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Using controlled disorder to distinguish s± and s++ gap structure in Fe-based superconductors
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We reconsider the effect of disorder on the properties of a superconductor characterized by a sign-changing
order parameter appropriate for Fe-based materials. Within a simple two-band model, we calculate simultaneously
Tc, the change in residual resistivity �ρ0, and the zero-energy density of states, and show how these results change
for various types of gap structure and assumptions regarding the impurity scattering. The rate of Tc suppression
is shown to vary dramatically according to details of the impurity model considered. We search therefore
for a practical, experimentally oriented signature of a gap of the s± type, and propose that observation of a
particular evolution of the penetration depth, nuclear magnetic resonance relaxation rate, or thermal conductivity
temperature dependence with disorder would suffice.
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I. INTRODUCTION

Determining the symmetry and structure of the super-
conducting order parameter in iron-based superconductors
(FeSCs) is one of the main challenges in this new field.1

The Fermi surface is usually given by two or three [� =
(0,0)]-centered hole pockets and two [M = (π,π )]-centered
electron pockets in the two-Fe zone composed primarily of Fe
3d states. Repulsive interband interactions between hole and
electron pockets leading to spin fluctuations are often assumed
to lead to a superconducting order parameter which changes
sign over the Fermi surface (FS) to lower the overall Coulomb
energy. The simplest version of this state, called the s± state,
is described by an isotropic order parameter on each FS with
opposite signs for electronlike and holelike pockets.2 The state
may be highly anisotropic and even exhibit gap nodes, but still
be considered s± provided the average sign on hole pockets
is opposite that on electron pockets. On the other hand, other
theories suggest that orbital fluctuations may dominate the
pairing interactions in systems of this type, favoring a gap
with equal sign on all pockets, denoted s++.3

Surprisingly, it has proven rather difficult to definitively
distinguish these types of gap structures experimentally, in
part because phase-sensitive experiments are challenging due
to surface properties; because of the multiband nature of the
electronic structure; and because the s± and s++ “states” are
symmetry equivalent, transforming both according to the A1g

representation of the crystal point group. At this writing,
three experiments offer indirect evidence in favor of the
s± state: the nearly ubiquitous observation of neutron spin
resonance features in inelastic neutron spectroscopy (INS),4–9

a quasiparticle interference scanning tunneling spectroscopy
(STS) experiment in a magnetic field,10 and a phase-sensitive
experiment on a polycrystalline sample which relies on
significant statistical analysis.11

On the other hand, alternative explanations have been
offered for all these measurements; in particular, Kontani and
Onari have provided an alternate explanation3 for the neutron
resonance features within an s++ scenario via a postulated
energy dependence of the quasiparticle relaxation time. In

addition, several references12–15 have called attention
to a “slow” decrease of Tc in chemical substitution
experiments,14–18 which is then ascribed to the natural robust-
ness against nonmagnetic disorder of an s++ superconductor.
It is this issue which we study here.

It is important to understand what is meant by “slow”
and “fast” Tc suppression in this context. At one extreme
we have situations in which Tc is not suppressed by non-
magnetic disorder at all. According to Anderson’s theorem,
the critical temperature of an isotropic conventional s-wave
superconductor with a single band of electrons is unaffected
by nonmagnetic scatterers. From this statement it follows
immediately that the same occurs for two bands in an isotropic
s++ state (with equal gaps), but also in an s± state with
no interband scattering. At the other extreme, we know that
magnetic scatterers in a conventional isotropic superconductor
suppress Tc according to the Abrikosov-Gor’kov (AG) law;19

it is well known that nonmagnetic scatterers suppress Tc at
the same fast AG rate in a two-band s± state, provided the
two densities of states Na = Nb and two gaps �a = −�b are
equal in magnitude, and the scattering is purely interband in
nature. Any deviation from these assumptions will slow the
Tc suppression rate relative to the AG rate. Therefore between
these two extremes lie many possibilities for Tc suppression
behavior which depend on details of the electronic structure
and the relative amplitudes of inter- and intraband scattering.

Several theoretical calculations of Tc suppression have
discussed the pair-breaking effects of nonmagnetic scatterers
on model multiband superconductors with generalized s-wave
order.12,20–29 In fact the situation is generally even more
complicated than discussed above or in these works, since
chemical impurities may do more than simply provide a
scattering potential: they may dope the system, or alter the
pairing interaction itself locally. We therefore believe (see
also Ref. 1) that measurements of Tc suppression relative to
the amount of chemical disorder are not particularly useful to
determine the gap structure in multiband systems. To improve
the situation, one first needs to find a way to create pointlike
potential scattering centers, so as to create disordered systems
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to which the above theoretical works apply. The closest
approach to this ideal is achieved with low-energy electron
irradiation, which is thought to create interstitial-vacancy
pairs. Experiments of this type are being performed currently,
and it is one of the goals of this work to make predictions to
guide the analysis of such data.

The other needed improvements are theoretical: first, the
pair-breaking theory must be extended to relate Tc only to
directly measurable quantities, like the change in residual
(T → 0) resistivity caused by the disorder, rather than to
any theoretically meaningful but empirically inaccessible
scattering rate parameter. Second, since the theory involves
many parameters, the robustness of any claimed fit must be
tested by the simultaneous prediction of other quantities which
depend on disorder, such as the low-temperature penetration
depth, nuclear magnetic resonance (NMR) relaxation rate,
or thermal conductivity. Finally, it would be useful to have
ab initio calculations of vacancy and interstitial potentials
to constrain the impurity parameters used. This has been
attempted for chemical substituents30,31 recently.

II. MODEL

We consider a system with two bands a and b with linearized
dispersion close to the Fermi level that lead to densities of state
Na and Nb in the normal state; see Fig. 1.

The t-matrix equation in the two-band model has the form

�̂ = nimp t̂, (1a)

t̂ = û + ûĝt̂, (1b)

where nimp is the concentration of impurities, t̂(nimp) =∑3
i=0 t(i)⊗τ̂i , ĝ(nimp) = g0⊗τ̂0 + g1⊗τ̂1, and ⊗ represents a

product of band (bold) and Nambu (caret) matrices. g0 =
diag(g0a,g0b) and g1 = diag(g1a,g1b) are local Green’s func-
tions in the τ0 and τ1 channels (we have assumed particle-hole
symmetry in order to neglect g3), where τ̂i denote Pauli
matrices in Nambu space. Due to the translational invariance of
the disorder-averaged system, ĝ is diagonal in band space. We
now assume a simple model for impurity scattering whereby
electrons scatter within each band with amplitude v and
between bands with amplitude u,

û =
(

v u

u v

)
⊗τ̂3. (2)
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FIG. 1. (Color online) Sketch of the two-band model with
linearized band dispersions on the Fermi sheets a and b and constant
impurity scattering v (intraband) and u (interband), together with a
possible nodal s-wave gap on the bands in the superconducting state.

The t-matrix components are found from Eq. (1b) to be

t (0)
aa =

[
g0bu

2 + g0av
2 − g0a(u2 − v2)2δg2

b

]
D ,

(3)

t (1)
aa = −

[
g1bu

2 + g1av
2 − g1a(u2 − v2)2δg2

b

]
D ,

and t
(i)
bb = t (i)

aa (a ↔ b), where

D = 1 − (
δg2

a + δg2
b

)
v2 + δg2

aδg
2
b(u2 − v2)2

− 2u2 (g0ag0b − g1ag1b) (4)

with the abbreviation δg2
α = g2

0α − g2
1α .

III. Tc SUPPRESSION

The linearized multiband gap equation near Tc is (see, e.g.,
Ref. 25)

�α(k) = 2T

ωn=ωc∑
k′,β,ωn>0

V
αβ

kk′
�̃β(k′)
ω̃2

β + ξ 2
β

, (5)

where ξβ is the linearized dispersion of band β, and we in-
troduced the shifted gaps and frequencies �̃β(k′) = �β(k′) +
�

(1)
β and ω̃β = ωn + i�

(0)
β . We will simplify the model above

further in that we adopt a gap structure similar to that obtained
from spin fluctuation theories: The gap on the (hole) pocket
a is isotropic, �a , and the gap on the (electron) pocket
b may be anisotropic, �b = �0

b + �1
b(θ ), where θ is the

momentum angle around the b pocket and
∫

dθ�1
b(θ ) = 0. The

pairing potential is then taken as V
αβ

kk′ = Vαβφα(k)φβ(k′), with
φα = 1 + rδα,b cos 2φ, and φ is the angle around the electron
pocket. The parameter r controls the degree of anisotropy, and
creates nodes if r > 1.

This ansatz then gives three coupled gap equations for
(�a,�

0
b,�

1
b)T ≡ �. In the � basis we can write the gap

equations in the compact form

� = ln

(
1.13

ωc

Tc

)
M�≡ L0M�, (6)

where the matrix M = (1 + V R−1X R)−1 V and the con-
stant L0 = ln(1.13ωc

Tc
) were introduced. Here V is the inter-

action matrix in the above basis. R is the orthogonal matrix
which diagonalizes the matrix �,

� = πnimp

DN

⎡
⎢⎣

Nbu
2 −Nbu

2 0

−Nau
2 Nau

2 0

0 0 Nbv
2 + Nau

2

⎤
⎥⎦ , (7)

where

DN = 1 + 2u2π2NaNb + (u2 − v2)2π4N2
a N2

b

+ v2π2
(
N2

a + N2
b

)
(8)

is Eq. (4) evaluated in the normal state where the limit � → 0
has been taken in the local Green’s functions. X is a matrix
with only diagonal elements,

Xii = L0 −
[
�

(
1

2
+ ωc

2πTc

+ λi

2πTc

)
− �

(
1

2
+ λi

2πTc

)]
,

(9)
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where � is the digamma function and λi are the eigenvalues
of the matrix �. The maximum eigenvalue [λmax(Tc)] of the
matrix M determines Tc via Tc = 1.13ωc exp [−1/λmax(Tc)].

IV. RESIDUAL RESISTIVITY

The most direct observable measure of scattering in Tc

suppression experiments is the residual resistivity change �ρ0,
i.e., the change in the extrapolated T → 0 value of the resis-
tivity with disorder. We will assume that interference effects
between elastic and inelastic processes are negligible, i.e., that
the effect on the ρ(T ) curve when the system is disordered
is essentially a T -independent shift upward. We therefore
calculate �ρ0 within the same framework as above, assuming
that all defects are pointlike. In the zero-frequency limit, there
are no interband transitions, and the total conductivity in the
x direction is the sum of the Drude conductivities of the two
bands, σ = σa + σb, with σα = 2e2Nα〈v2

α,x〉τα , where vα,x is
the component of the Fermi velocity in the x direction and
τα the corresponding single-particle relaxation time obtained
from the self-energy in the t-matrix approximation, τ−1

α =
−2 Im �(0)

α . Note that τ−1
α contains contributions from both

the intraband and interband impurity scattering processes. The
transport time and single-particle lifetime are identical within
this model because of our assumption of pointlike s-wave
scatterers, which implies that corrections to the current vertex
vanish. A finite spatial range of the scattering potential will
tend to steepen the Tc vs �ρ0 curve.32,33

V. RESULTS

A. Tc suppression vs resistivity

We now solve Eqs. (6) for Tc and calculate simultaneously
the change in resistivity �ρ0 at T → 0. Unlike Tc vs nimp

or various scattering rates, Tc vs �ρ0 can then be compared
directly to experiment. Clearly, the results will be parameter
dependent, however, so we here specify our precise assump-
tions regarding the electronic structure. For concreteness,
we focus on the BaFe2As2 (Ba122) system on which the
largest number of measurements have been reported, and give
parameters for this system and corresponding references in the
Appendix.

Using these parameters, we obtain for the isotropic case
(r = 0) the zero-temperature gap values of �0

a0 = −1.79Tc0

and �0
b0 = 1.73Tc0, whereas for the nodal case (r = 1.3)

these are �0
a0 = −1.22Tc0 and �0

b0 = 1.23Tc0 with the critical
temperature chosen as Tc0 = 30 K. We have fixed the intraband
scattering potential at an intermediate strength value of v =
0.25, but show results for other values in the Appendix.
Potentials are given in eV and we set h̄ = kB = 1.

In Fig. 2, we now exhibit Tc suppression vs the correspond-
ing change in residual resistivity �ρ0 as defined above, both for
a fully isotropic s± gap (r = 0), and for a gap which has nodes
on the electron pockets (r = 1.3), for a range of ratios u/v. It is
clear that a wide variety of initial slopes and critical resistivities
�ρc

0 for which Tc → 0 is possible, depending on the scattering
character of the impurity. The variability of the suppression
rate with the ratio of inter- to intraband scattering has been
noted by various authors25,29 before this. In fact, Efremov
et al.29 have shown that the various Tc suppression curves of
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FIG. 2. (Color online) (a) Normalized critical temperature Tc/Tc0

vs disorder-induced resistivity change �ρ0 for isotropic s±-wave
pairing for various values of the inter- to intraband scattering ratio
α ≡ u/v. Inset: Same quantity plotted over a larger �ρ0 scale.
(b) As (a) but for an anisotropic (nodal) gap with anisotropy parameter
r = 1.3.

the isotropic s± gap fall onto universal curves depending on
whether the average pair coupling constant 〈λ〉 < , = , > 0
when plotted against the interband scattering rate (which is
not directly measurable, however). Other works have made
comparisons with the resistivity changes (for example Refs. 14
and 15), but have typically presented results for s± states only
for a single set of impurity parameters corresponding to the
fastest rate of Tc suppression. Such assumptions lead always to
critical �ρ0’s comparable to the smallest ones seen in Fig. 2,
of order tens of μ� cm. Here we see that more general values
of the parameters can easily lead to much slower Tc vs �ρ0

suppression rates by disorder, with critical disorder values
of �ρc

0 of order m� cm. As discussed by Li et al.,14 such
values are typical of chemical substitutions on various different
lattice sites; here we see that such slow Tc suppression does
not rule out the s± state, even within the assumptions of our
potential-scattering-only model.

B. Density of states

A real understanding of the effects of disorder in a given
situation will probably depend on correlating the results of
several experiments. Other quantities which are quite sensitive
to disorder are the temperature dependence of the low-T
London penetration depth �λ(T ) and the nuclear magnetic
spin-lattice relaxation time T −1

1 . Within BCS theory, these
quantities are controlled by the low-energy density of states. In
the pure system, the nodal structure then determines the power
law of temperature, and one generically expects �λ(T ) ∼ T

for gap line nodes except in very special situations.34 In the
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presence of a small amount of nonmagnetic disorder, a finite
density of states is created35,36 which leads automatically to
a T 2 term in the penetration depth.34,37 If the state is of s

character, the gap nodes are not symmetry protected and can
be lifted by further addition of disorder.25,38

In this work we note a further possibility in the disorder
evolution of the low-energy density of states (DOS) of a
nodal multiband s±-wave superconductor, namely, that a
reentrant behavior of N (0) can occur after lifting of the nodes.
The reason is that, in a situation dominated by intraband
scattering but with nonzero interband scattering, anisotropy
of the gaps on each individual sheet will be averaged by
intraband disorder quickly. If the state is s±, a midgap impurity
state can then be created by interband scattering, and grow
until it overlaps the Fermi level, as shown schematically in
Fig. 3(a). Such midgap states are the analogs of the Yu-Shiba
bound states created by magnetic impurities in conventional
superconductors, and can appear for nonmagnetic impurities
if the superconducting gap changes sign.39 The residual
density of states N (0) = − Im

∑
k Tr Ĝ(k,ω = 0)/(2π ) (Ĝ

is the Nambu Green’s function) effectively determines the
low-energy thermodynamic behavior, so we have plotted it
for the anisotropic band as a function of increasing disorder
in Fig. 3, for both s± and s++ states. In the former case the
reentrant behavior is clearly seen.

The corresponding sequence in the s± penetration depth
�λ(T ) would be T → T 2 → exp(−�G/T ) → T 2, where �G

ω
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FIG. 3. (Color online) (a) Schematic evolution of the order
parameter and density of states with increasing disorder for a system
with intra- and interband scattering. (b) Top: Fermi-level density of
states Nb(0) (nodal band) as shown in Fig. 2(b) vs �ρ0 for various
values of scattering ratio u/v in an anisotropic s± state. Bottom:
Fermi-level density of states for an anisotropic s++ state with Vab

identical in magnitude to the above panel, but positive. Anisotropy
parameter r = 1.3 in both cases.

is the minimum gap in the system, while for the NMR spin-
lattice relaxation rate T −1

1 , the analogous evolution should be
T 3 → T → exp(−�G/T ) → T . The residual linear T term in
the thermal conductivity, κ(T → 0)/T , should vanish and then
reappear with increasing disorder. In the s++ case, the last step
in each sequence is entirely absent, since interband scattering
cannot give rise to low-energy bound-state formation.

C. Realistic impurity potentials

It is clear from the above analysis that we have established
that there is a wide range of possibilities for the behavior of
Tc in an s± superconductor, as well as for low-temperature
properties like the penetration depth, when disorder is system-
atically increased. To make more precise statements, one needs
to have some independent way to fix the scattering potential
of a given impurity, and in particular the relative proportion of
inter- to intraband scattering. Kemper et al.30 found the ratio
between inter- and intraband scattering to be of order α = 0.3
for Co in Ba122, which would lead according to Fig. 2 to a
critical resistivity strength of about 300 μ� cm, roughly in
accord with experiment.14,15 Onari and Kontani13 have made
the important point that the “natural” formulation for a model
impurity potential, i.e., diagonal in the basis of the five Fe d

orbitals, automatically leads to significant interband scattering
if one transforms back to the band basis. However, simple
estimates show that depending on details α for on-site Fe
substituents can vary between 0.2 and 1, again leading as seen
in Fig. 2 to a wide variety of possible Tc suppression scenarios.

VI. CONCLUSIONS

We have argued that s± pairing cannot be ruled out simply
because the Tc suppression is slow according to some arbitrary
criterion. The definitive experiments along these lines will
most probably involve electron irradiation, where one can be
reasonably sure that the defects created act only as potential
scatterers. In this case we find critical resistivities for the
destruction of superconductivity which vary over two orders
of magnitude according to the ratio of interband to intraband
scattering. Results for the s± state are then not inconsistent
with experimental data, but proof of sign change of the order
parameter relies on knowledge of the impurity potential, which
requires further ab initio calculations for each defect. As
an alternative approach, we have proposed that systematic
variation of disorder could give rise to a clear signature of
s± pairing in the low-energy Fermi-level DOS N (0). In an
s± state, N (0) could increase with disorder, vanish again
due to node lifting, and increase again afterward due to
impurity bound-state formation. This “reentrant” behavior of
the DOS will be reflected in the temperature dependence of
low-temperature quasiparticle properties like the penetration
depth, nuclear spin relaxation time, or thermal conductivity.

For some materials, this could be a “smoking gun”
experiment for s± pairing.
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APPENDIX: MODEL PARAMETERS

In this appendix we give some details of how our results
change when taking values for the impurity parameters and
pair potential parameters different from those used in the main
text, so that the reader may judge how robust our conclusions
are.

So far, we have focused on the parent compound BaFe2As2

and chosen values for the Fermi velocities and densities of
states at the Fermi level that are compatible with both density
functional theory (DFT) calculations40 and angle-resolved
photoemission spectroscopy (ARPES) measurements.41,42 We
assume a density of states on each Fermi surface sheet of Na =
3.6 and Nb = 2.7/Vc/eV/spin (Vc is the unit cell volume),
for the “effective” hole and electron pockets, respectively,
that approximately describes the imbalance in the densities
of states that also has been seen with ARPES,41–43 and
is consistent with the density of states of Ba122 arising
from Fe d orbitals according to DFT calculations40 with an
effective-mass renormalization of z = 3. We take the root-
mean-square Fermi velocities as vF,a = 2/3 × 105 m/s and
vF,b = 105 m/s from Ref. 44, Table I, vF,⊥, and renormalize
them by the same factor of z = 3 to approximately match the
velocities found in ARPES experiments.41–43 In the transport
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FIG. 4. (Color online) Tc/Tc0 vs �ρ0 for various values of the
inter- to intraband scattering ratio α ≡ u/v with v = 1.25 eVVc

(a) for isotropic s± wave paring and (b) for an anisotropic (nodal)
gap with anisotropy parameter r = 1.3.

calculation, the component of the Fermi velocities in the
direction of the current is taken to be 〈v2

Fα,x〉 = 1/2 v2
Fα due

to the quasicylindrical Fermi surface. The pairing potentials
chosen for the main text are Vaa = Vbb = 0.05 and Vab =
Vba = −0.04.

However, there are still two parameters unfixed, namely,
the pairing potential Vαβ and the impurity potential v for
scattering within bands (a full discussion of the variation
of the inter- to intraband potential ratio α = u/v is included
in Sec. V). Although the effective pairing potential Vαβ and
average coupling constant 〈λ〉 = 1

Na+Nb

∑
α,β∈{a,b} NαVαβNβ

as defined in Ref. 29 for our weak-coupling model, as well
as the impurity scattering potentials u and v, are not known
in experiments, our conclusions are consistent with different
parameters within a reasonable range. If we increase v to
v = 1.25 eVVc, keeping all other parameters identical to those
of Fig. 2 of the main text, the Tc suppression significantly
slows, as seen in Fig. 4, with the exception of the value
α = 1, which plays a special role in the theory of two-band s±
superconductivity, as can be easily checked analytically. While
in Ref. 3 it was argued that the interband scattering potential u

should be generically large for any chemical substituent, there
is no reason to expect α = 1 to hold exactly, and therefore we
see that large critical resisitvities �ρc

0 are even more likely to
be found for stronger impurities (the unitarity limit v → ∞
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FIG. 5. (Color online) The resistivity at half suppression �ρ1/2

as a function of the ratio α = u/v for various intraband impurity
potentials v (measured in eVVc); the other parameters are taken as
in the main article for the isotropic s± wave pairing (top) and for an
aniostropic (nodal) gap (bottom).
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with fixed α is pathological in this model29 and we have not
considered it here). The special role of the value α = 1 can be
illustrated by plotting the resistivity �ρ1/2 at which the critical
temperature is suppressed by half, Tc = 0.5Tc0, as shown in
Fig. 5, which may be compared with experiments. Note that
α 
 1 yields the fastest Tc suppression independent of the
impurity potential in the physical regime v � u.

Finally, we also mention the effect of choosing other
pairing potentials Vαβ that lead to different values of 〈λ〉.

As explained in Ref. 29, for isotropic s± paring, when Tc

is plotted vs the effective interband scattering rate, it follows
three different universal curves according to whether 〈λ〉 is
greater than, equal to, or less than 0. We have used a value
〈λ〉 = 0.037 ≈ 0 in our investigations. We have examined
other parameter sets with negative 〈λ〉, and found no essential
difference in Tc when plotted against the residual resistivity
�ρ0, which of course depends on both intra- and interband
scattering.
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