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Critical behavior of coupled 4He regions near the superfluid transition
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Proximity and coupling effects between contiguous regions of 4He are expected to occur over a distance on
the order of the temperature-dependent correlation length ξ (t). We present recent measurements of 4He confined
in arrays of (2 μm)3 boxes linked through a 4He film. The specific heat and superfluid fraction of the 4He
in these geometries reveal effects which occur at distances much larger than expected. These effects include
enhancements in specific heat and superfluid fraction as well as shifts in the temperatures of the superfluid onset
and specific-heat maximum. Our analysis gives evidence for the relevance of the finite-size correlation length
ξ (t,L) in explaining these effects even though the effects occur at distances over an order of magnitude larger
than ξ (t,L). These results can be used to deduce the finite-size scaling locus for ξ (t,L). The spatial distance over
which coupling and proximity effects are observed raises questions regarding the physical mechanism for these
effects and the interpretation of ξ (t). Lastly, these results are discussed in connection to other measurements of
4He in confined geometries, and the relevance to other critical systems.
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I. INTRODUCTION

The critical behavior of 4He at the superfluid transition
has been extensively studied.1,2 The behavior in the ther-
modynamic limit has been well documented in a variety of
experiments. Thus, the critical exponents for the specific heat,
superfluid density, and, indirectly, the correlation length have
all been obtained (see Ref. 1 for an early review and Ref. 2,
Sec. II for a more recent review). Theoretical calculations of
the XY model yield exponents which are of comparable, if not
better, precision to experimental results.3 Although there are
some small discrepancies, one might say that critical behavior
has been well tested in the thermodynamic limit and there is
good agreement with theoretical expectations.

4He has also been studied when confined in a variety of
heterogeneous media from packed powders to porous glasses.
In general, one finds that these studies yield data which are
unique to each particular confinement.4,5 In the case of uniform
confinement, most extensively for films formed between two
parallel surfaces representing two-dimensional (2D) crossover,
finite-size scaling has been tested over a wide range of film
thickness.2 These measurements, which use the thickness of
the films as an independent scaling variable, also yield more
directly from finite-size scaling the value of correlation length
exponent. In the bulk limit, this is obtained indirectly from the
superfluid density.

Experiments have also been done with 4He in arrangements
whereby two bulk regions of fluid are separated by small
openings or weak links.6,7 These links are “weak” because
near the bulk transition temperature Tλ, their size, both
length and traverse dimension, becomes comparable to the
temperature-dependent correlation length which diverges at
the transition Tλ as

ξ± = ξ±
0

∣∣∣∣1 − T

Tλ

∣∣∣∣
−ν

≡ ξ±
0 t−ν . (1)

The amplitudes ξ−
0 = 0.343 nm (Ref. 8) and ξ+

0 = 0.143 nm
below9–11 and above12 Tλ, respectively. The correlation-length
exponent is ν = 0.6705.11 These experiments verified that
Josephson effects could be seen in 4He as they have been

seen in low-temperature superconductors,13 and in superfluid
3He.14 The results for 4He are very significant because the
effects are manifest only in the critical region and in the
presence of fluctuations of the same spatial extent as the
weak links themselves. This is unlike the low-temperature
superconductor and 3He, which have values of ξ0 orders of
magnitude larger than 4He, and where fluctuations play no
significant role. Thus, in these cases tunneling and weak link
effects can be seen well away from the superconducting or
superfluid transition temperature. Theoretical considerations
about Josephson effects in 4He were made by Mamaladze and
Cheishvili15 very early after the observations with supercon-
ductors. In their work, they use mean-field theory to explore the
coupling between two regions of bulk liquid, or in other words,
proximity effects of bulk liquid on 4He confined in a slit.

A different type of experiment can be done with 4He
whereby one uses a weak link to connect two regions which are
not bulk but have a finite, relatively large, spatial dimension.
Two variables can now be changed: the size of the coupled
regions and the strength of the weak link. Information can
now be obtained about the strength of the coupling between the
large regions through the weak link, as well as thermodynamic
information about the weak link itself, modified, as one might
expect, by the presence of the larger regions. One might call
the latter a proximity effect of the large region on the weak
link. Experiments on Josephson effects do not yield such
information, nor are they designed to do so. These coupling
and proximity effects are more generic than just for liquid
4He and should pertain to any continuous transition near the
critical point subject to equivalent conditions. The general
problem is one of variation of the order parameter and other
thermodynamic functions from one region to another, and
how these are influenced by neighboring ordering regions
and inherent critical fluctuations. These regions might have
close, but different, transition temperatures due, for instance,
to chemical doping or because of spatial constraints. One might
well expect that these effects would be manifest on the scale of
the temperature-dependent correlation length. However, if the
coupled regions are both finite and one is characterized by a
small dimension L, it is not the bulk correlation length which is
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relevant, but one suitably renormalized for finite-size effects,
ξ (t,L). We are unaware of any prior measurements of this
type of coupling in any system at a continuous transition. We
note that the establishment of coupling and proximity effects
relies on knowing the bulk behavior and, more importantly, on
knowing the behavior of the system uniformly confined but in
isolation whereby such effects are absent.

The measurements of specific heat and superfluid density
we are reporting are for systems consisting of an array of boxes
of 4He with (2 μm)3 volume and linked by, or in equilibrium
with, a uniform film 33 nm thick. We vary, in separate
experimental cells, the separation among the boxes but keep the
film at the same nominal thickness. Thus, our system consists
of dots of helium which, as ξ (t,L) grows, crosses over to 0D
and, a film which crosses over to 2D. These measurements
build on data in which boxes of 4He in (2 μm)3 and (1 μm)3

boxes where studied while connected through narrow channels
of different size, thus weak links of different strength.16,17 This
work quantifies these earlier observations by using a simplified
confinement geometry where there are no channels and each
box is connected to its neighbors in a more controlled and
quantifiable way. What we find is that the mutual influence
between two different connected regions in which the helium is
confined extends to distances more than an order of magnitude
larger than ξ (t) and perforce at even much larger distances than
ξ (t,L). This is very surprising, considering that the meaning
attributed to the correlation length near a critical point is
the distance over which information is transferred,18 or the
distance to which order propagates.19 Thus, correlations or
information, such as ordering, between separate regions are
expected to decay exponentially with the ratio of distance to
ξ (t). Some of the work reported here has appeared in other
brief publications.20–23 Here, we report new data and analysis
and summarize all of these results in a comprehensive way.

This paper is organized as follows: In Sec. II, we describe
the construction of the experimental cells and our measuring
techniques. This is followed by results and finite-size scaling
analysis of a uniform 33-nm film. Data for 4He in boxes
and connected through a 33-nm film are then presented and
analyzed for coupling and proximity effects. We also present
data for the superfluid density of an 8.7% concentration of 3He
in 4He that are relevant to the issue of coupling and proximity
effects. We conclude with a discussion of how these results are
relevant to other measurements of 4He in confined geometries,
and other critical systems.

II. EXPERIMENTAL DETAILS

A. Confinement cell and cryostat

The measurements reported in this paper were performed
on 4He confined between two silicon wafers, each with a
patterned thermal oxide. The fabrication of the wafers, from
oxide growth to etching, is performed at the Cornell Nanoscale
Science and Technology Facility.24

The top wafer, which defines the film region of the
confinement, is a 2-inch [100] single-crystal silicon wafer
375 μm thick. The wafer is cleaned in standard RCA acid
and base baths before the native oxide is removed in a
20:1 hydrofluoric acid (HF) bath.25 Immediately following

this, a dry thermal oxide growth is performed resulting in
a nominally 33-nm oxide. The standard deviation in oxide
thickness across an individual wafer is about 1 nm as measured
by ellipsometry. The wafers are then spun with photoresist
before being exposed with a contact aligner. The unexposed
regions include a 4-mm border along the perimeter of the
wafer, an array of (100 μm)2 squares throughout the wafer
and a (8-mm)2 central region of 15-μm-wide channels. These
channels are a technical necessity for the precision of our
measurement but are unimportant to the scope of this paper.26

Finally, the exposed regions are wet etched away using 30:1
buffered oxide etch and the residual resist is removed. This
leaves a bare silicon wafer with a border of oxide to act as a seal
on the confinement cell, an array of (100 μm)2 by 33-nm oxide
posts which will act as support pillars keeping the separation
between the wafers uniform while bonding, and the previously
discussed central region.

The bottom wafers, which define the box geometries, are
prepared with the same RCA clean/HF bath procedure before
a wet thermal growth is performed. This leaves a nominally
2-μm-thick oxide27 with a ∼1-nm standard deviation in thick-
ness across the wafer similar to that observed in the top wafers.
Processing the (2 μm)3 boxes in the oxide is more complicated
than the contact exposure and wet etching used for the top
wafers. A mask for a 5× reduction stepper must be designed
to expose the array of boxes. Since the spacing between boxes
is small (2–4 μm), an optical proximity effect causes the
exposed features to be larger than one may expect from a
simple 5× reduction. This growth of the features is different
for each box spacing and must be adjusted for in the mask
design. Once an appropriate mask has been made, it is stepped
across the wafer exposing the box pattern in photoresist. To
achieve the necessary vertical side walls in such a thick oxide,
a CHF3/O2 reactive ion etch is performed. The initial etch rates
are calculated from the rates in unpatterned oxide, however,
the rate for open oxide differs from that in the small features.
Therefore, after the first attempt is etched, the wafer is then
cleaved and examined under a scanning electron microscope
(SEM) to determine the correct etch rate. An example of such
a micrograph is shown in Fig. 1(a). The new rate is used to etch
another pattern in a separate growth; this wafer is also cleaved
to ensure that the oxide is etched down to the bare Si in the box
regions. Finally, a third wafer, to be used in the measurement,
is fully processed with the appropriate etch times and charac-
terized with an SEM as seen in Fig. 1(b). All processed wafers
are given a final cleaning in an O2 plasma for about 10 min.
This removes all traces of residual resist. We found this to be
necessary in order to obtain good wafer bonding.

Once the wafers have been processed, they are brought back
to our laboratory to complete the cell fabrication. A 0.029 inch
diameter diamond drill bit is used to make a small filling hole
in the center of the top wafer. This will be used to introduce 4He
into the cell. The wafers are then RCA cleaned and rinsed with
deionized water before direct wafer bonding.28 Once bonded,
the wafers form a cavity between them with the geometry
shown, not to scale, in Fig. 2. In this figure, the larger squares
are the oxide posts belonging to the top wafer and the gray
region is the oxide belonging to the bottom wafer.

Once the bonded cell is formed, a Constantan29 film heater
is evaporated on the bottom wafer. The heater pattern has three
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FIG. 1. (Color online) SEM micrographs used to calculate etch rates and characterize the boxes (see text for details).

different current paths allowing the use of two independent
heaters at any one time. A filling line is epoxied to the cell via
a cylindrical silicon slug of 8 mm diameter with an axial hole.
The large slug is robust enough to withstand the difference
in thermal contractions between the metal filling line and the
silicon, thus preventing any unwanted stress on the fragile
wafers. The filling line consists of a copper flange that will
eventually attach to the cryostat via an indium O-ring, a
stainless steel (ss) tube soldered to a second copper piece also
soldered to a thin ss sleeve which is epoxied to the slug. Lastly,
two doped germanium thermometer chips and several indium
heat sinks are epoxied on the top wafer. A cartoon showing
the final arrangement of the confinement cell is shown as an
inset in Fig. 3. Once assembled, the filling line is attached to
a stage (S1) of the cryostat with an indium O-ring. A valve is
located on S1 which isolates the cell from the rest of the filling
line. Indium heat sinks (not shown in the figure) are attached
via a copper wire to a second stage (S2) of the cryostat. Both
S1 and S2 contribute to the temperature stability and control
of the cell as discussed in the following.

FIG. 2. (Color online) A cartoon cut-away view (not to scale) of
two bonded wafers. See text for details of the features.

B. Temperature control

The S1 and S2 stages are both individually temperature
controlled using a Proportional, Integral and Differential (PID)
feedback loop between an encapsulated Ge thermometer
and an Ohmic heater via a four-terminal ac bridge with the
standard at low temperatures. A seven decade ratiotransformer
(ratiotran) is used as the balancing element. Null is detected
with a lock-in amplifier. The temperature of S1 is held slightly
higher than S2 causing the temperature of the confinement
cell to naturally fall between the two. The cell’s temperature
is further regulated with one of its thermometers and a similar
bridge arrangement and PID feedback loop. This regulates
the short-term fluctuations of the cell to about 1 μK with no
visible long-term drifts over the time of data acquisition.

4He is condensed through the filling line into the confine-
ment cell. To determine the absolute temperature and, more
importantly, the bulk transition temperature Tλ, excess 4He is
intentionally condensed forming a puddle of bulk liquid in the

FIG. 3. (Color online) An example of the temperature calibration
of a Ge thermometer. Plotted on the right vertical axis (triangles) are
the residuals of the fitted temperature function. The inset is a cartoon
of an assembled confinement cell and filling line.
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silicon slug. The vapor pressure of this liquid is measured while
regulating its temperature via the cell’s feedback loop. After a
thermomolecular correction,30 the vapor pressure is converted
to a temperature using the ITS-90 temperature scale.31 The
temperature is then used to calibrate the cell thermometers.
The temperature is fit to a polynomial as a function of ratiotran
setting. An example is shown in Fig. 3 along with the residuals
of the fit. The data scatter within a band of ±50 μK. The
bulk transition temperature Tλ is determined in situ as well
by allowing the temperature of the cell to drift slowly and
observing a kink in the drift rate. This kink corresponds to the
rapid increase in heat capacity resulting from the bulk helium
above the cell going through its specific-heat maximum. Using
the temperature scale and the measurement of this kink, we
are able to determine Tλwithin ∼ ± 2 μK. This determination
is more relevant than the absolute temperature since all of the
analysis is in the critical region, i.e., the reduced temperature
t = |T − Tλ|/Tλ is the important variable.

C. Heat capacity and superfluid fraction

For both heat-capacity and superfluid density measure-
ments, the confinement cell is regulated as discussed above to
an average cell temperature Tθ . In the heat-capacity measure-
ment, a second heater path is used to induce small temperature
oscillations about Tθ . Using a lock-in amplifier and a second
thermometer, one can measure the amplitude of these oscil-
lations. Typically, by averaging over several minutes, these
oscillations can be resolved to better than 50 nK. Knowing the
power through the heater and the magnitude of the temperature
oscillations one can determine the heat capacity. Equations
for the frequency response are given in Ref. 26. The empty
confinement cell is measured over a large temperature region
before being filled with 4He. Typical values for this heat
capacity are in the 40–60 μJ/K near Tλ and measured to
within ±0.3%. This background measurement is subtracted
from the filled cell measurement leaving only the heat capacity
of the confined 4He. The precise knowledge of the confinement
volume afforded by the nanofabrication allows the number of
moles of 4He to be calculated and therefore the specific heat.
Far from Tλ, the result should match the bulk data since in this
temperature region finite-size effects are too small to observe.
This is ensured by multiplying all data by a normalization
factor on the order of 1% which accounts for the uncertainties
in determining the absolute value of the specific heat. The
above measurement technique is described in more detail
in Ref. 26.

Our measurements of heat capacity involve using a heat
flux through the confined helium. There are two effects which
come into play in this case which would not be of concern in
an adiabatic measurement. First, the transition temperature in
bulk helium is affected by a heat flux as reported for instance
in Refs. 32 and 33. This would add to effects of finite size and
coupling which are our primary concerns. Specifically, one
finds that the shift in transition temperature due to a power
flux Q through the helium is given by32

tc(Q) = Tλ − Tc(Q)

Tλ

=
(

Q

Q0

)x

, (2)

where experimentally one finds x = 0.813 ± 0.012; Q0 =
568 ± 200 W/cm2. Theoretically, one has x = 1/2ν � 0.75;
Q0 = 6572 W/cm2. This is discussed in Ref. 34. In our
measurements, we typically vary the amplitude of the tem-
perature oscillations using higher amplitudes away from the
transition and smaller amplitudes closer in. The maximum
rms temperature oscillations are about 10 μK for |T − Tλ| >

10−4 K and 2 μK for the region closer to the transition. For
the cells of box confinement, the frequency of temperature
oscillations is in the range of 42–83 Hz. To achieve the
above temperature amplitudes, different power fluxes are used.
Closest to the transition we used a maximum total power which
for the various cells is in the range of (1.5–2.2) μW. This
includes the power used to regulate the average temperature
of the cell. The heaters are patterned spirals of copper nickel
alloy evaporated on the bottom of the cell which is 5 cm in
diameter. These powers yield a corresponding heat flux in
the range of (0.071–0.11) μW/cm2 in the region closest to
the transition. Equation (2), with the experimental parameters,
yields a shift of the transition temperature due to the largest flux
of tc(0.11 μW/cm2 = 1.3 × 10−8. This shift is even smaller if
one uses the theoretical parameters. Thus, the shift due to the
measuring power is too small to influence our data. The second
effect due to a finite flux through the helium is an enhancement
of the specific heat �CQ. This can be written as follows:34

�CQtα = A(Q/Qc)2, (3)

where Qc is obtained by inverting Eq. (2) for any temperature
t , A = 69 ± 4 J/mol K, and α = −0.0115 (see below). For
t = 10−6, we find using Q0 = 6571 W/cm2 a value of Qc =
6.57 × 10−5 W/cm2 and hence at t = 10−6 a heat-capacity
enhancement of 1.6 × 10−4 J/mol K. This is also a negligible
effect for our measurements.

The superfluid fraction ρs/ρ measurement is very similar
to the heat-capacity technique. The cell is regulated at Tθ and
a second heater is used to impose an oscillatory temperature.
However, unlike in the heat-capacity measurement, the fre-
quency is varied. During the heating portion of the temperature
oscillations, the chemical potential μ in the cell increases
relative to that of the bulk in the filling line. As a result,
superfluid flows into the cell from the filling line. The normal
fluid counterflow is prevented because the spatial confinement
of the cell is smaller than the viscous penetration length. With
the normal fluid stationary, the influx of superfluid causes an
increased pressure; this acts as the restoring force driving the
superfluid back out of the cell during the cooling portion of
the temperature oscillation. This process results in a Helmholtz
resonance between the 4He in the confinement and the bulk
4He in the filling line. The resonant frequency is proportional
to

√
ρs/ρ, which is characteristic of the smallest confinement

region. In the case of the cells discussed here, this region is the
filling film. By varying the drive frequency of the heater and
recording the resultant temperature oscillations, the resonance
can be easily identified. It is also identified in the phase
difference between the drive and pickup signals. The equations
for these line shapes as well as a more complete description
of this “adiabatic fountain resonance” (AFR) measurement
technique are found in Ref. 35.
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FIG. 4. The specific heat of the 33.6-nm film analyzed using the
measured oxide thickness as the 4He film thickness. The solid lines
are for the bulk specific heat. The square symbols are from Ref. 40
and extend the comparison outside the critical region.

III. RESULTS AND ANALYSIS

A. 33-nm film

We begin the experimental results by discussing the mea-
surements of a uniform film. In this confinement, the bottom
wafer was not patterned. The top wafer’s oxide thickness
was measured using ellipsometry to be 33.6 ± 0.98 nm and
patterned with the top wafer features discussed in the previous
section. The specific heat of the helium in this confinement
is shown in Fig. 4. Also plotted are solid lines indicating the
bulk specific heat in the critical region using a function given
in Ref. 26 which represents data from four different sets of
measurements.36–39 Also shown, as boxed symbols, are bulk
data from Ref. 40 which extend beyond the critical region.
The current data were analyzed using the measured oxide
thickness of 33.6 nm as the 4He film thickness. When analyzed
this way, the normalization to bulk required a 9% correction,
which is unusually high and beyond what we can attribute
to uncertainties in electronic gains, geometry of the cell, and

temperature scale. Revisiting the assumption that the 4He film
is accurately characterized by the grown oxide thickness, we
discovered that it is necessary to take into account the native
oxide which, although traditionally believed to be <2 nm, has
been reported recently41,42 at over 4 nm depending on the
chemical treatment of the silicon. Reanalyzing the data as a
30-nm film did not change the result in a significant way,
but does require only a 2% normalization to agree with bulk
behavior far from Tλ. This is much more in line with results
with other experimental cells.

We further checked the resulting specific heat against finite-
size scaling as described in Ref. 2. To do this, one needs to
calculate the following quantity:

[C(t,∞) − C(t,L)]tα ≡ �Cptα = g1(t l1/ν), (4)

where α = −0.0115 is the critical exponent of the bulk
specific heat.43 This quantity �Cptα is expected to fall on
a universal locus19,39,44 as a function of the variable L/ξ (t)
or, equivalently, t(l)1/ν , with l = L/ξ0. The results, plotted in
Figs. 5 and 6 for T > Tλ and T < Tλ, respectively, show that
the 30-nm analysis is much more consistent with previous
results. When analyzed as a 33.6-nm film, the data fall
somewhat higher than the locus defined by previous planar 4He
data, most obviously at large values of the scaling variable.
When analyzed as a 30-nm film, the data lie exactly on the
average locus of the other data. This persists until the region
of the specific-heat maximum indicated by the minimum in
Figs. 6(a) and 6(b) where scaling for all data breaks down.
The better agreement of the specific-heat scaling is mirrored
in the single-point scaling results for the magnitude of the
specific heat at Tλ, as well as the shift of the maximum and the
value of the specific heat at the temperature t0 where ξ (t0) = L.
These results are discussed in greater detail in Refs. 45 and 23.

The above discussion of scaling and the normalization of
the data both indicate that the true thickness of the 4He film
is closer to 30 nm than 33.6 nm. However, the films discussed
in future sections, used for linking 4He in box geometries,
can not be tested against scaling, thus can not be analyzed
and checked in this way. However, this is irrelevant to our
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FIG. 5. Specific-heat scaling data for planar 4He films above Tλ. Two analyses, (a) and (b), of the current film are shown (see text for
discussion).
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FIG. 6. Specific-heat scaling data for planar 4He films below Tλ. Two analyses, (a) and (b), of the current film are shown (see text for
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conclusions since all our wafers are processed in the same
way and any native oxide will be present on all the wafers.
With this in mind, we have characterized all films using the
as-grown oxide thickness as the 4He film thickness rather than
the reduced value suggested by scaling of a uniform film.
The true thickness might be an issue if future experiments
are designed to explore coupling effects as a function of film
thickness rather than as a function of box separation, as we
have done. We also note that this 33.6-nm film is the thinnest
fully confined film for which finite-size scaling of the specific
heat has been verified in 4He.

B. (2 μm)3 boxes spaced 4 μm with a 31.7-nm film

The measurement of the isolated 33.6-nm film provides the
reference data to compare with films of the same thickness in
contact with arrays of boxes. With this intent, a confinement
cell was assembled containing an array of (2 μm)3 boxes
spaced 4 μm edge to edge connected through a measured
31.7-nm film. The heat capacity of this cell was measured and
the empty cell signal subtracted. The resulting heat capacity
is shown in Fig. 7. The data are plotted on a semilog plot
as a function of reduced temperature t for two branches,
one for above and one for below Tλ. Two distinct features
on the cold branch are evident. They are the specific-heat
maximum of the boxes, which occurs at tm,box � 1.5 × 10−5,
and a feature associated with the heat-capacity maximum of
the film at tm,film = 1.4 × 10−3. Comparing the latter with that
of the isolated film, which is also plotted in Fig. 7, we see the
first sign of a proximity effect. When in contact with larger
regions of 4He, the temperature of the specific-heat maximum
of the film is shifted to a warmer temperature.

The shift in tm,film is mirrored in the superfluid fraction
ρs/ρ. The AFR technique was used to measure the ρs/ρ of the
31.7-nm film linking the boxes. The result is shown in Fig. 8
along with the superfluid fraction of the isolated 33.6-nm film
discussed in the previous section. The solid line is the ρs/ρ

for bulk 4He. We use the following representation for this:

ρs

ρ
= At0.6718(1 + Dt0.5)(1 − Bt + Ct2) (5)

with A = 2.471 35, B = 1.267 03, C = 1.083 64, and D =
0.261 611. The first bracket represents the correction to scaling
term and the second extends the representation of ρs/ρ to a
wider temperature range. Data from Refs. 46 and 47 are used
for the critical region. This is extended using the tabulated data
in Ref. 48. Focusing first on the isolated film data, one sees that
due to finite-size effects they deviate from the bulk data (solid
line), and finally vanish at t = 3.0 × 10−3 below Tλ. Due to
finite-velocity effects, we are not able to follow the resonance
up to the true tc, however, our measurements are very close to
this and are in agreement with the prediction of the expected
universal Kosterlitz-Thouless jump.49 This can be written as

�ρs = 4m

Lλ2
T

, (6)

where λT = h/2πmkBT is the thermal wavelength, m is
the mass of a 4He atom, and L is the film thickness. The
jump predicted for a 33.6-nm film is indicated by the dashed
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FIG. 7. (Color online) The heat capacity of 4He confined in an
array of (2 μm)3 boxes spaced 4 μm edge to edge, connected through
a 31.7-nm film. Also plotted on the right axis is the heat capacity of
the isolated 33.6-nm film (see Fig. 4).
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FIG. 8. (Color online) The superfluid fraction of a 31.7 ± 0.1-nm
film above an array of (2 μm)3 boxes spaced 4 μm. Also plotted are
data from the 33.6-nm 4He film without any boxes discussed in the
previous section.

horizontal line in Fig. 8. Note that if one were to take the
film thickness as 30 nm, as per our earlier discussion, this
dashed line would be higher by ∼10% and actually closer to
the data. Focusing now on the data for the film above the array
of boxes, we see that they are clearly enhanced in magnitude
throughout the region surrounding t = 3.0 × 10−3. Not only is
the magnitude enhanced, but the superfluid onset tc is shifted in
a similar way to the specific-heat maximum tm,film. The onset
for the isolated film is 3.0 × 10−3 and shifts to 1.8 × 10−3

when the film is in contact with the array of boxes. The
enhanced ρs/ρ, the shift in tc, and the shift in tm,film occur
at temperatures where the separation of the boxes is up to
145 times ξ−(t), much farther than one would expect on the
basis of any proximity theory. We note that the specific heat
and superfluid density are independent measurements.

To investigate whether ξ (t) is relevant to these effects, an
8.7% mixture of 3He in 4He was measured in this cell. Adding
3He to 4He increases the magnitude of the correlation length
at the transition. Specifically, the correlation length is given
by50–52

ξ−(t) = 2πm

λ2
T ρ

(
ρ

ρs

)
= ξ−

0 t−ν, (7)

where ρ is the density of the liquid and ρs/ρ behaves to leading
order as

ρs

ρ
= k(x)tν . (8)

Thus, the amplitude of the correlation length prefactor at small
concentrations x is given by

ξ−
0 (x)

ξ−
0 (0)

= Tλ(x)ρ(0)k(0)

Tλ(0)ρ(x)k(x)
. (9)

If the enhanced ρs/ρ is related to the correlation length,
then the larger correlation length in the mixture ξ (t,x) should
result in a larger enhancement. Plotted in Fig. 9 is the superfluid
fraction of the 8.7% mixture in the film region above (2 μm)3

boxes as well as data from the isolated 33.6-nm pure 4He film.

ρs

ρ

t = ⎪⎪(T − Tλ(x)) Tλ(x)⎪⎪
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x = 0.087

31.7 nm film with boxes
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Pure

33.6 nm isolated film
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FIG. 9. (Color online) The superfluid fraction of a 31.7-nm 3He-
4He film, x = 0.087, above an array of (2 μm)3 boxes spaced 4 μm
edge to edge. Also plotted are data for an isolated pure 33.6-nm film
without any boxes.

The solid and dashed-dotted lines represent ρs/ρ of pure bulk
4He given by Eq. (5) and the ρs/ρ of a bulk 8.7% mixture,
respectively. The bulk mixture line is given by the parametrized
equations of Ref. 9. Both sets of data follow similar trends,
deviating from the bulk behavior before vanishing at their
respective tc’s. There are no data for an isolated 8.7% 3He
film 31.7 nm thick, nor an empirical scaling function that
could be used to calculate this, so it is impossible to quantify
the overall enhancement in the mixture data. However, tc of
the mixture is slightly smaller than that of the isolated pure
film. Although the reduced temperatures in each data set are
calculated relative to their own Tλ’s, it is still expected that
the longer ξ (t,x) will result in a larger tc for the mixture,
i.e., the filled circles would be expected to have a tc to the
right of the triangles. Thus, these data also give evidence of
a proximity effect. As with the pure case, this effect is also
mirrored in the heat-capacity measurement shown in Fig. 10.
The larger ξ (t,x) would normally result in a larger depression
of tm,film, however, the mixture’s tm,film is smaller than in the
isolated pure 4He case. This is indicated by the small kink in
the open circles data of Fig. 10. Since one can not quantify the
overall enhancements in the mixture data by comparing them
to a uniform film of the same concentration, no quantitative
analysis can be made regarding the effect of the longer ξ (t,x).
However, we can say that the enhancements observed in the
pure film are qualitatively retained in the case of the mixture
in both the superfluid density and specific heat.

Further analysis of the pure 4He heat capacity shown in
Fig. 7 is possible if first one accounts for the contribution
of the film region. The best way to do this is to use the
measured specific heat of an isolated film of near identical
thickness, shown in Fig. 4, and calculate what the heat-capacity
contribution of such a film in the geometry with the boxes
would be. It is important to note that this assumes that the film
region of this cell contributes the same amount to the signal as
an isolated film of equal thickness. The remaining signal is then
converted to a specific heat by dividing by the number of moles
in the box region as calculated from the geometry. The data are
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FIG. 10. (Color online) The heat capacity of an 8.7% 3He-4He
mixture in (2 μm)3 boxes separated 4 μm and connected through
a 31.7-nm film. Plotted on the right axis is the heat capacity of a
33.6-nm isolated pure 4He film.

further normalized to the bulk specific heat in the temperature
region of 8 × 10−4 � t � 8 × 10−3 on the warm side of Tλ by
multiplying all data by 1.009. This 0.9% correction accounts
for the uncertainty in the absolute value of the specific heat
as discussed previously. The result of this analysis is shown
in Fig. 11. Also plotted are data from a previously measured
cell where (2 μm)3 boxes were spaced 2 μm edge to edge but
connected through channels only 10 nm thick.17 There is very
good agreement between the two sets of data with perhaps
some small systematic difference immediately above Tλ near
t � 10−5. However, there is a clear region surrounding tm,film

where the data sets deviate systematically. This is highlighted
in the inset. Recall that during the analysis we accounted
for the film region by subtracting the expected contribution
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FIG. 11. (Color online) The specific heat of an array of (2 μm)3

boxes spaced 6 μm center to center. Also plotted are data from a
second array of (2 μm)3 boxes spaced 4 μm and connected through
10-nm channels. The inset shows a region where the analysis of the
current data fail to account for the signal of the connecting film (see
text for details).
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FIG. 12. (Color online) Scaling result from Ref. 2 of the specific
heat for zero-dimensional confinements below Tλ. The failure of scal-
ing is clear, with the data falling on separate loci. This lack of scaling
can now be attributed to the (1 μm)3 box data (see text for details).

determined from the specific heat of an isolated film. The
deviation shown in the inset implies that this was not accurate,
and that the specific heat of the film in contact with the much
larger boxes is enhanced above that of an isolated film of
equal thickness. The enhancement is another proximity effect
observed on the film. As with the previous effects, this is very
surprising considering at this temperature the bulk correlation
length is ξ−(t = 1.5 × 10−3) = 27 nm, only ∼0.7% of the
spacing between the boxes.

Since the two arrays of boxes have rather different connect-
ing regions, one a 31.7-nm film, the other 2 μm × 2 μm ×
10 nm channels, the overall agreement (apart from where the
film orders) suggests that both measurements represent truly
isolated boxes. Measurements of an array of (1 μm)3 boxes
had been tested against finite-size correlation-length scaling
with the (2 μm)3 boxes connected via channels.2,53 The result
was a lack of scaling throughout the critical region as shown
in Fig. 12 for T < Tλ. The total failure of scaling on both
sides of the transition is contrary to the results of all other
geometries where scaling was tested.2 Having shown now that
the (2 μm)3 boxes act as isolated entities, and considering that
the (1 μm)3 boxes were connected by channels twice as thick
and half as long as the (2 μm)3 boxes, one may conjecture
that the lack of scaling is the result of an enhancement in the
specific heat of the (1 μm)3 boxes due to coupling through the
connecting channels. The scaling equation for the specific heat
is given by Eq. (4). One can force scaling between the (1 μm)3

and (2 μm)3 data by subtracting the excess specific heat due
to coupling Ccoupling which one must attribute to the (1 μm)3

data. This excess contribution is calculated via

ccoupling = t−α[g1(x)|2 μm − g1(x)|1 μm] (10)

and is shown in Fig. 13. The enhancement amounts to
∼6 J/mol K at the maximum and is the first evidence
of a coupling effect between neighboring boxes of helium
connected through weak links. We note that this is calculated
not only for the superfluid side of Tλ, but also above Tλ.
Furthermore, it is observed well beyond t = 3 × 10−4 where
the separation of the boxes S is much larger than ξ+(t), i.e.,
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FIG. 13. (Color online) The needed excess or enhancement of
the (1 μm)3 data in order to explain the lack of scaling with data for
(2 μm)3 boxes. This enhancement is calculated using Eq. (10).

S � 30ξ (t). We also note that in all of this region the helium
in the connecting channels is normal.

Thus, not only has the measurement of the array of (2 μm)3

boxes connected through the 31.7-nm film revealed several
effects on the film, it has also allowed us to, in conjunction with
a second set of data for (2 μm)3 boxes, deduce an enhancement
in the specific heat of (1 μm)3 boxes by imposing finite-size
scaling. It has also provided a measurement of isolated (2 μm)3

boxes that can be used as a baseline to compare with other
(2 μm)3 measurements. This will be used in the following
section where the boxes in the array are brought even closer
together.

C. (2 μm)3 boxes spaced 2 μm with a 32.5-nm film

Another confinement cell in this series of measurements
was fabricated with a 32.5 ± 0.98-nm film as determined from
the grown oxide thickness, and an array of (2 μm)3 boxes
spaced 2 μm edge to edge. The processing of the top wafer was
exactly the same as for the previous confinement. However,
the pattern of the boxes had one important difference. In the
fabrication of the array of boxes, the exposure field of the
reduction stepper was increased. This means less exposures
are required to complete the array and, more importantly, the
outer edge of the array deviates from the more circular pattern
of the previous cell. Thus, upon bonding, this pattern forms a
uniform film outside the box array. This is shown Fig. 14. As
can be seen from this figure, there are three different regions in
this cell, each with their own thermodynamic signatures: the
film region above the boxes, the film region outside the array
of boxes, and the boxes themselves.

The heat capacity of this cell was measured and converted to
a specific heat in the same manner as the previous cells where it
was assumed that the film regions behaved in the same manner
as an isolated film. The result is plotted in Fig. 15 along with
the isolated (2 μm)3 box data from both of the cells discussed
in the previous section. The combination of these three
independent measurements of (2 μm)3 boxes show, without
any assumptions involving scaling, a large enhancement in
the specific heat due to coupling between the boxes when

FIG. 14. (Color online) The confinement cell geometry with the
(2 μm)3 boxes spaced 2 μm edge to edge. The cell contains three
different regions each with their own thermodynamic signatures
(see text for details).

spaced 2 μm apart and separated via a 32.5-nm film. The
enhancement, emphasized by the shading, is observable out
to t � 10−3 below Tλ and t � 5 × 10−4 above Tλ. At these
temperatures, the separation of the boxes is 85 and 57 times
ξ−(t) and ξ+(t), respectively. We also note that over most
of this range, including part of the region below Tλ, the film
connecting the boxes is not superfluid (see below). The long
horizontal line in Fig. 15 at 61 J/mole K represents the ex-
pected value of Cp at Tλ for a film 2 μm thick. This would be the
ultimate limit if the boxes were to be moved arbitrarily close.

The anomalously long-range enhancement in the specific
heat of the boxes is paired with a similarly long-range effect in
the superfluid fraction. As mentioned above, this cell defined
three separate regions including a 32.5-nm film above the
(2 μm)3 box array and a 32.5-nm film isolated from any boxes.
When the AFR technique was used, multiple resonances were
detected. These could be attributed to one of the two film
regions. Given the geometry of the cell, the resonance from
the film at the perimeter can only be detected if the intervening
film over the boxes is already superfluid. Plotted as filled

C
p (

 J
 m

ol
−1

K
−1

)

t = |(T − Tλ) Tλ|

C
p (

 J
 m

ol
−1

K
−1

)

10−6 10−5 10−4 10−3

30
40

50
60

70

T < Tλ

T > Tλ

Bulk
(2 μm)3 spaced 2 μm
(2 μm)3 channel connected
(2 μm)3 spaced 4 μm

FIG. 15. (Color online) The specific heat of (2 μm)3 boxes. When
spaced 2 μm edge to edge and connected through a 32.5-nm film, the
data are greatly enhanced over separate measurements of isolated
(2 μm)3 boxes. The long horizontal line is the expected value of cp

at Tλ for a planar 2 μm film.
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FIG. 16. (Color online) The superfluid fraction of nominally
32-nm-thick 4He films. The triangles are enhanced due to a proximity
effect with (2 μm)3 boxes, while the circles are isolated from such an
effect. The filled symbols were both measured in the same cell.

circles in Fig. 16 is the superfluid fraction from the perimeter
region isolated from any boxes. These data fall exactly on the
same locus as the isolated 33.6-nm film discussed earlier and
measured in a separate experiment. This remarkable agreement
attests not only to our interpretation of the multiple resonances,
but also to the accuracy and consistency of our fabrication
processes. It also removes any doubts that may arise from
the small differences in the film thickness from cell to cell,
showing that any possible effects due to this are clearly
negligible relative to the proximity-coupling effects we are
observing. Also plotted in Fig. 16 is the superfluid fraction
calculated from the resonance associated with the film above
the boxes. This resonance persists to t � 1.8 × 10−4. Not
only does ρs/ρ persist to a much warmer temperature (a full
decade closer to Tλ) but, as was the case with the previously
measured proximity-affected film, there is a large enhancement
in ρs/ρ throughout the temperature region surrounding tc. The

enhancement is first discernible at t ∼ 2.5 × 10−3 where ξ (t)
is only 19 nm.

To gauge just how unexpected these results are, we used
the results of Refs. 15 and 54. These authors used a mean-field
approach to the superfluid transition called 
 theory to develop
equations for the superfluid fraction at the interface between
bulk 4He and a film. Figure 17 shows the solution to their
equations for ρs/ρ as a function of t , and the distance x

from the interface. We used a film 32 nm thick for the
numerical calculations. The results show that the effects
caused at the interface are only observable within a few ξ (t)
from the interface.21 A geometry closer to our box-film-box
confinement is a bulk-film-bulk geometry. This geometry was
also considered by the authors of Refs. 15 and 54. Applying
their equations to a 32-nm-thick film region does show
enhancements in the film region, however, these enhancements
are only seen for very short films (64 nm long between the bulk
regions). When applied to the 2000- and 4000-nm spacing
between bulk regions used in our experiments, these equations
result in unphysical (imaginary) solutions. Thus, this theory
does not describe our experimental observations.

With theory unable to explain the distances over which
these effects are observed, and the fact that theories use ξ (t)
as the primary length scale, an obvious question that arises is
as follows: “Is ξ (t) the length scale relevant in these effects?”
To address this question, more analysis was performed on the
data of Figs. 15 and 16.

The enhancement observed in the specific heat δcp of the
(2 μm)3 boxes spaced at 2 μm can be quantified by subtracting
from the enhanced data the data representing isolated boxes.
The result, which amounts to a maximum of almost 10% of
the specific heat, is plotted in Fig. 18 on a linear scale. This
figure, very similar to Fig. 13 for the (1 μm)3 boxes, shows
the overall magnitude of the coupling, but does not reveal any
information regarding a relevant length scale. However, when
the same data are plotted on a log-log scale, as in Fig. 19, we see
an interesting temperature dependence. On the warm side of
Tλ, at large t’s, δcp follow a t−ν temperature dependence which

FIG. 17. (Color online) A calculation of the superfluid fraction as a function of t and the spatial distance x near the interface between a
bulk region and 32-nm film region of 4He. x < 0 is the bulk region while x > 0 is the film region. The calculation applies the equations of
Refs. 15 and 54, which are developed from 
 theory.
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FIG. 18. The enhancement in the specific heat of the (2 μm)3

boxes due to coupling δcp .

is indicated by the solid line. As Tλ is approached, δcp deviates
from this dependence and rolls off to a near constant value near
t � 10−6. If we consider the cell geometry, we realize that this
result supports the idea that the correlation length is indeed the
relevant length scale in this effect. Our cell defines a finite-size
system and therefore it is not the bulk correlation length ξ (t)
that is relevant but the finite-size correlation length in the
boxes ξ (t,L), with L = 2 μm, the size of the small dimension
in the boxes. The temperature dependence of δcp mirrors what
one would expect for ξ (t,L). Far from Tλ where the ξ (t) is still
small, finite-size effects are not observable, i.e., ξ (t) � ξ (t,L),
and the t−ν power law, indicated by the solid line, is followed.
As Tλ is approached and the correlation length grows, ξ (t) and
ξ (t,L) begin to differ. The finite size of the system prevents
ξ (t,L) from diverging and causes it to roll off to a finite value.
This behavior is represented qualitatively by the dashed line
in Fig. 19. The remarkable similarity between the temperature
dependence of δcp and the expected behavior of ξ (t,L) implies
that not only is ξ (t,L) relevant, but δcp ∝ ξ (t,L). However,
there is an issue that needs to be addressed. The divergence of

(Tλ − T) Tλ

10−6 10−5 10−4 10−3

10
−

1
10

0
10

1
δC

p (
 J

 m
ol

−1
K

−1
)

δCp T<Tλ

δCp T>Tλ

ξ0
−

ξ0
+At−ν

At−ν

tc film

FIG. 19. (Color online) The enhancement in the specific heat of
the (2 μm)3 boxes due to coupling δcp plotted on a log-log scale. The
superfluid onset temperature tc of the 32.5-nm film above the boxes
is indicated with a vertical line.

ξ (t) goes as ξ±(t) = ξ±
0 t−ν , where ξ+

0 = 0.143 nm above Tλ

and ξ−
0 = 0.343 nm below. This means that if our data are pro-

portional to ξ (t,L), then far from Tλ the data above and below
the transition should be positioned as the ratio ξ−

0 /ξ+
0 = 2.40.

The upper solid line in Fig. 19 represents the expected position
of δcp far from Tλ on the cold side. Clearly, the data systemat-
ically deviate from this upper line. The deviation is, however,
understandable. Recall that in the analysis of the specific heat
the film region of this cell was accounted for by considering
the film to have the same specific heat of an isolated film of the
same thickness. We have already shown that this is not the case
for the situation where the boxes were even farther apart. Thus,
there is every reason to expect that in the present geometry
the film would be affected even more dramatically. Thus, this
deviation from the line is caused by the enhancement and shift
in the specific-heat maximum of the film region between the
boxes. This is clear when one compares the position of the
deviation relative to the superfluid onset of the film indicated
by the vertical line in the plot. It is well known that in all
cases, tc and tm are always very close to each other, and in the
thermodynamic limit identical. Our data show that the peak
of the deviation from the expected line is nearly coincident
with tc of the film above the boxes. This is shown more clearly
in Fig. 20 where we plot the difference between δcp and the
expected line for T < Tλ. Also plotted on the right axis as
solid squares is the superfluid fraction of the film. One can see
that the maximum from the film is nearly coincident with the
vanishing of ρs/ρ. Thus, the behavior of the data below Tλ

is a convolution of the two enhancements. Above Tλ there is
only an enhancement in the specific heat of the boxes and the
data have the same temperature dependence as ξ (t,L). As one
cools through the transition and approaches the temperature
where the film orders, there is an additional enhancement from
the film region, hence the deviation from the ξ (t,L) behavior.

If the coupling is proportional to ξ (t,L), then the enhanced
specific heat of the (1 μm)3 boxes inferred from scaling, as
discussed earlier and shown in Fig. 13, should also follow the
same trend. Figure 21 shows that when plotted in the same way,
as in Fig. 19, this is the case. One can not analyze the data for
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FIG. 20. (Color online) The deviation �(δcp) of δcp from the line
shown in Fig. 19. This line indicates the expected behavior based on
a proportionality to ξ−(t,L). The superfluid fraction of the film above
the (2 μm)3 boxes is plotted on the right axis. The peak in �(δcp) is
nearly coincident with the vanishing of the superfluid fraction.
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FIG. 21. (Color online) The enhancement in the specific heat of
the (1 μm)3 boxes due to coupling δcp as inferred from scaling.

T < Tλ in the same way since scaling fails near the specific-
heat maximum.2 To obtain a plot similar to Fig. 19 for T < Tλ,
one would need to do a separate experiment where the (1 μm)3

boxes are moved farther apart so that they act as isolated units.
A similar analysis as for δcp can be performed on the

enhanced superfluid fractions shown in Fig. 16. Where there
are data for the isolated film, i.e., for temperatures below its
superfluid onset, they can be subtracted from the enhanced
ρs/ρ of the films which are subject to proximity effects.
The result is plotted in a log-log plot shown in Fig. 22. The
enhancement of the film above the boxes spaced 4 μm, the
open triangles, is in very good agreement with the t−ν power
law indicated by the line. The data for the film above the
boxes spaced 2 μm, the filled triangles, is noisier and have
some clear deviations but are still consistent with the power
law. It should be noted that there is no rounding off of the
power law as in the heat capacity; this is because in this
temperature region, below the superfluid onset of the film,
the boxes are still bulklike and have not yet experienced any
significant finite-size effect rounding of the correlation length.
This analysis for the superfluid density, as well as that of Fig. 19
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FIG. 22. (Color online) The enhancement in the superfluid frac-
tion of the coupled films. The solid lines indicate a t−ν dependence.

for the specific heat, are strong support for ξ (t,L) being the
relevant length scale in these effects.

D. ξ (t,L) and its scaling

Having shown evidence that the enhancements are propor-
tional to ξ (t,L), we can now use δcp to learn more about
ξ (t,L). Like other thermodynamic responses, the correlation
length of a finite-size system should be described by a scaling
function f such that55

ξ (t,L)

ξ (t,∞)
= f

(
L

ξ (t,∞)

)
. (11)

This can also be written in a, perhaps, more intuitive way using
another scaling function X, i.e.,56

ξ (t,L) = LX

(
L

ξ (t,∞)

)
. (12)

The δcp data can be used to actually map out X within
a multiplicative constant and test these scaling predictions.
For scaling to hold, both the δcp data for (1 μm)3 and
(2 μm)3 boxes should yield the same value for X(0)L=1 μm

and X(0)L=2 μm at Tλ. With δcp ∝ ξ (t,L), we can write

ξ (ta,L) = ξ (tlarge,∞)δcp(ta)

δcp(tlarge)
, (13)

where δcp at tlarge refers to the region where ξ (t,L) � ξ (t,∞).
In particular for L = 2 μm and t = 10−6 � 0, the δcp data
yield ξ (0,L = 2 μm) = (0.14 ± 0.02)L. When Eq. (13) is
applied to the δcp data for the enhancement of the (1 μm)3

boxes inferred from the scaling of the specific heat (Fig. 21), it
results in ξ (t,L = 1 μm) = (0.13 ± 0.04)L at t = 10−6 � 0.
The agreement between these two separate measurements
confirms that the data above Tλ in Fig. 19 defines the scaling
function X to within a multiplicative constant which must
depend on the geometry of the connecting region. Furthermore,
Eq. (13) predicts that the maximum length ξ (t,L) achieves in
the box geometry is 0.20L. This occurs at the specific-heat
maximum. Using ξ (t,L) as the gauge makes the distance over
which we are observing enhancements even more surprising.
We also note that although there are no theoretical calculations
of X(0) appropriate for 4He, in the case of finite Ising strips one
has X(0) = 1/2π � 0.16 for the energy-energy correlation
length.57

IV. CONNECTION WITH OTHER
HELIUM MEASUREMENTS

When considering helium near the superfluid transition in
a heterogeneous confinement, one of the first considerations
might be the distribution of confinement regions. Our work
indicates that it is just as important to consider the coupling
among these regions. This mutual influence of two coexisting
regions of helium has a direct bearing on many observations in
experiments where helium is confined in porous media. While
the geometry in many of these cases is not well defined, there
are features in the data that are indicative of the behavior we
have identified with our boxes-film geometry.

Experiments on helium confined in porous glasses and
packed powders represent a heterogeneous confinement that is
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outside the description of finite-size scaling. This requires that
the confinement be uniform and characterized at its simplest
by a single length scale. In such heterogeneous media, there
is a distribution of length scales that differ for each system.
Some of the data for 4He confined in such systems have
been reviewed in Refs. 2 and 5. In particular, measurements
of the superfluid density in porous glasses, Vycor, xerogel,
and aerogel, have shown that one can represent data as a
power law relative to the local transition temperature for each
confinement.58 However, these power laws differ for each
porous medium (see Table I of Ref. 5). Also, in the case of
aerogel, data have been obtained as function of pressure which
show that the exponent is universal provided one allows for
correction to scaling terms in the power-law description.59

In the case of aerogel, measurements with different glass
density show that the exponent for the superfluid fraction is
dependent on this density. Our work brings a new aspect to the
understanding of these systems. Specifically, one expects that
not only the distribution in the sizes of the heterogeneous con-
finement would be important, but also their connectivity. Our
measurements show that proximity effects are manifest over
very large distances, thus, large confinement regions can affect
smaller regions to a much greater extent than one might have
anticipated on the basis of just the magnitude of the correlation
length. We also point out that a pure power-law dependence in
the superfluid density does not necessarily indicate a new uni-
versality class, but might just be a reflection of a particular type
of confinement. We can illustrate this with our own data for
the superfluid density of films in equilibrium with boxes (see
Fig. 16). This system is heterogeneous but consisting of only
two well-defined geometric confinements. If one were to plot
the superfluid density of the film on a scale of T − Tc instead of
T − Tλ, as we have done, one would obtain a pure power law
with exponent ν � 0.69. This could not be construed as indi-
cating that the film acts like bulk helium with ν close to 0.67, or
that it represents a new universality class, if one takes seriously
the difference between 0.69 and 0.67 to be significant. On the
contrary, the behavior of ρs/ρ can be understood, as we have
demonstrated, in term of the proximity effects to the larger
confinement of the boxes. We also note that measurements of
ρs for helium confined in Nuclepore filters, discussed further
below, can also be described with an exponent ν � 0.67 if
one plots these data relative to the onset temperature for each
confinement size9,60 (see also Ref. 2 for discussion of this point
relative to finite-size scaling). One would not conclude on the
basis of this exponent that the confinement is bulklike.

Recently, the superfluid transition of 4He in porous gold
and CaF2 has been studied in the region where a film is
formed on the substrate and the partial pressure is such that
a capillary condensed phase is also in equilibrium with the
film.61 The capillary phase has a much larger dimension than
the film, thus this mimics to some extent our boxes-film
experiment. Figure 31 in Ref. 61 is a cartoon of this geometry.
The measurements involve mass loading and dissipation of
a quartz crystal oscillator. This is done at fixed temperatures
as a function of partial pressure or film thickness. What is
observed is that if only a film exists on the substrate, one can
measure both the dissipation and discontinuous mass loading
associated with the Kosterlitz-Thouless (KT) transition in the
film. However, in the presence of a capillary phase, the abrupt

change in mass loading, which one might expect from the
film, is no longer visible. It is as if the superfluid onset is
more continuous rather than abrupt. This is similar to our
observations that the superfluid density persists closer to the
transition and has values lower than the expected KT jump,
i.e., the transition is more continuous. The measurements with
the quartz crystal oscillator are all for relatively thin films and
can not be followed to thick films such that the power-law
critical behavior near Tλ could be observed.

A number of experiments have been done with helium
confined in Nuclepore filters. These are polycarbonate mem-
branes in which ion tracks are etched to yield nearly cylin-
drical flow channels of different diameters. The membranes
themselves are either 5 or 10 μm thick. A number of char-
acteristics of these filters have been determined by different
investigators.62–65 Some of the experimental results for helium
confined in these filters are relevant to our observations.

As shown in Fig. 7, when two characteristic sizes are
present, the specific heat has two features associated with
the transition in each geometry. Under suitable conditions,
these transitions can influence each other as discussed above.
In the measurement of the heat capacity of 4He in 0.2-μm
Nuclepore filters, a two-peak structure was also observed
in situations where a capillary condensed phase was in
equilibrium with a film of ∼5.5 nm.66 One relatively sharp
peak was associated with the capillary condensed phase, the
other broader peak with the film in equilibrium with it. As the
capillary phase was increased by condensing more helium, the
maximum of the film in equilibrium with this phase moved
in temperature closer to Tλ. Although it was not realized at
the time, this movement towards Tλ is much too large to be
explained by a convolution or blending of the two signals
coming from the films and the capillary phase (see Fig. 7 of
Ref. 66). It is very likely that the capillary condensed phase
(the large region analogous to helium in the boxes) influenced
the transition in the film and caused it to move to higher
temperatures. The cylindrical pores of Nuclepore filters do not
have smooth surfaces. Further, there are internal links among
the pores that further complicate the geometry.63 Also, there
are no data for a perfectly planar 5.5-nm film that one could
subtract in order to analyze the residual signal due to coupling.
However, is seems very likely that these early observations are
also an indication of proximity effects between the capillary
condensed region and the film. On this issue of two-peaks
signal in the heat capacity, we also note that calculations on a
“layered” 2D Ising model yield a two-peaks structure reflecting
order within a layer and a more global order across the 2D
system.67

The magnitude of the specific heat for helium filling
Nuclepore filters might also be indicative of enhanced behavior
due to coupling from pore to pore. When these data are
compared with other, better controlled cylindrical confinement
(1D crossover), one finds that the Nuclepore specific heat close
to the transition is consistently higher in magnitude than for
other realizations of 1D confinement. This was discussed in
Ref. 2 (see in particular the scaling plots of Figs. 35 and 36).
Thus, they define a slightly different scaling locus from the rest
of the 1D data. The pore separation in these filters is between 40
and 50 μm; this is too far for coupling through a saturated film.
However, as mentioned above, a fraction of these pores cross65
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which would certainly lead to coupling among the pores and
an enhancement of the specific heat. In resonance experiments
to determine the superfluid fraction, these filters would be
surrounded by bulk liquid.60 However, with filters thickness
of 5–10 μm, it would not seem likely that there would be a
large enhancement due to the presence of bulk liquid at both
ends of the pores. However, the crossing of channels might
provide such a mechanism as the scaling plots of the specific
heat suggest. There are no benchmark data for the superfluid
density in isolated and longer channels with which these data
could be compared to deduce the magnitude of enhancement.

Josephson effects have been measured in 4He using arrays
of slits 0.17 μm high6 or circular pore apertures of diameter
∼ 50 nm.7 The arrays in these experiments allow one to
obtain a measurable mass flow upon imposing a chemical
potential different across them. These experiments make use
of the growth of the correlation length near Tλ to make
measurements in a regime where the slits or apertures act
as weak links. In the case of Ref. 6, it is pointed out that
the ideal Josephson regime is achieved only for temperatures
closer than Tλ − T � 100 μK. For their slit geometry, one
would expect the critical temperature for superfluid onset in
the slit to be Tλ − Tc � 430 μK. Thus, they are observing
effects in a region where the helium in the slits should be
normal. Similarly, in Ref. 7, Josephson oscillations are seen
at Tλ − T = 0.8 mK whereby the critical temperature for the
circular apertures should be at Tλ − T � 2.3 mK. Therefore,
in both experiments one obtains superflow in a temperature
region where the helium in the isolated weak links should
be normal. Both of these experiments are thus relying on
proximity effects, due to the surrounding bulk liquid, to
maintain a nonzero order parameter in the weak links.

Studies of the specific heat of 3He-4He mixtures show
very anomalous behavior for 0D crossover in (1 μm)3 boxes
that is very likely due to coupling effects.68 When 3He is
introduced in 4He, the superfluid transition shifts to lower
temperatures and, at fixed concentration x, the specific heat
Cpx(t) is renormalized to a progressively weaker cusp.69 True
criticality is only observed in Cpφ where φ is the difference
in the chemical potentials φ = μ3 − μ4.36 The amplitude of
the correlation length in the mixtures ξ0(x) increases with
concentration, doubling from x = 0 to x � 0.4 [see Eq. (9)].
In a finite system of small dimension L, this doubling of ξ0(x)
implies that, for the same confinement L, finite-size effects will
onset sooner in the mixtures than in pure 4He. This was tested
for 2D and 1D crossover with reasonable scaling results.17,70

However, for (1 μm)3 boxes and 0D crossover, completely
different results were obtained. Specifically, with both Cpx

and the calculated Cpφ , the specific heat exceeded the bulk
values near the maximum by a substantial amount. Also, the
maximum shifted to lower temperatures much more rapidly
with concentration than for the 2D and 1D confinement. Given
that for pure 4He the (1 μm)3 cell has been demonstrated now
to show box-to-box coupling, it seems reasonable to ascribe
this behavior to an enhanced coupling due to an increase in
ξ0(x). However, this does not explain in detail the temperature
dependence of either Cpx or Cpφ . To do this, one would need a
series of experiments where the (1 μm)3 boxes are placed
farther apart, and are uncoupled. This would establish the
baseline of the uncoupled response.

V. CONNECTION WITH OTHER SYSTEMS

The correlation length is not a parameter unique to 4He.
The evidence that the effects we have reported here are
dependent on ξ (t,L) suggests that there should be some
universal physics involved and that other critical systems may
show analogous effects. One of the most obvious candidates
for this is the high-temperature superconductor (HTSC)
cuprate system. The HTSC cuprates have a very small
zero-temperature correlation length, much like 4He, which
implies a critical region dominated by fluctuations. Recent
measurements of junctions composed of an underdoped
cuprate layer sandwiched between optimally doped leads have
shown coupling effects on a very large length scale.71,72 The
doping of the layers was such that the transition temperature
of the central layer Tc is lower than that of the leads T ′

c . In
Ref. 71, measurements are reported of the familiar Josephson
effects in these junctions with a central layer much thicker than
could be expected based on conventional theories. In Ref. 72,
muon spin resonance is used to probe the local magnetic field
and showed that the Meissner effect occurred in the central
layer at a temperature higher than Tc. These effects, coined
“giant proximity effects,” have led another group to pursue
analogous effects in semiconducting ferromagnets (EuS, EuO)
and ferromagnetic metals.73 Another system to consider is
the Bose-Einstein condensate (BEC) system. Much like 4He,
this system has a wave-function order parameter, and the bulk
correlation length, its critical exponent,74 and the Josephson
effects75,76 have all been measured. Recently, measurements
have been made on an ultracold gas “atomic circuit” which
contains an adjustable barrier.77 With a critical region that is
experimentally accessible and the Josephson effects to gauge
the strength of coupling, this atomic circuit may be an ideal
system to measure these anomalous effects in BECs.

VI. SUMMARY AND CONCLUSIONS

We have reported measurements of both specific heat
and superfluid density for helium in well-defined geometries.
These data show coupling and proximity effects between
confinement regions at distances much larger than the three-
dimensional correlation length ξ (t), or ξ (t,L) as modified by
finite-size effects. We have demonstrated, via the temperature
dependence of these effects, that ξ (t,L) is indeed the relevant
parameter governing the coupling. However, because effects
are seen at distances over 100 times ξ (t,L), the observed
behavior can not be explained from a mean-field approach,
or from what is understood as the meaning of the correlation
length: the distance over which order propagates in the
critical region. We have pointed out other observations in
4He experiments that are qualitatively consistent with our
observations. We have also pointed out that other critical
systems, where fluctuations dominate the critical response,
should have similar behavior.
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