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Disorder, critical currents, and vortex pinning energies in isovalently substituted BaFe2(As1−xPx)2
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We present a comprehensive overview of vortex pinning in single crystals of the isovalently substituted
iron-based superconductor BaFe2(As1−xPx)2, a material that qualifies as an archetypical clean superconductor,
containing only sparse strong pointlike pins [in the sense of C. J. van der Beek et al., Phys. Rev. B 66, 024523
(2002)]. Widely varying critical current values for nominally similar compositions show that flux pinning is of
extrinsic origin. Vortex configurations, imaged using the Bitter decoration method, show less density fluctuations
than those previously observed in charge-doped Ba(Fe1−xCox)2As2 single crystals. Analysis reveals that the
pinning force and energy distributions depend on the P content x. However, they are always much narrower than
in Ba(Fe1−xCox)2As2, a result that is attributed to the weaker temperature dependence of the superfluid density
on approaching Tc in BaFe2(As1−xPx)2. Critical current density measurements and pinning force distributions
independently yield a mean distance between effective pinning centers L ∼ 90 nm, increasing with increasing
P content x. This evolution can be understood as being the consequence of the P dependence of the London
penetration depth. Further salient features are a wide vortex free “Meissner belt”, observed at the edge of
overdoped crystals, and characteristic chainlike vortex arrangements, observed at all levels of P substitution.

DOI: 10.1103/PhysRevB.87.094506 PACS number(s): 74.25.Sv, 74.25.Wx, 74.62.En, 74.70.Xa

I. INTRODUCTION

Recent vortex imaging studies performed on iron
pnictide superconductors show evidence for nanoscale
inhomogeneity1,2 being at the origin of the low-field critical
current density and the highly disordered vortex structures
in these materials.3–12 Notably, in Ba(Fe1−xCox)2As2, the
critical current density jc and vortex distributions imaged by
Bitter decoration could be consistently analyzed, provided that
spatial heterogeneity, on a scale of several dozen nm, both of
the critical temperature Tc and the vortex line energy ε0, is
taken to be responsible for flux pinning.2 At higher magnetic
fields, of the order of several tenths of a tesla, nanoscale
heterogeneities are inefficient in pinning flux lines.1,13,14 The
critical current density is then most likely determined13 by the
scattering of quasiparticles in the vortex cores associated with
the presence of atomic-size defects in the crystal,15,16 leading
to weak collective pinning.16,17 A good candidate for these
defects is the dopant atoms themselves.1,2,13,14 The nature of

the dopant atoms is essential for this mechanism: Charged
defects lead to different scattering than uncharged defects.13

This weak collective pinning contribution to the critical
current density manifests itself as a plateau-like behavior
in a jc(B) plot. It is present in all charge-doped iron-based
superconductors, as well as in Ba(Fe1−xRux)2As2.18

On the other hand, in isovalently substituted
BaFe2(As1−xPx)2 there is no indication of weak collective
pinning,13 which qualifies the material as “clean” with respect
to charge-doped iron-based superconductors. Given recent
claims11,12 that in certain iron-based superconductors, the
vortex configuration is more ordered than what was hitherto
observed,3–10 it is interesting to see whether the absence
of weak collective pinning has any impact on the spatial
configuration of vortices. From a magnetic force microscopy
(MFM) study at magnetic fields up to 100 Oe, Yang et al. claim
that vortex configurations in hole-doped single-crystalline
Ba1−xKxFe2As2 (with x = 0.28 and x = 0.4) are more
ordered than in, e.g., Ba(Fe1−xCox)2As2.2 Using an analysis
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method similar to that of Ref. 2, they report pinning forces
that are one order of magnitude smaller on average. They
also claim the observation of local triangular vortex order
in the optimally doped material, even though closer scrutiny
(see Sec. III E below) reveals the vortex ensembles to be no
more ordered than those in Ba(Fe0.925Co0.075)2As2.2 Finally,
the authors11 report on the observation of remarkable vortex
chains, both in underdoped (x = 0.28) and optimally doped
(x = 0.4) Ba1−xKxFe2As2. The presence of these is attributed
to vortex pinning by the twin boundaries arising from the
orthorhombic structure, at least in the underdoped material.
Furthermore, neutron scattering experiments on the vortex
lattice in isovalently substituted BaFe2(As1−xPx)2 were
performed at T = 2 K by Kawano-Furukawa et al.12 No
vortex Bragg peaks were found for the optimally substituted
compound. However, after annealing the samples at 500 ◦C,
a distorted triangular vortex lattice was observed; this became
more ordered as the applied magnetic field was increased from
0.7 to 7 T.12 These results suggest that the disorder responsible
for pinning in BaFe2(As1−xPx)2 is extrinsic in nature.

In this work we present and analyze sustainable current
density measurements, magneto-optical imaging, and Bitter
decoration experiments performed on BaFe2(As1−xPx)2 single
crystals with different x. In contrast to some reports,19 we find
strong pinning, presumably by nanoscale heterogeneity, as the
only observed pinning contribution in fields up to 5 T. As in
Ba(Fe1−xCox)2As2 and other materials,6 there is no evidence
for any extended triangular order in the vortex ensemble; thus,
the strong pinning contribution in itself suffices to generate the
extreme disorder of the vortex ensemble. The spatial configu-
ration of vortices in isovalently substituted BaFe2(As1−xPx)2

does not present large vortex density fluctuations such as
observed in charge-doped Ba(Fe1−xCox)2As2 single crystals,2

a fact that is attributed to the different temperature depen-
dencies of the superfluid density in the two materials. The
quantitative analysis of the vortex configurations in terms of
the pinning energy confirms that pinning disorder is somewhat
less effective in BaFe2(As1−xPx)2 than in Ba(Fe1−xCox)2As2,
and that it depends on the P content x. Analysis of the
pinning energies, the pinning forces, and the critical current
density as function of P content yields consistent estimates
of the effective pin density. This clearly decreases upon
increasing the P content, a behavior that tracks the composition
dependence of the scattering rate in the normal state. The
main features of our results can be understood in terms of the
composition dependence of the vortex line energy, implying
that local variations of the superfluid density are a good
candidate for the origin of the vortex pinning. The variation of
the pin density as well as the variation of the sustainable current
density with composition argues against any possible spatially
phase-separated superconducting and antiferromagnetic states
of the material as being at the origin of pinning.

II. EXPERIMENTAL DETAILS

Experiments have been performed on BaFe2(As1−xPx)2 sin-
gle crystals grown by the self-flux method,20 and characterized
using energy-dispersive x-ray spectroscopy (EDX) and EDX
mapping in a scanning electron microscope (SEM). Crystals
with manifest chemical heterogeneity were discarded from

further study. The crystals described below present no impurity
phases, within the experimental limits of accuracy �1%.

Magnetic flux penetration in crystals with different sub-
stitution levels (x = 0.27–0.49) was characterized using the
magneto-optical imaging (MOI) method1,14,21 before further
experiments. The MOI technique notably allows one to
discard samples with macroscopic defects, and also to ex-
tract calibrated flux density profiles. The sustainable current
density js for magnetic fields up to μ0Ha = 500 G (50 mT)
was obtained from the gradient of the local magnetic flux
density B perpendicular to the crystal surface, using the
Bean model.22,23 Given the thickness-to-width ratio of these
crystals, d/w ∼ 0.25, one has μ0js ∼ 3 dB/dx.24 The crystal
inhomogeneity, and notably the local distribution of Tc, was
characterized using the differential magneto-optical (DMO)
method.14,25 Measurements in higher magnetic fields were
performed using micron-sized Hall probe arrays,26 tailored
in a pseudomorphic GaAlAs/GaAs heterostructure, as well
as using a superconducting quantum interference device
(SQUID) based magnetometer.

The vortex ensembles in several crystals, of substitution
levels x = 0.33, 0.36, and 0.49, were imaged using the Bitter
decoration method2,27 at an applied field μ0Ha = 20 G (2 mT)
(see Sec. III E). In what follows, individual crystals will be
identified as (x = substitution level, sample number).

III. RESULTS

A. Spatial variation of the critical temperature Tc

Figures 1(a) and 1(b) present DMO images of the exclusion
of an applied field μ0Ha = 1 G (0.1 mT) as one crosses
the superconducting to normal transition of BaFe2(As1−xPx)2

single crystals x = 0.27 No. 2 and x = 0.49 No. 1. These
images reveal that Tc is spatially heterogeneous. While
inhomogeneity is especially pronounced in the underdoped
samples, see crystal x = 0.27 No. 2, it is also observed in
the overdoped crystals. A link between the heterogeneity
observed in underdoped samples and a possible phase separa-
tion between superconducting and spin density wave (SDW)
antiferromagnetic phases, and/or that of orthorhombic and
tetragonal structural domains, is therefore not obvious.

The Tc heterogeneity is quantified by the
local transmittivity TH = [I (r,T ) − I (r,T � Tc)] /

[I (r,T � Tc) − I (r,T � Tc)], extracted from the luminous
intensity I (r,T ) in the DMO images of Fig. 1. TH (T ) is
presented in Fig. 2(a) for crystal x = 0.27 No. 2. The width
of the superconducting transition obtained for the various
crystals is presented in Fig. 2(b), where the error bar indicates
the spread of Tc in a given crystal, and the data points
give the temperature where 50% of the crystal has become
superconducting.

B. Sustainable current density js

Figure 3 presents MOI of the magnetic flux penetration (af-
ter zero-field cooling) into superconducting BaFe2(As1−xPx)2

single crystals x = 0.33 No. 1 and x = 0.36 No. 2,
respectively. The former crystal is characterized by very
weak bulk pinning and, as a result, a large influence of
geometrical28,29 and surface barriers.30 The influence of the
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FIG. 1. (Color online) Differential magneto-optical images of
the screening of a magnetic field μ0Ha = 1 G (0.1 mT) by
BaFe2(As1−xPx)2 single crystals (a) x = 0.27 No. 2, and (b) x = 0.49
No. 1. The intensity is proportional to the local magnetic flux
density B(r). Thus, black areas are regions of excluded flux, while
the light areas surrounding the crystal are traversed by the applied
magnetic field. Rectangular frames in (a) indicate the regions where
the transmittivity data of Fig. 2(b) are determined. The frames in (b)
denote the areas where the decoration images of Figs. 11(b) and 11(d)
were obtained.

surface screening current leads to an inhomogeneous flux
density distribution, as presented in Figure 3(a). In contrast,
crystal x = 0.36 No. 2 shows regular flux penetration, in
accordance with the Bean critical state model. The influence
of a surface barrier, present for both flux entry and flux exit, is
also revealed by Hall probe array measurements.

The flux density profiles across the same crystals, depicted
in Figs. 4(a)–4(b) and 4(c)–4(d), respectively, were extracted
from the calibrated luminous intensities of the magneto-optical
images in Fig. 3. One sees that even for the same or comparable
doping levels, very different flux density profiles can be
obtained after zero-field cooling. Figures 4(c) and 4(d) show
the Bean-like penetration of the magnetic flux inside crystal
x = 0.36 No. 2, with no clear influence of a surface barrier,
while the flux profiles for crystal x = 0.33 No. 1 in Figs. 4(a)
and 4(b) show, apart from inhomogeneity, a large discontinuity
in the magnetic induction at the sample edge, characteristic
of a surface barrier. Given the very different behavior for
nearly the same sample composition, the origin of the bulk
critical current density in BaFe2(As1−xPx)2 is most likely
extrinsic. This is supported by the temperature dependence
of the sustainable current density js(T ,B = 30 mT) of the
studied samples, shown in Fig. 5. The absolute value of js(T )
is widely dispersed, even for crystals with the same doping
level.
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FIG. 2. (Color online) (a) TH measured on the three regions of
crystal x = 0.27 No. 2 indicated in Fig. 1. (b) Transition temperature
Tc versus P content x. The error bars indicate the local spread of Tc

inside a given crystal. For each x, the numbering 1, 2, etc., denotes
different crystals from the same batch. (c) Dependence of the low-
temperature (T = 6 K) critical current density on P content x. The
drawn line shows the evolution of the critical current due to spatial
variations of the dopant atom density (on a scale of δz ∼ 100 nm and
with variance �x ∼ 0.3%) such as expected from Eq. (9).

In spite of the disparity, the flux pinning mechanism in all
crystals is the same. Figure 6 shows hysteresis loops of the local
gradient of the magnetic induction dB/dx in fields of up to
2 T, obtained on crystals of different composition using the
Hall probe array magnetometry technique.26 The hysteresis
loops were measured at 6 K, at which flux creep has only
a moderate influence. For all crystals, of all investigated
substitution levels, one has the ubiquitous central peak at
zero field, believed to be due to strong pinning by nm-scale
disorder.14 The magnetic field dependence of the sustainable
current density js(B) was obtained from the value of dB/dx

at given B. Figure 7 shows js(B) for the optimally substituted
single crystal x = 0.36 No. 2 at different temperatures. The
js(B) curve at the lowest T is representative of the field-
dependent critical current density jc(B). The critical current
density is characterized by a low-field plateau, followed by a
jc ∝ B−1/2 decrease at higher fields, behavior that is typical
of strong flux pinning by sparse pointlike defects.13,14,31 The
contribution to jc(B) due to weak collective pinning of
the vortex lines by atomic-sized point pins, observed in
all charge-doped iron-based superconductors as well as
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FIG. 3. Magnetic flux density distribution in BaFe2(As1−xPx)2

single crystals x = 0.33 No. 1 (a), and x = 0.36 No. 2 (b), after
zero–field cooling to the indicated temperatures and the application
of different magnetic fields. The top left panel of each subfigure
shows the respective crystal; the white lines are those along which
the profiles in Fig. 4 are extracted. The intensity in the other panels
reflects the local flux density B(r). The bottom right-hand panel of
(a) shows the trapped flux distribution in crystal x = 0.33 No. 1, after
application and removal of μ0Ha = 22.1 mT.

in Ba(Fe1−xRux)2As2, is clearly absent in Fig. 7. The
BaFe2(As1−xPx)2 system can therefore be seen as a typical
strongly pinning superconductor, in the sense that only large
but sparse extrinsic pointlike pins contribute to flux pinning.31

At larger temperatures and fields, js(B) decreases faster than
B−1/2, an effect attributed to flux creep.

Measurements carried out to larger fields using a SQUID
magnetometer (Fig. 8) show that, contrary to the data presented
in Ref. 19, the sustainable current density continues its
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FIG. 4. (Color online) Magnetic flux density profiles in
BaFe2(As1−xPx)2 crystal x = 0.33 No. 1, at T = 19 and 26 K [(a)
and (b)], and crystal x = 0.36 No. 2, at T = 19 and 22.2 K [(c) and
(d)], after zero-field cooling and application of the magnetic field
in successive steps �Ha . The Bean-like profiles in (c) and (d) are
obtained from the MOI images of Fig. 3(b). The profiles in (a) and
(b) are influenced by a surface barrier and correspond to the crystal
of Fig. 3(a).
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monotonous decrease as a function of magnetic field—there is
no “fishtail” or “second-peak” effect14 up to μ0Ha = 5 T. The
peak effect being usually associated with a weak collective
pinning contribution to the critical current, we surmise that in
the field range of interest the strong pinning mechanism is the
only one at play.

C. Quantitative effect of flux creep

The influence of flux creep is assessed from relaxation
measurements of the local flux density using the Hall
probe magnetometry technique. Typical examples, shown in
Fig. 9(a), show that the creep rate S ≡ d ln(dB/dx)/d ln t

typically amounts to a few percent. Nevertheless, js is
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FIG. 6. (Color online) Hysteresis loops of the spatial gradi-
ent dB/dx of the local magnetic induction on the surface of
BaFe2(As1−xPx)2 single crystals of different substitution levels
0.27 � x � 0.58, measured using the Hall probe magnetometry
technique (Ref. 26), at T = 6 K.
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significantly affected by creep, such that it is determined as
the solution of the relation U (js) = kBT ln [(t0 + t) /τ ], rather
than by the critical current density jc.32,33 Here, t0 is a time
describing transient effects at the onset of relaxation, and τ

is a normalization time related to the sample inductance.32,33

The dependence of the flux creep barrier U (j ) on current
density j can be extracted using various methods, including
those of Maley et al.34 and Abulafia et al.35,36 Applying the
latter, we find [see Fig. 9(b)] that the creep barrier in optimally
substituted BaFe2(As1−xPx)2 follows

U (j ) = Uc

(
jc

j

)μ

, (1)

with values of the exponent μ ∼ 1.5–2. Therefore, the time and
temperature dependence of the sustainable screening current
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FIG. 8. (Color online) (a) Magnetic hysteresis loops measured on
BaFe2(As1−xPx)2 crystal x = 0.33 No. 2 using a SQUID magnetome-
ter. (b) Sustainable screening current js as function of the applied field
μ0Ha (in teslas).
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FIG. 9. (Color online) Magnetic relaxation in BaFe2(As1−xPx)2

crystal x = 0.33 No. 2. (a) Relaxation of the magnetic flux density
at three positions on the crystal surface—the center, and positions
20 and 40 μm from the center. Data were taken at 10 K, af-
ter field cooling in 0.2 T and subsequently removing the field.
(b) Experimental flux-creep activation barrier U versus js , as obtained
using the method outlined in Refs. 35 and 36. (c) Temperature
dependence of the sustainable current density in zero applied field,
and applied fields of 0.14, 0.2, 1, and 2 T. Measurements using the Hall
probe array technique (open symbols) were obtained from hysteresis
loops such as shown in Fig. 6, while data from MOI are obtained from
the flux-profile gradient. The drawn line through the js(Ha = 0) data
corresponds to the expected T dependence of the depairing current;
the drawn lines for higher fields are obtained from this by taking the
field dependence of the critical current (3), (4) into account, and by
correcting for flux creep using Eq. (2).

density is described by

js = jc

[
kBT

Uc

ln

(
t + t0

τ

)]−1/μ

. (2)

The impact of flux creep on the temperature dependence of
the sustainable current is depicted in Fig. 9(c), which shows
js(T ) curves for crystal x = 0.33 No. 2, for different B.
The curve in zero applied field is little affected by creep,
and roughly follows the expected temperature dependence of
the depairing current, j (0,T ) ∼ ε0(T )/�0ξ (T ) (�0 = h/2e

is the flux quantum). Here, the vortex line energy, ε0(T ) =
�2

0/4πμ0λ
2
ab, proportional to the superfluid density ns ∼

λ−2
ab , is evaluated using the data for the in-plane penetration

depth λab(T ) of Ref. 41, and the coherence length ξ (T ) ∼
ξ (0)

√
(1 + T/Tc)/(1 − T/Tc). The curves for varying applied

field can then be well described by taking the creep bar-
rier prefactor Uc(T ) ∝ ε0(T ), jc(B,T ) ∝ j (0,T )B−1/2, μ =
1.6, and ln [(t + t0) /τ ] = 20.36 Therefore, the temperature
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dependence of the screening current in fields larger than 0.1 T
is essentially determined by flux creep.

D. Extraction of pinning parameters

We now analyze the js(B) curves measured at low tem-
perature, representative of the critical current density jc(B),
and which bear the hallmarks of strong pinning. These are the
plateau at low magnetic field,14,31

jc(0) = fp

�0L
= π1/2 fp

�0ελ

(
Upni

ε0

)1/2

(B � B∗), (3)

followed by a power-law decrease as a function of the flux
density B,14,31 which can be described as

jc(B) = fp

�0L
2

ελa0

π

= fp

�0ελ

(
Upni

ε0

) (
�0

B

)1/2

(B � B∗). (4)

The main parameter, L = (
πUpni/ελε0

)−1/2
, is the average

distance between effective defects pinning a single vortex in
the low-field limit.31 The crossover field B∗ is that above which
the intervortex repulsion limits the number of effective pins
per vortex, and fp is the maximum pinning force exerted
by a single strong pin. Up/[J ] is the pinning energy of a
single strong pin, ni is the pin density, a0 = (�0/B)1/2 is the
intervortex distance, and ελ = λab/λc is the penetration depth
anisotropy.

Equations (3) and (4) show that the pinning force of a single
strong pin fp = (�3/2

0 ελ/π ){j 2(0)/[∂j (B)/∂B−1/2]} can be
obtained from the experimentally measured low-temperature,
low-field current density jc(0), and the slope ∂jc(B)/∂B−1/2

at intermediate fields. Reserving our attention to the crystals
used in the Bitter decoration experiments presented below, we
obtain, for an estimated ελ = 0.15,37 fp ≈ 8 × 10−13 N for
both crystals (x = 0.36 No. 2) and (x = 0.49 No. 1). This value
is twice larger than that measured in Ba(Fe1−xCox)2As2.2 An
evaluation at the highest measurement temperature of 0.8Tc

yields fp = 2 × 10−14 N; however, this value is likely to be
overestimated due to creep. Similarly, one can extract the
length L = fp/�0jc(0). Figure 10 shows that L is of the order
of several dozen to hundreds of nm, in accordance with the
strong pinning hypothesis. Moreover, the distance between
effective pins clearly increases as a function of P content x.

E. Vortex imaging by Bitter decoration

The Bitter decoration technique2,27 was used to image
the vortex ensemble in BaFe2(As1−xPx)2 single crystals with
three different substitution levels, x = 0.33, x = 0.36, and
x = 0.49. The experiments were realized under field-cooled
(FC) conditions, with a field μ0Ha = 20 G (2 mT) applied
parallel to the c axis of the crystals. The decoration experiment
for the crystal with x = 0.33 was not successful, presumably
due to the large value of the penetration depth.38

The vortex configurations shown in Fig. 11, for crystals
x = 0.36 No. 2 and x = 0.49 No. 1, are representative of what
is observed over the entire specimens. From the decoration
images, we obtain, for both crystals, the average value of
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FIG. 10. (Color online) Average distance L between effective
pins versus P content. L is obtained from js(B) data at 5 K (red
bullets), and from Bitter decoration at Tf = 0.87Tc (blue squares).
The drawn lines show the comparison with Eq. (10), for variations of
the dopant atom density �x = 0.3%, on a characteristic length scale
δz = 100 nm.

the magnetic induction as Bint = nv�0 ≈ 19 G (with nv the
vortex density). This is 1 G smaller than the applied field
during the experiment. Notwithstanding Ref. 39, there is
therefore evidence for Meissner exclusion of the magnetic
flux. Moreover, the Meissner current manifests itself as a
vortex-free “Meissner belt” along the edges of decorated
crystal x = 0.49 No. 1, as well as near surface steps that appear
during preliminary cleavage of the samples, as indicated in
Fig. 11. Long vortex chains reminiscent of those observed
in Ref. 11 are also observed in the decoration images, for

FIG. 11. Bitter decoration images of BaFe2(As1−xPx)2 single
crystals for an applied field μ0Ha= 20 G (a), (c) x = 0.36 No. 2, and
(b) and (d) x = 0.49 No. 1. The white arrows indicate the vortex-free
Meissner belt observed (a) near a surface step and (d) at the edge
of the crystal x = 0.49 No. 1. The regions where images (b) and (d)
were obtained with respect to the entire crystal are depicted in Fig. 1.
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both investigated P contents; however, the chains are more
pronounced in crystal x = 0.36 No. 2.

Figures 12(a) and 12(b) present the respective Delaunay
triangulations of the vortex ensembles of Figs. 11(a) and 11(b).
Here, blue dots represent vortices with sixfold coordination,
while red dots represent vortices with different coordination
number. Even if there are some regions with several adjacent
sixfold-coordinated vortices, the insets to Figs. 12(c) and
12(d) reveal that the latter represent less than half of the
total (46% for crystal x = 0.49 No. 1, and 43% for crystal
x = 0.36 No. 2). In fact, for the magnetic field of 20 G
under study, the percentage of sixfold-coordinated vortices
is the same as in Ba(Fe0925Co0.075)2As2 (43%)40 and in
Ba0.6K0.4Fe2As2 (44%).11 Moreover, the coordination number
histograms have the same width for the three materials,
revealing similar disorder of the vortex ensemble. The absence
of vortex lattice order is further brought out by the Fourier
transforms of the vortex positions shown in the insert to
Figs. 12(a) and 12(b). Nevertheless, the spatial distribution of
vortices in the two BaFe2(As1−xPx)2 crystals presents smaller
density fluctuations than previously observed in the Co-doped
material.2 Panels (c) and (d) of Fig. 12 show the distributions
of nearest-neighbor intervortex distances. These have a mean
value |rij | = 1 μm, while the lattice parameter for a triangular
perfect lattice of the same density is a� = 1.075

√
�0/B =

1.12 μm. This shift is due to the existence of more densely
packed vortices, notably in the chainlike structures.

IV. DISCUSSION

In what follows, we adopt the procedure of Ref. 2 to
determine the vortex interaction energy. For this, one needs to
know the value of λab at the temperature Tf at which the vortex
ensemble is frozen. As in Ref. 2, we use the information that
can be obtained from vortex lines situated near surface steps.
Such steps may act as barriers, but, due to the circulation
of the Meissner current, they also prevent vortex lines from
being situated right at their edge. Inserting the height of the
surface step in Fig. 11(a), h = 1.3 μm, and the width of the
vortex-free region close to the step, u = 1.2 μm, in Eq. (1)
of Ref. 2, the value of the penetration depth at the freezing
temperature is graphically estimated as λab(Tf ) ≈ 700 nm.
Using the temperature dependence of λab(T ) from Ref. 41,
one obtains the freezing temperature of the vortex ensemble
as Tf ≈ 0.87Tc. Thus, even though vortices are frozen at a
relatively high reduced temperature, its value is lower than
Tf /Tc = 0.95 found in Ba(Fe1−xCox)2As2.

Using λab(Tf ) and the vortex positions extracted from
Fig. 11, the interaction energies of the individual vortices can
be calculated as

E i
int =

∑
j

2ε0K0

( |rij |
λab

)
. (5)

Here K0(x) is the lowest-order modified Bessel function, and
|rij | is the distance from vortex i to vortex j . For each vortex
i, only neighbors j contained within a circle of radius of
10λab(T ) are taken into account. This radius was chosen after
verification that vortices situated at a larger distance do not
significantly contribute to E i

int.

FIG. 12. (Color online) Delaunay triangulation of vortex en-
sembles observed in BaFe2(As1−xPx)2 single crystals (a) x = 0.36
No. 2 and (b) x = 0.49 No. 1, and presented in Figs. 11(a) and 11(c),
respectively. Blue dots represent vortices with sixfold coordination,
while red dots represent differently coordinated vortices. The insets
show the Fourier transform of the vortex positions. (c) and (d) Nearest-
neighbor distance distributions for the respective triangulations. The
insets present the respective coordination number distributions.

Figures 13(a)–13(d) present the vortex interaction energies
as color-coded maps, with the energy scale normalized by
ε0(Tf ), as extracted from the images of Figs. 11(a)–11(d),
respectively. The maps show a globally homogeneous distri-
bution; however, a number of denser regions exist. Histograms
of the interaction energies for the maps (a) to (d) are
presented in Figs. 13(e)–13(h). Note that the presence of the
chainlike features with a denser vortex arrangement broadens
the histograms for BaFe2(As1−xPx)2 single crystal (x = 0.36
No. 2). Still, the energy distributions are considerably narrower
than those found in Ba(Fe1−xCox)2As2.2 Furthermore, all
distributions are centered about the average E int ≈ 3.5ε0,
which corresponds to the interaction energy value (δ peak)
of the perfectly triangular Abrikosov lattice for this particular
vortex density. Therefore, in contrast to Ba(Fe1−xCox)2As2,2

no pinning-induced shift of the average value of the energy
distribution histogram with respect to the δ-peak value is
observed.

The large shift found in Ref. 2 was interpreted in terms of
a large average pinning energy in the vicinity of Tc, which
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FIG. 13. (Color online) (a)–(d) Color-coded maps of the nor-
malized individual vortex interaction energies calculated from the
images of Figs. 11(a)–11(d) using Eq. (5), and represented in the
same configuration. Lower panels: Normalized interaction energy
distributions for BaFe2(As1−xPx)2 crystals (x = 0.36 No. 2) [(e) and
(g)], and (x = 0.49 No. 1) [(f) and (h)]. Vortices located within a
distance 10λab from the map edge are excluded from the histograms.
The interaction energy per vortex of the triangular lattice (δ function)
is represented by the central orange line in each histogram.

can only be the result of Tc heterogeneity. The absence
of such a shift in isovalently substituted BaFe2(As1−xPx)2

suggests that spatial inhomogeneity of Tc is irrelevant for
vortex pinning in this material. A probable reason for this is
a smoother temperature dependence of the pinning potential.
The pinning energy due to spatial variations of the vortex
line energy, on a scale δz and with variance �ε0, is written
Up ∼ �ε0(T )δz ∼ [�ns(0) / ns(0)][∂ε0(T ) / ∂ns(0)]ns(T ) +
[ε0/ns(0)][∂ns(T )/∂Tc]�Tc. At temperatures close to Tc,
the second contribution, due to spatial fluctuations of Tc,
dominates the pinning energy.2 However, whereas in materials
such as Ba(Fe1−xCox)2As2—in which ns is nearly linear
in 1 − T/Tc as one approaches Tc (see Fig. 14)—this
contribution is large, in BaFe2(As1−xPx)2 with a smoother
temperature dependence of ns this contribution vanishes.
In fact, the Tc heterogeneity within the decorated areas of
the P-substituted material, such as observed by the DMO
technique, does not result in qualitatively different vortex
arrangements in different parts of the crystal [see Fig. 1(b)].

FIG. 14. (Color online) Temperature dependence of the su-
perfluid density, ns(T )/ns(0) ∝ λ2

ab(0)/λ2
ab(T ), for various doping

levels x of Ba(Fe1−xCox)2As2 (upper curves, small data points),
Ba0.55K0.45Fe2As2 (blue bullets), and BaFe2(As0.67P0.33)2 (red bullets)
(both from Ref. 41).

Figure 15 shows maps of the modulus of the pinning force
for each individual vortex, calculated from

fi =
∑

j

2ε0

λab

rij

|rij |K1

( |rij |
λab

)
(6)

following a procedure similar to that used for the determination
of E i

int. Here K1(x) is the first-order modified Bessel function.
Since the rendered vortex configurations in Fig. 11 are in a
stationary state at the freezing temperature Tf , the calculated
intervortex repulsive force must be balanced by the pinning
force. The maps of Figs. 15(a) to 15(d) therefore represent the
minimum local pinning force for each vortex, min(|fi |). The
distributions of min(|fi |) shown in Figs. 15(e) to 15(h) allow
one to estimate the average pinning force per vortex and per
unit length. We obtain |fi | ∼ 3.5 × 10−6 N m−1 for crystal
x = 0.49 No. 1 and |fi | ∼ 4.5 × 10−6 N m−1 for crystal x =
0.36 No. 2. These (high temperature) values are comparable
to those found in Ba(Fe1−xCox)2As2.2

The maps of the local pinning force moduli and the
interaction energy shown in Figs. 13 and 15, respectively, are
correlated. However, the respective probability distributions
are clearly broader for the lower substitution level x = 0.36.
As in Ref. 2, the ratio of the elementary pinning force per
pin fp, extracted from the j (B) curves in Sec. III A, and the
value of |fi | obtained from Bitter decoration allows one to
evaluate an upper bound on L̄ in an independent manner.
Using the low-temperature value fp ∼ 8 × 10−13 N yields
L̄ = 180 nm for crystal x = 0.36 No. 2 and L̄ = 230 nm for
crystal x = 0.49 No. 1. Figure 10 shows that these numbers are
consistent with those directly extracted from the sustainable
current density measurements.

Several reasons can be invoked to explain the observed
enhancement of L with increasing P content x. First is the
increase of the superfluid density ns(x) as function of x.38

Other possibilities are a decrease of the density ni of pinning
centers for larger x, and the decrease of the penetration
depth anisotropy ε−1

λ for higher substitution levels. We first
investigate the effect of the increase of the superfluid density
with x. Assuming that nm-scale fluctuations of the dopant
atom density (with variance �x) are spatially isotropic, their
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FIG. 15. (Color online) Normalized color-coded maps of the
modulus of the pinning force (per unit length), calculated from
the images of Fig. 11 using Eq. (6). Lower panels: Pinning force
distributions for BaFe2(As1−xPx)2 single crystals (x = 0.36 No. 2)
[(e) and (g)], and (x = 0.49 No. 1) [(f) and (h)]. Again, vortices
located within a distance 10λab from the map edge are excluded from
the histograms.

effect on the pinning force

〈fp〉 ∼
〈∫

δz

∇ε0(r)dz

〉
∼ �ε0 (7)

and the pinning energy Up ∼ �ε0δz can be estimated by
exploiting the dependence λab(x),38

〈fp〉 ∼ �ε0 ∼ ∂ε0

∂λab

∂λab

∂x
�x. (8)

The low-field critical current density (3) becomes

jc ∼ π1/2ni

�0ελ

�ε
3/2
0

ε
1/2
0

= ni

�0ελ

(
π

ε0(x)

)1/2 ∣∣∣∣ ∂ε0

∂λab

∂λab

∂x
�x

∣∣∣∣
3/2

, (9)

the distance between effective pinning centers

L ∼ ελ

π1/2

(
ε0

ni�ε0δz

)1/2

= ελ

2π1/2

1

(niδz)1/2

∣∣∣∣ 1

ε0

∂ε0

∂λab

∂λab

∂x
�x

∣∣∣∣
−1/2

. (10)

Assuming that for density fluctuations of the dopant atoms
the pin density ni ∼ (δz)−3 scales as the inverse cube of the
defect size, these expressions can be directly compared to
the dependence of the critical current density on P content
[see Fig. 2(c)], as well as that of L (see Fig. 10). For
δz = 100 nm and �x = 0.3%, the qualitative trend with x

of both quantities can be reproduced. Thus, the dependence
of the penetration depth on P content accounts, at least in the
overdoped regime, for an enhanced probability of encountering
larger critical current densities around optimal substitution.
The similar dispersion of critical current density and pinning
length data for different x around the model estimations (9)
and (10) in Figs. 2(c) and 10 would then be due to similar
disorder of the P distribution in the different growth batches,
eliminating the need to invoke a decreasing disorder with
increasing x. Still, the evolution L(x) is reminiscent of that
of the normal-state mean-free path, extracted by Shishido
et al. from de Haas–van Alphen oscillations of the Landau
magnetization.42 They reported that the mean-free path for the
β orbits in BaFe2(As1−xPx)2 single crystals increases from
l ∼ 170 Å to 800 Å when P content varies from x = 0.41 to 1.
This would imply the presence of structural defects that act as
strong pinning centers that are unrelated to spatial composition
fluctuations. Last but not least, the increase of ελ(x), as inferred
from the doping-dependent evolution of the Fermi surface42

and corresponding to a smaller Fe-pnictogen distance for large
x, would lead to stiffer vortex lines and to less pinning for
higher P content.

Finally, we address the clear presence of chainlike struc-
tures in the Bitter decoration images. The following hypotheses
can be suggested to explain the appearance of these chains. The
first is the possibility of native heterogeneity of the crystals
under study, introduced during growth. The presence of
linelike defects, or of linear agglomerates of pointlike defects
giving stronger local pinning, will lead to the appearance of
vortex alignments or chainlike structures, much as this was
found in, e.g., Bi2Sr2CaCu2O8+δ .43–47 A second possibility is
that, the vortex images having been obtained after field cooling,
and since the BaFe2(As1−xPx)2 material under consideration
shows Meissner expulsion, a certain fraction of vortices must
exit the material before the vortex ensemble is frozen at Tf .
The chains possibly correspond to flow channels for these
exiting vortices, the flux in intermediate areas remaining
pinned.48 Finally, the multiband character of BaFe2(As1−xPx)2

may be responsible for the occurrence of vortex chains, with
the possible existence of an attractive part in the intervor-
tex potential.49 We leave these questions open for further
work.

V. SUMMARY AND CONCLUSION

We have presented an overview of vortex pinning in
single crystals of the isovalently substituted iron-based su-
perconductor BaFe2(As1−xPx)2, in which we have attempted
to correlate the sustainable screening current density as a
function of temperature, field, and doping x, with the structural
properties of the vortex ensemble. The critical current density
in BaFe2(As1−xPx)2 is, overall, very well described by the
strong pinning scenario of Ref. 31, which allows one to extract
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elementary pinning forces (of the order of 10−13 N) and the
distance between effective pins. The latter is of the order
of 100 nm, and increases as a function of doping level x.
These values are consistent with those independently obtained
by means of the magnetic decoration technique. Contrary to
Ref. 19, we find no contribution of weak collective pinning
to the sustainable current density, suggesting that P atoms are
not responsible for quasiparticle scattering.13 The sustainable
current data are affected by flux creep, which prohibits
one from drawing definite conclusions concerning the tem-
perature dependence of pinning.

Bitter decoration reveals slightly more ordered vor-
tex ensembles (the number of sixfold-coordinated vortices
is slightly higher) than those observed in charge-doped
Ba(Fe1−xCox)2As2. Also, the interaction energy and pinning
force distributions in BaFe2(As1−xPx)2 are much narrower
than those in Ba(Fe1−xCox)2As2, and are not shifted with
respect to the interaction energy of a perfectly triangular vortex
lattice with the same density. These observations exclude a
role of spatial variations of the critical temperature Tc in deter-
mining the frozen vortex state obtained upon field cooling. The
absence of the weak-collective pinning contribution to the crit-
ical current density in BaFe2(As1−xPx)2 means that the strong
pinning contribution is what generates the disordered vortex
configurations.

The main features of strong vortex pinning in
BaFe2(As1−xPx)2, such as the energy and force histograms,
the density of effective pins, and the evolution of the critical
current density with P content, can be understood using a
model for heterogeneity of the superfluid density on the
scale of several dozen to several hundred nanometers, due
to an inhomogeneous distribution of the dopant atoms. A
small spatial variance �x (of the order of 0.3%) suffices to
explain the magnitude of jc. This model explains why pinning
is of extrinsic origin, and why the disorder can be readily
annealed.12 Even if the x dependence of the critical current
density can be well described without any assumption of less
disorder in crystals with higher P content, the reminiscence
of the evolution with P content of the mean distance between
effective pinning sites and the normal-state mean-free path42

suggests that a second type of pinning center may be at play.
This could be areas of enhanced local strain, more prominent
at optimal doping, such as those arising from the very different
Fe-As and Fe-P distances.50
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