronger coupling side. The Hc2(T ) was measured down
to 0.02Tc and could be well described by the HW theory
with Hc2(0) = 0.4817 T and is clearly limited by the orbital
depairing. In the magnetic fields between 0.2 and 0.6 T, another
diamagnetic phase different from bulk superconductivity is
clearly seen, and this phase line is consistent with the surface
superconductivity bound by the third critical field, Hc3 =
1.695Hc2. The Campbell penetration depth and the theoretical
critical current density both exhibit nonmonototic behavior
with the strongest pinning at intermediate temperatures. We
assign maximum pinning to matching effects between the
temperature-dependent coherence length and the relevant
pinning landscape length scale.
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